ECE 602 – Section 4 Non-smooth optimization of convex functions

- Subgradient, subdifferential and their properties
- First-order optimality condition for sub-differentiable functions
- Proximal mapping and Proximal Point Algorithm
- Conjugate functions and Moreau decomposition
- Proximal Gradient Method and Douglas-Rachford Splitting

• In the previous sections, we learned a number of methods of *unconstrained smooth convex optimization* which could be used to solve

 $\min_{x} f(x)$

for some convex $f : \operatorname{\mathbf{dom}} f \to \mathbf{R}$ of either \mathcal{C}^1 or \mathcal{C}^2 class.

- In particular, we have discussed several first-order methods, viz.
 - Gradient Descent Method (GDM)
 - Conjugate Gradients Method (CGM)
 - Gauss-Newton Method (GNM) (for non-linear LS problems), and
 - Levenberg-Marquardt algorithm (for non-linear and possibly nonconvex problems)
- In general, first-order methods share the following *pros* and *cons*:
 - **Pros** numerically "cheap" iterations (no need for $\nabla^2 f(x)$), guaranteed convergence to a (local) minimum
 - **Cons** relatively slow convergence rates

• • = • • = •

∃ 990

- As the next step, we want to extend our discussion to *constrained optimization problems*.
- For a given $f : \mathbf{dom} \ f \to \mathbf{R}$, a constrained optimization problem can be defined as

$$\min_{x} f(x)$$

subject to $x \in \mathcal{C}$

where we use "subject to" (often abbreviated as "s.t.") to require that the optimal solution has to be found within set C.

- Such set is called the *set of feasible solutions*, which we always assume to be non-empty.
- When f is a convex over its domain and the feasible set C is closed and convex as well, the above optimization problem is referred to as *convex*.

UNCONSTRAINED FORMULATION

- The constrained optimization problem $\min_{x \in C} f(x)$ can be cast into an equivalent *unconstrained* form using the notion of an *indicator function*.
- Recall that, given a set $C \subset \operatorname{\mathbf{dom}} f$, its indicator function is defined as

$$I_{\mathcal{C}}(x) = \begin{cases} 0, & \text{if } x \in \mathcal{C} \\ \infty, & \text{otherwise} \end{cases}$$

• Assuming $\inf_x f(x) < \infty$, an equivalent unconstrained problem has the form of

$$\min_{x} \{f(x) + I_{\mathcal{C}}(x)\}$$

- Note that, in this case, we effectively minimize $\tilde{f}(x) = f(x) + I_{\mathcal{C}}$ which takes values over the *extended real line* $(-\infty, +\infty]$.
- Such functions are called *extended-value functions*.

- To take advantage of the unconstrained formulation, we need to learn how to deal with extended-value functions.
- Fortunately, working with such functions is quite straightforward under a few standard assumptions and some additional precautions (for more details see Section 3.1.2 of Boyd's textbook).
- More importantly, the sublevel sets of $I_{\mathcal{C}}$, i.e. $\mathcal{S}_{\alpha} = \{x \mid I_{\mathcal{C}}(x) \leq \alpha\}$, are convex and closed as long as \mathcal{C} is convex and closed.
- Hence, if f is closed and convex, so will be \tilde{f} . And this is what turns out to be of key importance for the algorithms of this section.
- Note however that \tilde{f} is not differentiable, meaning that our gradientbased tools are no longer applicable.
- To overcome this setback, we need to exploit some tools of *non-smooth optimization* which are discussed next.

• The defining inequality for *differentiable convex functions* states

- Here the graph of f is viewed as a *parametric curve*, i.e. a map from dom f to dom f × R, namely x → (x, f(x)).
- For each x, the *tangent vector* to the curve at (x, f(x)) is obtained by differentiating the latter w.r.t. x, resulting in $[1, \nabla f(x)]^T$.
- Consequently, the *normal vector* is defined as $[\nabla f(x), -1]^T$ (as shown in the above figure).

SUBGRADIENT (CONT.)

- The 1st-order approximation of f at x is a global lower bound (*under-estimator*), since $\nabla f(x)$ defines a non-vertical supporting hyperplane to epi f at point (x, f(x)).
- Formally, we have

$$\left[\begin{array}{c} \nabla f(x) \\ -1 \end{array}\right] \left(\left[\begin{array}{c} y \\ t \end{array}\right] - \left[\begin{array}{c} x \\ f(x) \end{array}\right] \right) \leq 0, \quad \forall (y,t) \in \operatorname{\mathbf{epi}} f$$

- Note that, initially, we perceived f as an *algebraic* entity, i.e. a formal mathematical rule which establishes a relation between x and y = f(x).
- Convexity makes it possible to think of f as a geometric entity, namely **epi** f, which is a convex and closed subset of **dom** $f \times \mathbf{R}$, as long as f is closed and convex.
- In this case, **epi** f can be defined as the *intersection* of all half-spaces defined by the normals $[\nabla f(x), -1]^T$.

