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Unconstrained minimization of smooth convex functions
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Unconstrained minimization

Consider solving
min
x
f(x)

where f : Rn → R is convex and f ∈ C2(dom f).

Assuming there exists x∗ such that infx f(x) = f(x∗) = p∗, a necessary
and sufficient condition for x∗ to be optimal is

∇f(x∗) = 0

which is a set of n equations in n unknowns x1, . . . , xn.

Unless there is a closed form-solution (which is rare), we will look for a
minimizing sequence x(0), x(1), . . . ∈ dom f , i.e., such that

f(x(k))→ p∗ as k →∞,

with the iterations terminated when f(x(k))− p∗ < ε, for some ε > 0.
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Initial point and sublevel set

Most algorithms require x(0) ∈ dom f and the sublevel set S, defined
by α0 = f(x(0)) as S = {x ∈ dom f | f(x) ≤ α0}, to be closed.

The second condition on S is automatically satisfied when f(x) (with
dom f = Rn) is continuous and coersive, implying

f(x)→∞, as x→ bddom f.

Some examples of twice-differentiable closed functions are

f(x) = log
( m∑
i=1

exp(aTi x+ bi)
)
, dom f = Rn

and

f(x) = −
m∑
i=1

log(bi − aTi x), dom f = {x | Ax ≺ b}.
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Strong convexity and implications

The function f is strongly convex on S, if there is µ > 0 such that

∇2f(x) � µI, ∀x ∈ S.

In this case, we have

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22

which can be used to show that

f(x)− p∗ ≤ 1

2m
‖∇f(x)‖22

thus giving us a useful stopping criterion.

It can also be shown that

‖x− x∗‖2 ≤
2

m
‖∇f(x)‖2

which suggests that x∗ is unique.
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Descent methods

Consider a minimizing sequence of the form

x(k+1) = x(k) + t(k)∆x(k), t(k) > 0

where ∆x(k) is the search direction and t(k) the step size.

In the case of descent methods, we have

f(x(k+1)) < f(x(k))

except when f(x(k)) is optimal.

Search Direction

The search direction in any descent method must satisfy

∇f(x(k))T∆x(k) < 0

Such direction is always a descent direction.
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General descent method

ALGORITHM: General descent method

given a starting point x ∈ dom f
repeat

1. Determine a descent direction ∆x
2. Choose a step size t > 0 (line search)
3. Update x := x+ t∆x

until stopping criterion is satisfied.

The line search procedure determines where along the line

{x+ t∆x | t > 0}

the next iterate will be.
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Line search types

Exact line search: Choose t so that

t = arg min
s
f(x+ s∆x)

Backtracking line search: Using some α ∈ (0, 0.5) and β ∈ (0, 1),
repeat t := βt until

f(x+ t∆x) ≤ f(x) + αt∆f(x)T∆x
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Gradient descent method: ∆x = −∇f(x)

ALGORITHM: Gradient descent method

given a starting point x ∈ dom f
repeat

1. ∆x = −∇f(x)
2. Choose a step size t > 0 (line search)
3. Update x := x+ t∆x

until stopping criterion is satisfied.

The stopping criterion is usually of the form ‖∇f(x)‖ ≤ η (0 < η � 1).

It can be shown that f(x(k))− p∗ ≤ ck(f(x(0))− p∗), where c ∈ (0, 1)
depends on m, x(0), and line search type.

The method is very simple, but often very slow in practice (and, hence,
rarely used).

The method is known as the Gradient Descent Method (GDM).
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Examples

Consider minimizing f(x) = 0.5(x21 + γx22) (with x∗ = 0 and p∗ = 0).

For x(0) = (γ, 1), gradient descent with exact line search can be shown
to produce

x
(k)
1 = γ

(
γ − 1

γ + 1

)k
, x

(k)
2 =

(
−γ − 1

γ + 1

)k

The convergence is very slow for γ � 1 or γ � 1.
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Examples (cont.)

Consider minimizing f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1.

We use gradient descent with a backtracking line search (α = 0.1 and
β = 0.7).

Note that the sublevel sets of f are not too badly conditioned.
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Some important observations/conclusions

The gradient method often exhibits approximately linear convergence,
i.e., f(x(k))− p∗ converges to zero approximately as a geometric series.

The choice of backtracking parameters α, β has a noticeable but by no
means dramatic effect on the convergence.

An exact line search sometimes improves the convergence of the gradi-
ent method, but the effect is not large.

The convergence rate depends greatly on the condition number of the
Hessian, or the sublevel sets.

When the condition number is 1000 or more, the gradient method is so
slow that it is useless in practice.

The main advantage of the gradient method is its simplicity.
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Newton’s method

For x ∈ dom f , the vector

∆xnt = −∇2f(x)−1∇f(x)

is called the Newton direction.

The Newton direction is always a descent direction, since

∇f(x)T∆xnt = −∇f(x)T∇2f(x)−1∇f(x) < 0,

unless ∇f(x) = 0.

It can be shown that the Newton step is the steepest descent direction
at x w.r.t. the quadratic norm defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2
.
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Newton’s method (cont.)

