ECFE 602 - Section 4

Non-smooth optimization of convex functions

Subgradient, subdifferential and their properties
o First-order optimality condition for sub-differentiable functions

o Proximal mapping and Proximal Point Algorithm

Conjugate functions and Moreau decomposition
o Proximal Gradient Method and Douglas-Rachford Splitting
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PROGRESS SO FAR

o In the previous sections, we learned a number of methods of unconst-
rained smooth convex optimization which could be used to solve

min f(z)
for some convex f : dom f — R. of either C* or C? class.
o In particular, we have discussed several first-order methods, viz.
— Gradient Descent Method (GDM)
— Conjugate Gradients Method (CGM)
— Gauss-Newton Method (GNM) (for non-linear LS problems), and
— Levenberg-Marquardt algorithm (for non-linear and possibly non-

convex problems)

o In general, first-order methods share the following pros and cons:

Pros numerically “cheap" iterations (no need for V2 f(z)), guaran-
teed convergence to a (local) minimum

Cons relatively slow convergence rates
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INTRODUCING CONSTRAINTS

@ As the next step, we want to extend our discussion to constrained opti-
mization problems.

o For a given f: dom f — R, a constrained optimization problem can be
defined as

min f(z)

subject to z € C

where we use “subject to" (often abbreviated as “s.t.") to require that
the optimal solution has to be found within set C.

@ Such set is called the set of feasible solutions, which we always assume
to be non-empty.

o When f is a convex over its domain and the feasible set C is closed and
convex as well, the above optimization problem is referred to as convex.
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UNCONSTRAINED FORMULATION

o The constrained optimization problem mingec f(z) can be cast into an
equivalent unconstrained form using the notion of an indicator function.

@ Recall that, given a set C' C dom f, its indicator function is defined as

Ic(x):{o, ifzelC

o0, otherwise

o Assuming inf, f(z) < oo, an equivalent unconstrained problem has the
form of

min {f(z) + Ie(2)}

o Note that, in this case, we effectively minimize f(z) = f(x) + Ic which
takes values over the extended real line (—oo, +00].

@ Such functions are called extended-value functions.
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UNCONSTRAINED FORMULATION (CONT.)

o To take advantage of the unconstrained formulation, we need to learn
how to deal with extended-value functions.

o Fortunately, working with such functions is quite straightforward under
a few standard assumptions and some additional precautions (for more
details see Section 3.1.2 of Boyd’s textbook).

o More importantly, the sublevel sets of I¢, i.e. Sa = {z | Ic(z) < a}, are
convex and closed as long as C is convezr and closed.

o Hence, if f is closed and convex, so will be f . And this is what turns
out to be of key importance for the algorithms of this section.

o Note however that f is not differentiable, meaning that our gradient-
based tools are no longer applicable.

e To overcome this setback, we need to exploit some tools of non-smooth
optimization which are discussed next.
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SUBGRADIENT

@ The defining inequality for differentiable convex functions states

fy) = f(@)+ V() (y—=), Vyedomf

o Here the graph of f is viewed as a parametric curve, i.e. a map from
dom f to dom f X R, namely = — (z, f(z)).

o For each z, the tangent vector to the curve at (z, f(x)) is obtained by
differentiating the latter w.r.t. z, resulting in [1, V f(2)]7.

o Consequently, the normal vector is defined as [V f(x), —1]7 (as shown
in the above figure).
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e The 1st-order approximation of f at z is a global lower bound (under-
estimator), since V f(z) defines a non-vertical supporting hyperplane to

epi f at point (z, f(x)).

o Formally, we have

Vi(lr) Zé _ ”fm <0, VY(y,t)€cepif
AL )

o Note that, initially, we perceived f as an algebraic entity, i.e. a formal
mathematical rule which establishes a relation between z and y = f(z).

o Convexity makes it possible to think of f as a geometric entity, namely
epi f, which is a convex and closed subset of dom f x R, as long as f
is closed and convex.

o In this case, epi f can be defined as the intersection of all half-spaces
defined by the normals [V f(z), —1]7.
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o Now assume that f is still convezr but not differentiable continuously
everywhere in the interior of its domain, i.e. int dom f.

o In this case, its subgradient at x is any vector g that satisfies

fy) > f@)+g" (y—x), Vyedomf

()

Flan) + 9/ (y = 21)

F) + g5y = a0) .