SUBGRADIENT (CONT.)

- Now assume that f is still convex but not differentiable continuously everywhere in the interior of its domain, i.e. int dom f.
- In this case, its *subgradient* at x is *any* vector g that satisfies

$$f(y) \ge f(x) + g^{T}(y - x), \quad \forall y \in \text{dom } f$$

$$f(x_{1}) + g_{1}^{T}(y - x_{1})$$

$$f(x_{1}) + g_{2}^{T}(y - x_{1})$$

$$f(x_{2}) + g_{3}^{T}(y - x_{2})$$

Here, g_1, g_2 are subgradient of f at x_1 , while g_3 is a subgradient of f at x_2 .

- One can see, at the points of discontinuity of f'(x) (or, more generally, of $\nabla f(x)$), there might be *multiple* subgradients.
- At each $x \in \text{dom } f$, all available subgradients are combined into a set $\partial f(x)$ called the *subdifferential* of f at x. Formally,

$$\partial f(x) = \left\{ g \mid g^{T}(y - x) \le f(y) - f(x), \forall y \in \operatorname{\mathbf{dom}} f \right\}$$

- Note that the notation $g^T(y-x)$ is more appropriate in the case when all the vectors are in \mathbf{R}^n . More generally, we should use $\langle g, y-x \rangle$.
- As $\partial f(x)$ is an intersection of (closed) half-spaces, it is a closed convex set. Moreover, if $x \in \operatorname{int} \operatorname{dom} f$, then $\partial f(x)$ is nonempty and bounded.

EXAMPLES

• Consider $f(x) = \max\{f_1(x), f_2(x)\}$, with both $f_1(x)$ and $f_2(x)$ being convex and differentiable.

$$\partial f(y) = \begin{cases} \{\nabla f_1(y)\}, & \text{if } y > x\\ [\nabla f_1(y), \nabla f_1(y)], & \text{if } y = x\\ \{\nabla f_2(y)\}, & \text{if } y < x \end{cases}$$

• Let $x \in \mathbf{R}^n$ and consider $f(x) = ||x||_2$. In this case,

$$\partial f(x) = \begin{cases} \{x/\|x\|_2\}, & \text{if } x \neq 0\\ \{g \in \mathbf{R}^n \mid \|g\|_2 \le 1\}, & \text{if } x = 0 \end{cases}$$

SUBGRADIENT AND SUB-LEVEL SETS

• Suppose x satisfies $f(x) \ge f(y)$, then this implies $g^T(y-x) \le 0$, where g is a subgradient of f at x.

 $\bullet\,$ In other words, the nonzero subgradients at x define supporting hyperplanes to the sub-level set

$$\{y \mid f(y) \le f(x)\}$$

- Using the subdifferential, we can now define the *first-order optimality* condition of non-smooth convex optimization.
- In the unconstrained setting, x^* minimizes f(x) if and only if

• Note that the validity of the above statement is easy to confirm, since, by definition:

$$f(y) \ge f(x^*) + \langle \bar{0}, y - x^* \rangle, \quad \forall y,$$

and, therefore, $\bar{0} \in \partial f(x^*)$.

SUBDIFFERENTIAL AS A MONOTONE OPERATOR

- Recall that, the gradient ∇f of a continuously differentiable function f can be viewed as a *linear operator* $x \mapsto \nabla f(x), \forall x \in \text{int dom } f$.
- In this case, if f is also convex then, for any $x, y \in \operatorname{int} \operatorname{dom} f$, we have

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$$

which characterizes the gradient operator as *monotone* (or *strictly* monotone, when f is *strictly* convex).

• Just like the gradient operator, subdifferential is also a linear operator. Moreover, it can also be shown to be monotone for convex f, viz.

$$\langle u - v, x - y \rangle \ge 0$$

for all $x, y \in \mathbf{dom} f$ and $u \in \partial f(x), v \in \partial f(y)$.