Note that x+ ∆xnt minimizes the 2nd-order approximation of f(x)
which is

f(x+ v) ≈ f̂(x+ v) = f(x) +∇f(x)T v +
1

2
vT∇2f(x)v

(Differentiating w.r.t. v and equating to zero yields v∗ = ∆xnt.)

Note also that x+ ∆xnt solves the linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0
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Newton’s method (cont.)

ALGORITHM: Newton method

given a starting point x ∈ dom f
repeat

1. ∆x = −∇2f(x)−1∇f(x)
2. Choose a step size t > 0 (line search)
3. Update x := x+ t∆x

until stopping criterion is satisfied.

This algorithm is known as the damped Newton method, to distinguish
it from the pure Newton method, which uses t = 1.

Convergence of the method is rapid in general, and quadratic near x∗.

Newton’s method is affine invariant and scales well with problem size.

Its performance is independent on the choice of algorithm parameters.

The main disadvantage of Newton’s method is the cost of forming and
storing the Hessian, and the cost of computing the Newton step.
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Example in R2

Backtracking parameters: α = 0.1, β = 0.7.

Convergence in only 5 iterations.

The local rate of convergence is quadratic.
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Example in R100

Consider minimizing f(x) = cTx−
∑m
i=1 log(bi − aTi x) with m = 500 and

n = 100.

Backtracking parameters: α = 0.01, β = 0.5.

Backtracking line search is almost as efficient as exact (which is much
more “expensive”).

Note the two phases of the algorithm (viz., damped and pure).
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Example in R10000

Consider minimizing f(x) = −
∑10000
i=1 log(1− x2i )−

∑100000
i=1 log(bi − aTi x).

Backtracking parameters: α = 0.01, β = 0.5.

Performance is similar as for small examples.
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Gauss-Newton method

Let ei : Rn → R be an “error function”, where i = 1, . . . ,m.

E.g., ei(x) = yi −M(ti | x), where M(ti | x) models the behaviour of a
system with parameters x at time ti, while yi is an observation.

Consider the least squares (LS) problem of estimating x via minimizing
the combined quadratic cost given by

f(x) =
1

2

m∑
i=1

e2i (x).

In general, this problem may not be convex (only local solutions can be
found).
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Gauss-Newton method (cont.)

The gradient and Hessian of f(x) are given by

∇f(x) =

m∑
i=1

ei(x)∇ei(x)

and

∇2f(x) =

m∑
i=1

∇ei(x)∇ei(x)T + ei(x)∇2ei(x)T

The Gauss-Newton step is defined as

∆xgn = −

(
m∑
i=1

∇ei(x)∇ei(x)T
)−1( m∑

i=1

ei(x)∇ei(x)

)

This search direction can be considered an approximate Newton direc-
tion.

The method does not require the computation of 2nd-order derivatives.
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Gauss-Newton method (cont.)

Alternatively, one can consider e : Rn → Rm defined as

e(x) := [e1(x), e2(x), . . . , em(x)]T

in which case

f(x) =
1

2
‖e(x)‖22 =

1

2
e(x)T e(x)

Let J(x) be the Jacobian of e, so that e(x+ v) ≈ e(x) + J(x)v. Then,

∆xgn = arg min
v

1

2
‖e(x) + J(x)v‖22 = −

(
J(x)TJ(x)

)−1

J(x)T e(x)

In other words, ∆xgn minimizes the linear approximation of f(x).

Stable implementation requires: m ≥ n and rank J(x) = n for all x.
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Levenberg - Marquardt algorithm

Levenberg’s contribution was to use “damping”, i.e.

∆xlm = −
(
J(x)TJ(x) + λI

)−1

J(x)T e(x)

with a variable regularization λ > 0.

Note: ∆xlm → ∆xgn, when λ→ 0, while ∆xlm → ∆xgd, when λ→∞
(where ∆xgd stands for a gradient descent direction).

Marquardt added an additional “trick”, i.e.

∆xlm = −
(
J(x)TJ(x) + λ diag(J(x)TJ(x))

)−1

J(x)T e(x)

which avoids slow convergence in the direction of small gradient.

Nowadays, the Levenberg-Marquardt algorithm (aka damped LS) is a
standardly used to solve non-linear LS problems.
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Gram-Schmidt orthogonalization

Given n linearly independent vectors {vi}ni=1 in Rn, we initiate the
following procedure:

Step 1: ẽ1 = v1, e1 =
ẽ1
‖ẽ1‖

.

Step 2: ẽ2 = v2 − (vT2 e1)e1, e2 =
ẽ2
‖ẽ2‖

.

. . .

Step k: ẽk = vk −
(

(vTk e1)e1 + . . .+ (vTk ek−1)ek−1

)
, ek =

ẽk
‖ẽk‖

.

More concisely, with e1 = v1/‖v1‖ and k = 2, 3, . . . , n, we have

ek =
vk −

∑k−1
i=1 (vTk ei)ei∥∥∥vk −∑k−1
i=1 (vTk ei)ei

∥∥∥
The above procedure is known as Gram-Schmidt orthogonalization (or,
simply, Gram-Schmidt procedure) and it guarantees that the resulting
vectors {ei}ni=1 are orthonormal.
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Gram-Schmidt orthogonalization (cont.)