"'}(iliz) + 95 (y — x2)
T T2

Here, g1, g2 are subgradient of f at x1, while gs is a subgradient of f
at xs.
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SUBDIFFERENTIAL

e One can see, at the points of discontinuity of f’(z) (or, more generally,
of Vf(z)), there might be multiple subgradients.

o At each z € dom f, all available subgradients are combined into a set
df(x) called the subdifferential of f at x. Formally,

)={919"w—2) < f(u) - £(2), ¥y € dom ]

@ Note that the notation gT(y — x) is more appropriate in the case when
all the vectors are in R™. More generally, we should use (g,y — x).

e As Jf(x) is an intersection of (closed) half-spaces, it is a closed convex
set. Moreover, if € int dom f, then 0f(x) is nonempty and bounded.
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EXAMPLES

o Consider f(z) = max{fi(x), f2(x)}, with both fi(x) and f2(z) being
convex and differentiable.

(VAW}, ify >z
f(y) =4 [VHw), VAW, ify=z
{Vi(y)}, ify <
o Let z € R" and consider f(z) = ||z||2. In this case,
_ J{=/l=l=} if #0
8f(x)‘{{geR"||gn2<1}7 ite=0
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SUBGRADIENT AND SUB-LEVEL SETS

o Suppose z satisfies f(z) > f(y), then this implies g7 (y — x) < 0, where
g is a subgradient of f at x.

/

| f) = f=)

\\\ /’

@ In other words, the nonzero subgradients at x define supporting hyper-
planes to the sub-level set

{y | fly) < f(=)}
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OPTIMALITY CONDITION FOR SUB-DIFFERENTIABLE FUNCTIONS

o Using the subdifferential, we can now define the first-order optimality
condition of non-smooth convex optimization.

o In the unconstrained setting, =™ minimizes f(z) if and only if

( 0€df(z") )

where 0 is a zero-vector of the same dimensionality as .

o Note that the validity of the above statement is easy to confirm, since,
by definition: ~
f(y) Zf(a:*)—F(O,y—x*), V:%
and, therefore, 0 € 9f(z*).
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SUBDIFFERENTIAL AS A MONOTONE OPERATOR

o Recall that, the gradient V f of a continuously differentiable function f
can be viewed as a linear operator x — V f(z), Vz € int dom f.

o In this case, if f is also convex then, for any x,y € int dom f, we have
(Vf(x) =Vi()z-y) 20

which characterizes the gradient operator as monotone (or strictly mo-
notone, when f is strictly convex).

o Just like the gradient operator, subdifferential is also a linear operator.
Moreover, it can also be shown to be monotone for convex f, viz.

<U*’U,$7y> Z 0
for all z,y € dom f and u € 9f(x), v € If(y).

@ Yet, in contrast to the gradient, the subdifferential map is multivalued
or set-valued, since its value at x is, in fact, a set.

o Note that if f is differentiable at z, then df(x) is a singleton (i.e., a set
of one element), viz. 9f(x) = {Vf(z)}.
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IMPORTANCE OF MONOTONICITY

o To appreciate the effect of monotonicity of df, let us consider
. 1 2
min 3 ollz =yl + Al
for some given y € R"™ and a (regularization parameter) X > 0.

o First, we note that the problem is separable since

n

1 1 .
@) = gllo =l + Mal = 3 (Gl = wl + Aail) = 3 wu(a)
i=1

i=1

pi(xi)

and, therefore, f(z) can be minimized via independent minimization of
pi(xs), for all i =1,2,...,n.