- Yet, in contrast to the gradient, the subdifferential map is *multivalued* or *set-valued*, since its value at x is, in fact, a set.
- Note that if f is differentiable at x, then $\partial f(x)$ is a singleton (i.e., a set of one element), viz. $\partial f(x) = \{\nabla f(x)\}.$

13/52

IMPORTANCE OF MONOTONICITY

• To appreciate the effect of monotonicity of ∂f , let us consider

$$\min_{x} \left\{ \frac{1}{2} \|x - y\|_{2}^{2} + \lambda \|x\|_{1} \right\}$$

for some given $y \in \mathbf{R}^n$ and a (*regularization parameter*) $\lambda > 0$.

• First, we note that the problem is *separable* since

$$f(x) = \frac{1}{2} \|x - y\|_{2}^{2} + \lambda \|x\|_{1} = \sum_{i=1}^{n} \underbrace{\left(\frac{1}{2}|x_{i} - y_{i}|^{2} + \lambda |x_{i}|\right)}_{\varphi_{i}(x_{i})} = \sum_{i=1}^{n} \varphi_{i}(x_{i})$$

and, therefore, f(x) can be minimized via *independent* minimization of $\varphi_i(x_i)$, for all i = 1, 2, ..., n.

• Thus, all we need now is to solve a *scalar* problem of the form

$$\min_{x_i} \left\{ \frac{1}{2} |x_i - y_i|^2 + \lambda |x_i| \right\}$$

IMPORTANCE OF MONOTONICITY (CONT.)

• The subdifferential of $\varphi_i(x_i)$ is given by $\partial \varphi_i(x_i) = (x_i - y_i) + \lambda \partial(|x_i|)$, with $\partial(|x_i|)$ defined as

$$\partial(|x_i|) = \begin{cases} 1, & \text{if } x_i > 0\\ [-1,1], & \text{if } x_i = 0\\ -1, & \text{if } x_i < 0 \end{cases}$$

Note that $\partial(|x_i|)$ is a monotone function.

• Therefore, the 1st-order optimality condition suggests that

$$y_i \in \overbrace{x_i^* + \lambda \,\partial(|x_i^*|)}^{\mathcal{F}_i(x_i)}$$

Note that function \mathcal{F}_i is *strictly monotone* and *onto*, which suggests that

$$x_i^* = \mathcal{F}_i^{-1}(y_i)$$

• Due to the properties of \mathcal{F}_i , its inverse function $\mathcal{S}_{\lambda} := \mathcal{F}_i^{-1}$ is always well-defined. In particular, in the case at hand, this function is known as *soft-thresholding*.

$$x_{i}^{*} = S_{\lambda}(y_{i}) = (|y_{i}| - \lambda)_{+} \operatorname{sign}(y_{i}) =$$

$$= \begin{cases} y_{i} - \lambda, & \text{if } y_{i} > \lambda \\ 0, & \text{if } -\lambda \leq y_{i} \leq \lambda \\ y_{i} + \lambda, & \text{if } y_{i} < -\lambda \end{cases}$$

• The optimal solution to the original problem can be defined as

$$x^* = \mathcal{S}_{\lambda}(y) = [\mathcal{S}_{\lambda}(y_1), \mathcal{S}_{\lambda}(y_2), \dots, \mathcal{S}_{\lambda}(y_n)]^T$$

- Note that x^* is obtained via applying S_{λ} to each coordinate y_i of y independently (i.e., *separably*).
- The above solution has been made possible due to the monotonicity of the subdifferential of $||x||_1$.

RESOLVENT (CONT.)

- The previous examples demonstrates a number of important concepts.
- Let $f : \mathbf{R}^n \to \mathbf{R}$ be convex, closed and *sub-differentiable*. Consider an optimization problem of the form

$$\min_{x} \left\{ \frac{1}{2} \|x - y\|_2^2 + \lambda f(x) \right\}$$

with its associated optimality condition

$$y \in x^* + \lambda \partial f(x^*) = (\mathcal{I} + \lambda \partial f)(x^*)$$

where $\mathcal{I} + \lambda \partial f$ needs to be viewed as an operator from \mathbf{R}^n to itself (with \mathcal{I} being the identity operator).

- As $\mathcal{I} + \lambda \partial f$ is strictly monotone and onto (and, therefore, *injective*), its inverse $\mathcal{R}_{\lambda} = (\mathcal{I} + \lambda \partial f)^{-1}$ called the *resolvent* of ∂f is always well-defined.
- Moreover, the optimal solution to our optimization problem can now be defined as

$$x^* = \mathcal{R}_{\lambda}(y)$$

• When the resolvent in question pertains to the subdifferential ∂f of a convex function f, its commonly referred to as the *proximal mapping* (aka *proximal operator*) of f. Formally,

$$\mathbf{prox}_{\lambda f}(y) = \arg \min_{x} \left\{ \frac{1}{2} \|x - y\|_{2}^{2} + \lambda f(x) \right\}$$

and it is unique if f is closed.