Let P ∈ Sn++ be a positive definite matrix, which can be used to define
an inner product on Rn as

〈x, y〉P = xTP y = (P 1/2x)T (P 1/2y) x, y ∈ Rn,

with the associated weighted Euclidean norm given by ‖x‖P = xTP x.

What if we apply the Gram-Schmidt procedure to linearly independent
{vi}ni=1, but now proceeding according to

ek =
vk −

∑k−1
i=1 〈vk, ei〉P ei∥∥∥vk −∑k−1
i=1 〈vk, ei〉P ei

∥∥∥
P

for k = 2, 3, . . . , n and e1 = v1/‖v1‖P .

By construction, the resulting vectors {ei}ni=1 are now P -orthogonal
(implying 〈ei, ej〉P = δi,j), and they are conventionally referred to as
P -conjugate (or, simply, conjugate) directions.

The linear spaces spanned by conjugate vectors are known as Krylov
spaces (with the ei above being an example of a Krylov basis).
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Unconstrained quadratic minimization

Now, let us consider the problem of minimizing

f(x) = (1/2)xTPx+ pTx+ q,

for some p ∈ Rn and q ∈ R.

We express the optimal solution x∗ in a parametric form as

x∗ =

n∑
i=1

αiei = Eα,

where α = [α1, α2, . . . , αn]T and the columns of E ∈ Rn×n are formed
by the P-conjugate directions {ei}ni=1 (implying that ETPE = I).

Then, substituting the parametrization into the original cost function
yields

f(α) = f(x)
∣∣∣
x=Eα

= (1/2)αT ETPE︸ ︷︷ ︸
I

α+ pTEα+ q =

=
‖α‖22

2
+ βTα+ q, with β := ET p.
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Unconstrained quadratic minimization (cont.)

Thus, in the Krylov space, the quadratic cost

f(α) =
n∑
i=1

( α2
i

2
+ βiαi +

q

n︸ ︷︷ ︸
fi(αi)

)
=

n∑
i=1

fi(αi)

is separable, which means that it can be minimized w.r.t. each αi inde-
pendently of the others.

In particular, we have the optimal values of αi given by

αi = −βi = −pT ei,

which leads to a sequence of very simple updates.

The use of conjugate directions as a means for rendering the quadratic
optimization problem separable forms the basis of the Conjugate Gradi-
ent Method (CGM) (aka Conjugate Directions Method (CDM)).
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Conjugate Gradient Method

To formulate the CGM in the form of an iterative procedure, we first
assume that x∗ belongs to the affine space defined by

x∗ = x(0) +
n∑
i=1

αiẽi = x(0) + Ẽα,

where x(0) ∈ Rn is an initialization. Note that, in this case, αi = −β̃i,
where β̃ = ET (Px(0) + p).

The CGM takes advantage of the following result.

Expanding Manifold Property

Let Gk be an affine space defined as Gk = {x ∈ Rn | x = x(0) +
∑k
i=1 γiẽi}.

Then, the k-th iteration of the CGM produces

x(k) = arg min
x∈Gk

f(x).

Moreover, the gradient of f(x) at x = x0 +
∑k
i=1 αiẽi w.r.t. the vector of

partial coefficients α(k) = [α1, α2, . . . , αk]T is orthogonal to all ẽ1, ẽ2, . . . , ẽk.
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Conjugate Gradient Method (cont.)

ALGORITHM: CGM for quadratic costs

given a starting point x(0) and d(0) = −(Px(0) + p)
repeat

1. Update x(k+1) := x(k) + γ(k)d(k) (via exact line search or BT)
1. Compute g(k+1) = Px(k+1) + p and

β(k) =
(g(k+1) − g(k))T g(k+1)

(g(k+1) − g(k))T d(k)

d(k+1) = −g(k+1) +

k∑
i=0

〈g(k+1), d(i)〉P
‖d(i)‖P

d(i) = −g(k+1) + β(k)d(k)

until stopping criterion is satisfied or k = n.

The above method of computing β(k) is known as the Polak-Ribiere
method. Using some further simplifications, one can also compute β(k)

as

β(k) =
‖g(k+1)‖
g(k)

,

which is known as the Fletcher-Reevs method.
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Convergence rate of CGM

Generally, CGM generates much better descent directions compared to
GDM.

For the quadratic minimization problem minx{0.5xTPx+ pTx}, one
can show that

‖x(k+1) − x∗‖2 ≤
√
λmax −

√
λmin√

λmax +
√
λmin︸ ︷︷ ︸

≈1−2
√
λmin/λmax

‖x(k) − x∗‖2,

where λmax and λmin denote the maximum and the minimum eigenva-
lue of P � 0, respectively.

Thus, the convergence rate of CGM is defined by 1− 2/
√
C, while that

of GDM is only 1− 2/C (where C = λmax/λmin, as before).

For example, with C = 106, one iteration of CGM reduces the error by
0.998, while one iteration of GDM reduces the error by only 0.999998.
Thus, one would need 1000 iterations of GDM to achieve the result of
one (!) iteration of CGM.
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