@ Thus, all we need now is to solve a scalar problem of the form

. 1
min {§|x¢ —uil* + A\$z‘|}
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IMPORTANCE OF MONOTONICITY (CONT.)

o The subdifferential of ¢;(z;) is given by dvi(x:) = (z: — ys) + A 9(|x4]),
with 9(|z;|) defined as

(i)
1, ifz; >0 !
O|zi]) = [-1,1], ifx; =0 o
-1, ifx; <0 L

Note that O(|x;|) is a monotone function.

@ Therefore, the 1st-order optimality condition suggests that

Fi(z])
A yi € z7 + A0(|x7])

Note that function F; is strictly monotone
Z; .
- and onto, which suggests that

x; = ]:i_l(yi)
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o Due to the properties of F;, its inverse function Sy := F; ' is always
well-defined. In particular, in the case at hand, this function is known
as soft-thresholding.

Sx(vi)
z; = Sx(y:i) = (lysl — A4 sign(yi) =
yi_)H lfyz>)\ Y Ui
=40, if =A<y <A A
yi + A, ify, < —A

@ The optimal solution to the original problem can be defined as
w" = Sa(y) = [Sx(11), Sa(y2), -, Sa(wn)]”

o Note that =™ is obtained via applying Sx to each coordinate y; of y in-
dependently (i.e., separably).

@ The above solution has been made possible due to the monotonicity of
the subdifferential of ||z||1.
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@ The previous examples demonstrates a number of important concepts.

o Let f: R"™ — R be convex, closed and sub-differentiable. Consider an
optimization problem of the form

. [1
win { 3o = ol + A7 (0)}
with its associated optimality condition

y € ¥+ A0f(x") = (ZT+X0f)(z")

where Z + XA 0f needs to be viewed as an operator from R" to itself
(with Z being the identity operator).

o As T + AJf is strictly monotone and onto (and, therefore, injective),
its inverse Ry = (Z + A9f)™" — called the resolvent of df — is always
well-defined.

@ Moreover, the optimal solution to our optimization problem can now
be defined as
z”" =Ra(y)
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PROXIMAL MAPPING

o When the resolvent in question pertains to the subdifferential 0f of a
convex function f, its commonly referred to as the proximal mapping
(aka proximal operator) of f. Formally,

. 1
prox () = arg min { 3o = sl + A /(o) |

and it is unique if f is closed.

o In some sense, prox generalizes the notion of orthogonal projection. In-
deed, let f(z) = I¢(x), for some closed and convex set C. Then,

prox;, (y) = arg min [l — y|lz = Pe(y)
which is the orthogonal projection of y onto C.

o Note that, for f(x) =0, prox,,(y) =y.
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PROXIMAL MAPPING (CONT.)

_— level-sets of

f(=)

boundary of
dom f

o The above figure shows the level curves of a convex function f(z) over
its domain.

o Applying prox, to the “blue" points moves them to the corresponding
“red" points.

@ The “outside" blue points move simultaneously towards the minimum
of f(z) and the boundary of dom f.
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PROXIMAL POINT ALGORITHM

o Let f: R"™ — R be a closed and convex function and let * be its glo-
bal minimizer, i.e. f(z*) < f(z) for all . Then,

*

* .1 *
prox;(z*) = arg m1n{§\|x — "5 + f(x)} =z
o Consequently, the point z* minimizes f if and only if
z" = prox;(z")

In other words, the global minimizer of f is a fized point of its proximal
mapping.

@ It can also be shown that, for closed and strongly convex f, proxf(~) is
always contractive, i.e.

| prox;(z) — prox,(y)|| < kllz —yll, with 0<rk <1

@ Such operators play a special role in the Fized-Point Theorem, which
we recall next.
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PROXIMAL POINT ALGORITHM (CONT.)
Fixed Point Theorem

Let (X, |-]]) be a complete normed (aka Banach) space (such as, e.g.,
R"™ with any norm). Also, let 7 : X — X be a contraction. Then,
there is a unique x* such that 7 (z*) = z*.