• In some sense, **prox** generalizes the notion of *orthogonal projection*. Indeed, let $f(x) = I_{\mathcal{C}}(x)$, for some closed and convex set \mathcal{C} . Then,

$$\mathbf{prox}_{I_{\mathcal{C}}}(y) = \arg\min_{x\in\mathcal{C}} \|x-y\|_2^2 = \mathcal{P}_{\mathcal{C}}(y)$$

which is the *orthogonal projection* of y onto C.

• Note that, for f(x) = 0, $\mathbf{prox}_{\lambda f}(y) = y$.

18/52

- The above figure shows the level curves of a convex function f(x) over its domain.
- Applying \mathbf{prox}_f to the "blue" points moves them to the corresponding "red" points.
- The "outside" blue points move simultaneously towards the minimum of f(x) and the boundary of **dom** f.

PROXIMAL POINT ALGORITHM

• Let $f : \mathbf{R}^n \to \mathbf{R}$ be a closed and convex function and let x^* be its global minimizer, i.e. $f(x^*) \leq f(x)$ for all x. Then,

$$\mathbf{prox}_{f}(x^{*}) = \arg\min_{x} \left\{ \frac{1}{2} \|x - x^{*}\|_{2}^{2} + f(x) \right\} = x^{*}.$$

• Consequently, the point x^* minimizes f if and only if

$$x^* = \mathbf{prox}_f(x^*)$$

In other words, the global minimizer of f is a fixed point of its proximal mapping.

• It can also be shown that, for closed and *strongly* convex f, $\mathbf{prox}_f(\cdot)$ is always *contractive*, i.e.

$$\|\mathbf{prox}_f(x) - \mathbf{prox}_f(y)\| \le \kappa \|x - y\|, \text{ with } 0 < \kappa < 1$$

• Such operators play a special role in the *Fixed-Point Theorem*, which we recall next.

Fixed Point Theorem

Let $(\mathcal{X}, \|\cdot\|)$ be a complete normed (aka *Banach*) space (such as, e.g., \mathbf{R}^n with any norm). Also, let $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ be a *contraction*. Then, there is a *unique* x^* such that $\mathcal{T}(x^*) = x^*$.

Moreover, starting with any $x^{(0)} \in \mathcal{X}$, the sequence of iterations

$$x^{(t+1)} = \mathcal{T}(x^{(t)})$$

is guaranteed to converge to x^* , i.e. $||x^{(t)} - x^*|| \underset{t \to \infty}{\longrightarrow} 0$.

- The theorem suggests the possibility to find a global minimizer of f as a *fixed point* of its associated proximal mapping.
- Specifically, the *Proximal Point Algorith* (PPA) relies on the iterative up-dates performed according to

$$x^{(t+1)} = \mathbf{prox}_{\lambda f}(x^{(t)})$$

21/52

PROXIMAL POINT ALGORITHM (CONT.)

- The PPA is guaranteed to converge under rather general conditions on *f* (that can either be differentiable or sub-differentiable). Particularly, *f* can be an *extended-value function*!
- When the convexity of f is not strong, its proximal mapping is not a contraction, in general. So, do we still have a convergence?
- It turns out, in the case of weakly convex f, the algorithm still converges to their global minimizers (which might no longer be unique).
- Moreover, it converges under the mildest possible assumption, which is simply that a minimizer exists.
- On the practical side, working with proximal mappings is particularly advantageous in view of their special properties which we mention next.

• Separable sum

If f is separable across two variables, i.e. $f(x,y) = \varphi(x) + \psi(y)$, then $\mathbf{prox}_{f}(v,w) = \left(\mathbf{prox}_{\omega}(v), \, \mathbf{prox}_{\psi}(w)\right)$

More generally, if f is *fully separable*, i.e. $f(x) = \sum_{i=1}^{n} f_i(x_i)$, then

$$\left(\mathbf{prox}_{f}(v)\right)_{i} = \mathbf{prox}_{f_{i}}(v_{i})$$

for i = 1, 2, ..., n.