Moreover, starting with any z(© € X, the sequence of iterations
LD — 'T(x(t))

is guaranteed to converge to z*, i.e. |z — z*|| — 0.
t— o0

@ The theorem suggests the possibility to find a global minimizer of f as
a fized point of its associated proximal mapping.

e Specifically, the Prozimal Point Algorith (PPA) relies on the iterative
up-dates performed according to

2D = prox”(wm)
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PROXIMAL POINT ALGORITHM (CONT.)

@ The PPA is guaranteed to converge under rather general conditions on
f (that can either be differentiable or sub-differentiable). Particularly,
f can be an extended-value function!

o When the convexity of f is not strong, its proximal mapping is not a
contraction, in general. So, do we still have a convergence?

o It turns out, in the case of weakly convex f, the algorithm still conver-
ges to their global minimizers (which might no longer be unique).

@ Moreover, it converges under the mildest possible assumption, which is
simply that a minimizer exists.

@ On the practical side, working with proximal mappings is particularly
advantageous in view of their special properties which we mention next.
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PROPERTIES OF PROXIMAL OPERATORS

e Separable sum

If f is separable across two variables, i.e. f(z,y) = ¢(z) + ¥ (y), then
prox; (v,w) = (proxw(v)7 prox,, (w))

More generally, if f is fully separable, i.e. f(x) =>"_, fi(x:), then
(prox (1)), = prox;, (v,

fori=1,2,...,n

o Postcomposition

If f(z) = ap(z) + b, with a > 0, then

profo(v) = proxakg)(v)

o Precomposition

If f(z) = p(az +b), with a # 0, then

prox, ;(v) = = (prox,z,,(awv +b) — b)

1
«
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PROPERTIES OF PROXIMAL OPERATORS (CONT.)

o Rotational invariance
If f(z) = ¢(Qz), where QTQ = QQT = I, then
Prox, ¢ (v) = QT PI'OX,\@(QU)
o Affine addition
If f(z) = ¢(x) +a” = + b, then
prox)\f(v) = prowa(v —Aa)
o Regularization
If f(z) = p(z) + (p/2)||z — al|3, then
prox, ;(v) = prox,, (A/A) v+ (pA) a)

where A = A\/(1 4 Ap).
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LEGENDRE TRANSFORM

o Proximal mappings have several properties which make them resemble
orthogonal projections onto convex sets. To understand these properti-
es, we need to recall the definition of Legendre transform.

o Let f: R™ — R be convex and differentiable. Then, at each o € R",
one can define the supporting (aka tangent) line as given by

L(z;30) = f(xo) + Vf(zo)" (z — m0) < f()

for all z € R™.
Let g(z) = —L(0; z), so that the tan-

gent line crosses the vertical axis at
—g(zo). Hence, for each x, we have

y=Vf(x)

fl@)
/ -
=

NS
7 - -
—g(z0)| " L(z;zo) = f(20) + Vf(20)" (& — z0)
>
P

o These two equations define precisely what the Legendre transform (LT)

of f is.
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LEGENDRE TRANSFORM (CONT.)

o In particular, the LT enables a dual representation of f(z) in terms of
its “slopes” described by the dual variable y.

f(z) 9(y)

slope=x

If f admits a supporting line at  with slope y, then g admits a sup-
porting line at y with slope z.

@ Moreover, it can be shown that, if f admits a strict supporting line at
x with slope k, then g admits a tangent supporting line at y with slope

Vyg(y) =z

and, hence, g is differentiable.
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CONJUGATE TRANSFORM

o The conjugate transform (aka the Legendre-Fenchel transform) extends
the LT to sub-differentiable convex functions, and it is defined as

o= sw (yz— @)

rzedom f

with dom f* = {y | y"= — f(z) is bounded}.
/@)

[oxy

Important: f* is a convex function,
whether or not f is convex.

o-rw)

o Similarly to the LT, the conjugate transform “encodes" f in terms of
its tangents comprising the dual space of variable y.
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CONJUGATE TRANSFORM (CONT.)

o Each point (z, f(z)) on the differentiable branches of f admits a strict
supporting line (or hyperplane) with slope V f(z) = k.

@ The non-differentiable point x. admits infinitely many supporting lines
with slopes in the range [ki, kn].

e So, each point of f*(k) with k € [k, kn] must admit a supporting line
with constant slope . (branch c).

o In this case, we say that [ is affine or linear over (ki, kp).
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CONJUGATE TRANSFORM (CONT.)

o In the case, we f is convex, we have f**
_—* 5 \/

o A convex function f having an affine part has f* with one non-diffe-
rentiable point.

o More precisely, if f is affine over (z;, zn) with slope k. in that interval,
then f* will have a non-differentiable point at k. with left- and right-
derivatives at k. given by x; and x, respectively.
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CONJUGATE TRANSFORM (CONT.)

@ In the case when f is non-convex, the conjugate transform follows the
boundary of the convex hull of epi f.

fz) \ £k

a

per i
slope = z;

Az

@ Define the conver extrapolation of f to be the function obtained by re-
placing its non-convex branch (c¢) by the supporting line that connects
the two convex branches of f (a and b).

@ Then, the conjugate transforms of f and its convex extrapolation both
yield f*. For this reason, f** is also called the convez envelope of f.
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RESULTS TO REMEMBER

o The conjugate transform yields only convex functions, i.e f* is convex
and so is f**.

o Points of f are transformed into slopes of f*, and slopes of f are trans-
formed into points of f*.

o Non-differentiable points are transformed into affine branches of f*.

o Affine or non-convex branches of f are transformed into non-differen-
tiable points of f* (the only two cases).

o f(z) = f*"(x) if and only if f admits a supporting hyperplane at x.

o If f* is differentiable at y, then f(x) = f**(z) at z = V f*(y).
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EXAMPLES

e Define f(z) = —logz, then

[ (y) = sup (yr +logx) =

{1 —log(~y), y<0

00, y>0

o Define f(z) = (1/2)x7 Qx, with € R™ and Q € ST_. Then,

I (y) = sup ( x—(1/2)z ) =(1/2)y"Q 'y

o Define f(X) = logdet X!, with X € S, . Then,

(V) = sup (tr(YX) + logdet X) = logdet(—=Y) ™" —n,
X0

with dom f* = —
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o Let f(z) = Ic(x) be the indicator function of a set C C R™. Then,

IE(y) = supy’ =,
zeC

which is the support function of C.

o Let f(z) = ||z|| be a norm on R™ with its associated dual norm || - ||«.
Then the conjugate of f is given by

) = {o, Iyl <1 _

00, otherwise

which is the indicator function of the unit ball in the dual-norm space.

o It can also be shown that the conjugate of f(x) = (1/2)||z|* is equal to

£ (y) = 1/2)llyl1%.
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ADDITIONAL PROPERTIES

o Fenchel’s inequality extends (1/2)z”z + (1/2)y"y > 27y to non-quad-
ratic functions as
F@)+ [ () 2"y

For example, (1/2)z7Qz + (1/2)y"Q 'y > 2Ty for Q € S7.,..