Postcomposition

If $f(x) = \alpha \varphi(x) + b$, with $\alpha > 0$, then

$$\mathbf{prox}_{\lambda f}(v) = \mathbf{prox}_{\alpha\lambda\varphi}(v)$$

• Precomposition

If
$$f(x) = \varphi(\alpha x + b)$$
, with $\alpha \neq 0$, then

$$\mathbf{prox}_{\lambda f}(v) = \frac{1}{\alpha} \left(\mathbf{prox}_{\alpha^2 \lambda \varphi}(\alpha v + b) - b \right)$$
ECE 602 - Section 4 Instructor: Dr. Q. Michailovich, 2022 23/52

• Rotational invariance

If
$$f(x) = \varphi(Qx)$$
, where $Q^T Q = QQ^T = I$, then
 $\mathbf{prox}_{\lambda f}(v) = Q^T \mathbf{prox}_{\lambda \varphi}(Qv)$

• Affine addition

If $f(x) = \varphi(x) + a^T x + b$, then

$$\mathbf{prox}_{\lambda f}(v) = \mathbf{prox}_{\lambda \varphi}(v - \lambda \, a)$$

• Regularization

If
$$f(x) = \varphi(x) + (\rho/2) ||x - a||_2^2$$
, then
 $\mathbf{prox}_{\lambda f}(v) = \mathbf{prox}_{\tilde{\lambda}\varphi} \left((\tilde{\lambda}/\lambda) v + (\rho \tilde{\lambda}) a \right)$
where $\tilde{\lambda} = \lambda/(1 + \lambda \rho)$.

- - E - E

-

- Proximal mappings have several properties which make them resemble *orthogonal projections* onto convex sets. To understand these properties, we need to recall the definition of *Legendre transform*.
- Let $f : \mathbf{R}^n \to \mathbf{R}$ be convex and differentiable. Then, at each $x_0 \in \mathbf{R}^n$, one can define the supporting (aka *tangent*) line as given by

$$L(x; x_0) = f(x_0) + \nabla f(x_0)^T (x - x_0) \le f(x)$$

for all $x \in \mathbf{R}^n$.

Let g(x) = -L(0; x), so that the tangent line crosses the vertical axis at $-g(x_0)$. Hence, for each x, we have

$$\begin{cases} g(y) = y^T x - f(x) \\ y = \nabla f(x) \end{cases}$$

• These two equations define precisely what the *Legendre transform* (LT) of f is.

LEGENDRE TRANSFORM (CONT.)

• In particular, the LT enables a *dual representation* of f(x) in terms of its *"slopes"* described by the *dual variable* y.

If f admits a supporting line at x with slope y, then g admits a supporting line at y with slope x.

• Moreover, it can be shown that, if f admits a *strict* supporting line at x with slope k, then g admits a tangent supporting line at y with slope

$$\nabla g(y) = x$$

and, hence, g is differentiable.

• The *conjugate transform* (aka the *Legendre-Fenchel transform*) extends the LT to sub-differentiable convex functions, and it is defined as

$$f^*(y) = \sup_{x \in \operatorname{dom} f} \left(y^T x - f(x) \right)$$

with **dom** $f^* = \{y \mid y^T x - f(x) \text{ is bounded}\}.$

Important: f^* is a convex function, whether or not f is convex.

• Similarly to the LT, the conjugate transform "encodes" f in terms of its tangents comprising the *dual space* of variable y.

- Each point (x, f(x)) on the differentiable branches of f admits a strict supporting line (or hyperplane) with slope $\nabla f(x) = k$.
- The non-differentiable point x_c admits *infinitely many* supporting lines with slopes in the range $[k_l, k_h]$.
- So, each point of $f^*(k)$ with $k \in [k_l, k_h]$ must admit a supporting line with constant slope x_c (branch c').
- In this case, we say that f^* is *affine* or *linear* over (k_l, k_h) .

• In the case, we f is convex, we have $f^{**} = f$.

- A convex function f having an affine part has f^* with one non-differentiable point.
- More precisely, if f is affine over (x_l, x_h) with slope k_c in that interval, then f^* will have a non-differentiable point at k_c with left- and right-derivatives at k_c given by x_l and x_h , respectively.

29/52

• In the case when f is non-convex, the conjugate transform follows the boundary of the *convex hull* of **epi** f.

- Define the *convex extrapolation* of f to be the function obtained by replacing its non-convex branch (c) by the supporting line that connects the two convex branches of f (a and b).
- Then, the conjugate transforms of f and its convex extrapolation both yield f^* . For this reason, f^{**} is also called the *convex envelope* of f.