@ Some other useful properties of f* are listed below.

f(x) ()
fi(z1) + fa(22) J1 (1) + f3 (y2)
ag(z) ag”(y/a)
9(Ax) fy)=g"(A""y)
g(z —b) g (y)+b"y
gle) +a"z+b g*(y—a)—b
infu+v=x(f1 (u) + fa ('U)) fi (y) + /3 (y)

o Note that the operation inf, ,—(fi(u) + f2(v)) is called the infimal
convolution of fi and fs.
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MOREAU DECOMPOSITION

o Recall the subgradient characterization of prox f is given by
y=prox,(r) <= xz-yeif(y)
for any convex and sub-differentiable f : R® — R.
e However, by the definition of the conjugate transform, we then have
r—ycdf(y) <= yedfi(x—y) <= x—y=prox(z)

o The above relations suggest a very important result, namely

x = prox; () + prox . (z)

which is known as Moreau decomposition — the main relationship bet-
ween proximal operators and duality.

o Note that, more generally, we have

x = prox, ;(z) + Aprox,—1 s (z/A)
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MOREAU DECOMPOSITION (CONT.)

@ Let V be a linear (hence convex and closed) subspace in R". Also, let
f be the indicator function of V, i.e. f(z) = Iv(z).

o In this case, prox;(z) = Pv(x), where Py : R™ — 'V denotes the ope-
rator of orthogonal projection onto V. Indeed,

.1 /
prox;(z) = arg min {EHm/ — a3+ Iv(z )} =

. 1 ’ 2
= Nz’ — =P
arg;pelg{ylm 93||2} v (z)

o It is straightforward to see that the conjugate of f(z) = Iv(zx) is equal
to f*(z) = Iy1 (x), with V* being the orthogonal complement of V in
R", which suggests that prox;.(z) = Py ().

@ In this case, Moreau decomposition suggests
x = prox; () + prox;.(z) = Pv(z) + Py ()

which is nothing else but the orthogonal decomposition of x w.r.t. V.
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MOREAU DECOMPOSITION (CONT.)

@ In general, Moreau decomposition gives a simple way to obtain the pro-
ximal operator of a function f in terms of the proximal operator of f*.

e For example, if f(z) = ||z| is a general norm, then f* = Ig=, where
B" = {z||z[. <1}

is the unit ball for the dual norm || - ||..

e By Moreau decomposition, this implies that
r = prox;(z) + Pp~ ()

thus suggesting that prox;(z) = z — Pp« ().
o Thus, we can easily evaluate prox; if we know how to project on B*.
@ In general, Moreau decomposition is very useful in cases when compu-

ting prox; is “expansive", while computing proxg. is “cheap" (or wvice
versa).
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MORE EXAMPLES OF PROXIMAL MAPPINGS

o Quadratic function
F@) = YaT Az + 0T 4c = prox,, = (I + AA) " (z — \b)
z) = go Az x+c prox,; = x

o Euclidean norm

1= M|x||2)x, if ||z|l2 > A
f@) = lals > profo—{f) el i izl

, otherwise
o Logarithmic barrier
n Ti + /12 + 4\
— _ 1 ; = i=1,...,
f(x) ; ogr; < (proxkf(m))l 5 i n

e /1 norm

f@) =zl == prox,;(z) = Sx(z) = (|z| — A)+ sign(z)
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PROXIMAL GRADIENT METHOD

o Consider the following optimization problem
min f(z) + g()

where f is convex with a Lipschitz continuous gradient (i.e., 3L > 0:
IVf(z) — VW3 < Ll — yl|3, Vz,y) and g is closed and convex but
only sub-differentiable.

f@1 7/
Given some sub-optimal point z(*, let /// /
q(z; x“)) be a global over-estimator \ ///
(aka majorizer) of f(z) defined as < o /]
NS Az O 3,’/
a(w;2®) = fa )4V i) (@-a)+ N
AN ’:</\/j/
+g||x—x<t)|\§, with k > L. . ()3

o The majorizer satisfies g(z™; ) = f(z®), while ¢(z; ) > f(z) for
all z # ™. Therefore

a(z;z) + g(z) > f(x) + g(x)
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PROXIMAL GRADIENT METHOD (CONT.)

o The principal idea of the Prozimal Gradient Method (PGM) is to mi-
nimize f(z) + g(z) based on the majorization-minimization iterations
of the form

2D = argmin {g(2;2") + g(2)}

o In particular, using completion of squares, g(z; x<t)) can be expressed as

q(m;m(t)) = EH:lc - (x(t) - %Vf(:vm))Hz + const

2

where the last term is independent of x. As a result, we have

LD — argmzin {%HI yONE %vf(:[(t)))uz —|—g(ﬂc)}

o Consequently, the PGM iterations are defined by

1
{ .T(t+1) = proX(l/H)g (m(t) — ;Vf(l‘(t))) J
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PROXIMAL GRADIENT METHOD (CONT.)

@ In a more general form, the PGM iterations can be also defined by

2D = Prox_ (s, (:cm - w(t)Vf(a:“)))

for values of the step-size parameter v (with 0 < v < 2/L).
e Note that, if g(z) = 0, the PGM iterations are reduced to
20D 5O _ Oy (50
suggesting that PGM becomes GDM.
e On the other hand, if f(z) = 0, the PGM iterations are reduced to
(t))

(t+1) _
T = prox,ymg(m

which suggests that PGM becomes PPA.

o When g(z) = I¢(z), with C € R"™ being convex and closed, the PGM
iterations have the form of

2D = P, (x(t) _ ’y(t)Vf(x(t)))

which is also known as the Projected Gradient Method.
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FORWARD-BACKWARD SPLITTING

o Each PGM iteration is based on a forward-backward splitting scheme,
viZ.

2D — Prox_ (1, (I(t) - 'y(t)Vf(x(t)))
————r
backward step forward step

o It can be broken up into a forward (ezplicit) gradient step using the
function f, and a backward (implicit) step using the function g.

FORWARD-BACKWARD ALGORITHM

given 29 e € (0,min{1, L7'}), v® € [¢,2/L — ], \® € [¢, 1]
fort=0,1,2,...

1. Set y =2 — AT f(z®)

2. Update ('™ .= z® 4 )\(t)(proxﬂ{(t)g(y(t)) —2)

end

o Note that the above version of PGM incorporates relaxation parame-
ters {\®} (yielding the standard form, if \®*) =1 for all t).
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EXAMPLES

o Let f(x) = |Az — b||3/2 and g(x) = Ic(x), with C C R™ being convex
and closed. The resulting minimization problem is

. 2
min||Az — bz

which is known as constrained least-squares (LS).

o Since Vf :z + AT(Az —b) has L = ||A||*> = gmax(A4)?, the PGM yields
the projected Landweber method, with its iterations given by

2D Pe (m(t) Jr,y(t)AT(b _ Axm))

for some 'y(t) € [e, 2/||A||2 — €.

o It is also possible to set v adaptively by means of line search.
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OTHER VERSIONS OF PGM

o There are several different versions of PGM.

CONSTANT-STEP FORWARD-BACKWARD ALGORITHM (FBA)

given (¥ e € (0,3/4), A\ € [¢,3/2 — ¢
fort=0,1,2,...

1. Set y ;=2 — (1/L)Vf(z™)

2. Update (1) ;= 2® 4 )\(t)(prox(l/LM(t)g(y(t)) —z)
end

BECK-TEBOULLE PROXIMAL GRADIENT ALGORITHM (BTA)

given z(¥, z(0 = 7O 0 —1
fort=20,1,2,...

O) -
1. Set 7+ .— % &AW =14 %
2. Set y¥ 1= 2(® — (1/L)Vf(z(t))
3. Update (1) .= Prox(l/L)g(ZI(t))
4. Update 27D = o 4 \(O (31 — 5(0)
end
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CONVERGENCE OF PGM-TYPE METHODS

@ All these methods guarantee convergence to a solution of the original
problem, i.e., to an optimal point z* at which 0 € Vf(z*) + dg(z™).

o Consider the problem of finding z* in C € R"™ which is at the shortest
possible distance dp from another set D € R".

o In this case, we formally have f(z) = dp(z)?/2 and g(z) = Ic(z).