Results to remember

- The conjugate transform yields only convex functions, i.e f^* is convex and so is f^{**} .
- Points of f are transformed into slopes of f^* , and slopes of f are transformed into points of f^* .
- Non-differentiable points are transformed into affine branches of f^* .
- Affine or non-convex branches of f are transformed into non-differentiable points of f^* (the only two cases).
- $f(x) = f^{**}(x)$ if and only if f admits a supporting hyperplane at x.
- If f^* is differentiable at y, then $f(x) = f^{**}(x)$ at $x = \nabla f^*(y)$.

• Define $f(x) = -\log x$, then

$$f^*(y) = \sup_{x>0} (yx + \log x) = \begin{cases} -1 - \log(-y), & y < 0\\ \infty, & y \ge 0 \end{cases}$$

• Define
$$f(x) = (1/2)x^T Q x$$
, with $x \in \mathbf{R}^n$ and $Q \in \mathbf{S}_{++}^n$. Then,

$$f^*(y) = \sup_{x} \left(y^T x - (1/2) x^T Q x \right) = (1/2) y^T Q^{-1} y$$

• Define $f(X) = \log \det X^{-1}$, with $X \in \mathbf{S}_{++}^n$. Then,

$$f^*(Y) = \sup_{X \succ 0} \left(\mathbf{tr}(YX) + \log \det X \right) = \log \det(-Y)^{-1} - n,$$

with **dom** $f^* = -\mathbf{S}_{++}^n$.

3

• Let $f(x) = I_{\mathcal{C}}(x)$ be the *indicator function* of a set $\mathcal{C} \subset \mathbf{R}^n$. Then,

$$I_{\mathcal{C}}^*(y) = \sup_{x \in \mathcal{C}} y^T x$$

which is the support function of C.

• Let f(x) = ||x|| be a norm on \mathbb{R}^n with its associated dual norm $||\cdot||_*$. Then the conjugate of f is given by

$$f^*(y) = \begin{cases} 0, & \|y\|_* \le 1\\ \infty, & \text{otherwise} \end{cases} = I_{\mathcal{B}^*}(y)$$

which is the indicator function of the unit ball in the dual-norm space.

• It can also be shown that the conjugate of $f(x) = (1/2) ||x||^2$ is equal to $f^*(y) = (1/2) ||y||_*^2$.

• Fenchel's inequality extends $(1/2)x^Tx + (1/2)y^Ty \ge x^Ty$ to non-quadratic functions as

$$f(x) + f^*(y) \ge x^T y$$

For example, $(1/2)x^TQx + (1/2)y^TQ^{-1}y \ge x^Ty$ for $Q \in \mathbf{S}_{++}^n$.

• Some other useful properties of f^* are listed below.

f(x)	$f^*(y)$
$f_1(x_1) + f_2(x_2)$	$f_1^*(y_1) + f_2^*(y_2)$
ag(x)	$ag^*(y/a)$
g(Ax)	$f^*(y) = g^*(A^{-T}y)$
g(x-b)	$g^*(y) + b^T y$
$g(x) + a^T x + b$	$g^*(y-a) - b$
$ \inf_{u+v=x} (f_1(u) + f_2(v)) $	$f_1^*(y) + f_2^*(y)$

• Note that the operation $\inf_{u+v=x}(f_1(u) + f_2(v))$ is called the *infimal* convolution of f_1 and f_2 .

34/52

MOREAU DECOMPOSITION

• Recall the subgradient characterization of $\mathbf{prox} f$ is given by

$$y = \mathbf{prox}_f(x) \iff x - y \in \partial f(y)$$

for any convex and sub-differentiable $f : \mathbf{R}^n \to \mathbf{R}$.

• However, by the definition of the conjugate transform, we then have

$$x - y \in \partial f(y) \iff y \in \partial f^*(x - y) \iff x - y = \mathbf{prox}_{f^*}(x)$$

• The above relations suggest a very important result, namely

$$x = \mathbf{prox}_f(x) + \mathbf{prox}_{f^*}(x)$$

which is known as *Moreau decomposition* – the main relationship between *proximal operators and duality*.

• Note that, more generally, we have

$$x = \mathbf{prox}_{\lambda f}(x) + \lambda \, \mathbf{prox}_{\lambda^{-1}f^*}(x/\lambda)$$

MOREAU DECOMPOSITION (CONT.)

- Let V be a linear (hence convex and closed) subspace in \mathbb{R}^n . Also, let f be the indicator function of V, i.e. $f(x) = I_{\mathbf{V}}(x)$.
- In this case, $\mathbf{prox}_f(x) = \mathcal{P}_{\mathbf{V}}(x)$, where $\mathcal{P}_{\mathbf{V}} : \mathbf{R}^n \to \mathbf{V}$ denotes the operator of orthogonal projection onto \mathbf{V} . Indeed,

$$\mathbf{prox}_{f}(x) = \arg\min_{x'} \left\{ \frac{1}{2} \|x' - x\|_{2}^{2} + I_{\mathbf{V}}(x') \right\} =$$
$$= \arg\min_{x' \in \mathbf{V}} \left\{ \frac{1}{2} \|x' - x\|_{2}^{2} \right\} = \mathcal{P}_{\mathbf{V}}(x)$$

- It is straightforward to see that the conjugate of f(x) = I_V(x) is equal to f^{*}(x) = I_{V[⊥]}(x), with V[⊥] being the *orthogonal complement* of V in Rⁿ, which suggests that prox_{f^{*}}(x) = P_{V[⊥]}(x).
- In this case, Moreau decomposition suggests

$$x = \mathbf{prox}_f(x) + \mathbf{prox}_{f^*}(x) = \mathcal{P}_{\mathbf{V}}(x) + \mathcal{P}_{\mathbf{V}^{\perp}}(x)$$

which is nothing else but the *orthogonal decomposition* of x w.r.t. V.

- In general, Moreau decomposition gives a simple way to obtain the proximal operator of a function f in terms of the proximal operator of f^* .
- For example, if f(x) = ||x|| is a general norm, then $f^* = I_{\mathcal{B}^*}$, where

$$\mathcal{B}^* = \{x \mid ||x||_* \le 1\}$$

is the unit ball for the dual norm $\|\cdot\|_*$.

• By Moreau decomposition, this implies that

$$x = \mathbf{prox}_f(x) + \mathcal{P}_{\mathcal{B}^*}(x)$$

thus suggesting that $\mathbf{prox}_{f}(x) = x - \mathcal{P}_{\mathcal{B}^{*}}(x).$

- Thus, we can easily evaluate \mathbf{prox}_f if we know how to project on \mathcal{B}^* .
- In general, Moreau decomposition is very useful in cases when computing \mathbf{prox}_{f} is "expansive", while computing \mathbf{prox}_{f^*} is "cheap" (or vice versa).

• • = • • = •

• Quadratic function

$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c \quad \Longleftrightarrow \quad \mathbf{prox}_{\lambda f} = (I + \lambda A)^{-1}(x - \lambda b)$$

• Euclidean norm

$$f(x) = \|x\|_2 \quad \Longleftrightarrow \quad \mathbf{prox}_{\lambda f} = \begin{cases} (1 - \lambda/\|x\|_2)x, & \text{if } \|x\|_2 \ge \lambda \\ 0, & \text{otherwise} \end{cases}$$

• Logarithmic barrier

$$f(x) = -\sum_{i=1}^{n} \log x_i \quad \Longleftrightarrow \quad \left(\mathbf{prox}_{\lambda f}(x)\right)_i = \frac{x_i + \sqrt{x_i^2 + 4\lambda}}{2}, \ i = 1, \dots, n$$

• ℓ_1 norm

$$f(x) = ||x||_1 \quad \iff \quad \mathbf{prox}_{\lambda f}(x) = \mathcal{S}_{\lambda}(x) = (|x| - \lambda)_+ \operatorname{sign}(x)$$

(B) (B)

3

PROXIMAL GRADIENT METHOD

• Consider the following optimization problem

$$\min_{x} f(x) + g(x)$$

where f is convex with a Lipschitz continuous gradient (i.e., $\exists L > 0$: $\|\nabla f(x) - \nabla f(y)\|_2^2 \leq L \|x - y\|_2^2, \forall x, y$) and g is closed and convex but only sub-differentiable.

• The majorizer satisfies $q(x^{(t)}; x^{(t)}) = f(x^{(t)})$, while $q(x; x^{(t)}) \ge f(x)$ for all $x \ne x^{(t)}$. Therefore

$$q(x; x^{(t)}) + g(x) \ge f(x) + g(x)$$

PROXIMAL GRADIENT METHOD (CONT.)