Convergence of FBA Convergence of BTA

) _ —
=19
_ , L)

o For the reasons demonstrated by the above example, BTA is often pre-
ferred in practice.
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DouGLAS-RACHFORD SPLITTING

o Consider the previous problem
min f(z) + g()

where now both f and g are sub-differentiable (as well as closed and
convex, as before).

o The Douglas-Rachford (splitting) algorithm (DRA) iterates according to

D = prox; (ym)

(1) _ 0 (22D _ y®) _ g+

Yy =+ prox,

o This method is useful when f and g have inexpensive proximity map-
pings.

@ It should be noted, however, the DRA is not symmetric in the roles of
f and g.
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DoOUGLAS-RACHFORD SPLITTING (CONT.)

o Let F(y) =y + prox (2 prox;(y) —y) — prox;(y). Then, the DRA
amounts to fized-point iterations of the form

YD — py®)
which can be shown to converge to a fixed point y* = F(y*) such that

0€af(y")+ag(y™).

@ The DRA can be re-defined in an equivalent form given by

y®*D = prox, (z® + 2®)
LD t+1) _ ,®
= prox,(y z")

LD (0 4 gD (4

starting with some z© and 2(® = 0.
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DoOUGLAS-RACHFORD SPLITTING (CONT.)

o To further accelerate the convergence, the DRA can be subjected to
the procedure of relazration as given by

y(t+1) — y(t) + )\(t)(F(y(t)) _ y(t))
with A® € (0,2).

o The regime with AY) € (0,1) is called under-relazation, while the re-
gime with A®) € (1,2) is called over-relazation.

@ The DRA can also be expressed in its dual form which is derived via
the use of Moreau decomposition. In this form, we have

D = proxf(x(t) — z(t))

L) prox,. (z(t) 4ozt _ a:(t))

This form is preferable when computing prox,. is less expansive than
computing prox,.
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EXAMPLE: SPARSE INVERSE COVARIANCE SELECTION

o In multivariate data analysis, graphical models (e.g., Gaussian Markov
Random Flields) provide a way to discover meaningful interactions bet-
ween random variables.

o Frequently, learning the structure of a graphical model is equivalent to
the problem of learning the zero-pattern of =1, where ¥ € ST is the
covariance of modelled variables.

o Formally, the above problem amounts to solving

(. x)
i CX) —logdet X X
R {tr( ) —logdet X + 1y | ml}

i>j
for some C' € S} and p > 0.
o Let us set f(X)=tr(CX)—logdet X and g(X) = p}>,.;|Xi,;

e prox_ ,(U) is given by the positive solution to

C—X*1+1(X—U):o

T

while prox_;(-) is soft-thresholding (with threshold 7).
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EXAMPLE: SPINGARN’S METHOD OF PARTIAL INVERSES

o Consider the following problem

min f()

with some closed and convex C € R".

o In this case, the DRA (with g(z) = Ic(x)) yields

2D prox, (y(t))
Yyt = 4 PC(2I(t+1) _ y(t)) _ 0D

e Equivalently, using Moreau decomposition, one can obtain the primal-
dual form of DRA which yields
2D = prox_,(z® — )

LD o (0 4 gg (D) _ 0y

Note that 2 here is a dual variable (i.c., subgradient).
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COMPOSITE OPTIMIZATION PROBLEM

o For z € R" and some A € R™*", consider the following problem
min f(z) + g(Ax)
where both f and g admit prox operators.

@ Define C = {(u, v) | v = Au}. Then, the initial problem is equivalent to
minimizing F'(u,v) = f(u) + g(v) over C, viz.

min  F(u,v
(u,v)€C ( )

@ Due to the separability of proximal mapping, we have
prox, p(u,v) = (profo(u)7 proxm(v))

o Using singular value decomposition of A, it can be shown that Pc¢ is de-
fined via solution of a system of linear equations to produce

Pty = [ 4 |+ [ 4] [+ aam) - au)

At

(A* can be precomputed.)
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