• The principal idea of the *Proximal Gradient Method* (PGM) is to minimize f(x) + g(x) based on the *majorization-minimization* iterations of the form

$$x^{(t+1)} = \arg\min_{x} \{q(x; x^{(t)}) + g(x)\}$$

• In particular, using completion of squares, $q(x; x^{(t)})$ can be expressed as

$$q(x; x^{(t)}) = \frac{\kappa}{2} \left\| x - (x^{(t)} - \frac{1}{\kappa} \nabla f(x^{(t)})) \right\|_{2}^{2} + const$$

where the last term is independent of x. As a result, we have

$$x^{(t+1)} = \arg\min_{x} \left\{ \frac{\kappa}{2} \left\| x - (x^{(t)} - \frac{1}{\kappa} \nabla f(x^{(t)})) \right\|_{2}^{2} + g(x) \right\}$$

• Consequently, the *PGM iterations* are defined by

$$x^{(t+1)} = \mathbf{prox}_{(1/\kappa)g} \left(x^{(t)} - \frac{1}{\kappa} \nabla f(x^{(t)}) \right)$$

PROXIMAL GRADIENT METHOD (CONT.)

• In a more general form, the PGM iterations can be also defined by

$$\boldsymbol{x}^{(t+1)} = \mathbf{prox}_{\boldsymbol{\gamma}^{(t)}g} \left(\boldsymbol{x}^{(t)} - \boldsymbol{\gamma}^{(t)} \boldsymbol{\nabla} f(\boldsymbol{x}^{(t)}) \right)$$

for values of the step-size parameter $\gamma^{(t)}$ (with $0 < \gamma^{(t)} < 2/L$).

• Note that, if g(x) = 0, the PGM iterations are reduced to

$$x^{(t+1)} = x^{(t)} - \gamma^{(t)} \nabla f(x^{(t)})$$

suggesting that PGM becomes GDM.

• On the other hand, if f(x) = 0, the PGM iterations are reduced to

$$x^{(t+1)} = \mathbf{prox}_{\gamma^{(t)}g}(x^{(t)})$$

which suggests that *PGM becomes PPA*.

• When $g(x) = I_{\mathcal{C}}(x)$, with $\mathcal{C} \in \mathbf{R}^n$ being convex and closed, the PGM iterations have the form of

$$x^{(t+1)} = \mathcal{P}_{\mathcal{C}}\left(x^{(t)} - \gamma^{(t)}\nabla f(x^{(t)})\right)$$

which is also known as the Projected Gradient Method.

• Each PGM iteration is based on a *forward-backward splitting* scheme, *viz.*

$$x^{(t+1)} = \underbrace{\operatorname{prox}_{\gamma^{(t)}g}}_{\text{backward step}} \underbrace{\left(x^{(t)} - \gamma^{(t)}\nabla f(x^{(t)})\right)}_{\text{forward step}}$$

• It can be broken up into a *forward* (*explicit*) gradient step using the function f, and a *backward* (*implicit*) step using the function g.

FORWARD-BACKWARD ALGORITHM

$$\begin{split} & \textbf{given } x^{(0)}, \ \epsilon \in (0, \min\{1, L^{-1}\}), \ \gamma^{(t)} \in [\epsilon, 2/L - \epsilon], \ \lambda^{(t)} \in [\epsilon, 1] \\ & \textbf{for } t = 0, 1, 2, \dots \\ & 1. \ \texttt{Set } y^{(t)} := x^{(t)} - \gamma^{(t)} \nabla f(x^{(t)}) \\ & 2. \ \texttt{Update } x^{(t+1)} := x^{(t)} + \lambda^{(t)} (\mathbf{prox}_{\gamma^{(t)}g}(y^{(t)}) - x^{(t)}) \\ & \textbf{end} \end{split}$$

• Note that the above version of PGM incorporates *relaxation parameters* $\{\lambda^{(t)}\}$ (yielding the standard form, if $\lambda^{(t)} = 1$ for all t).

EXAMPLES

• Let $f(x) = ||Ax - b||_2^2/2$ and $g(x) = I_{\mathcal{C}}(x)$, with $\mathcal{C} \subset \mathbf{R}^n$ being convex and closed. The resulting minimization problem is

$$\min_{x \in \mathcal{C}} \|Ax - b\|_2^2$$

which is known as constrained least-squares (LS).

• Since $\nabla f : x \mapsto A^T(Ax - b)$ has $L = ||A||^2 = \sigma_{\max}(A)^2$, the PGM yields the *projected Landweber method*, with its iterations given by

$$x^{(t+1)} = \mathcal{P}_{\mathcal{C}} \left(x^{(t)} + \gamma^{(t)} A^T (b - A x^{(t)}) \right)$$

for some $\gamma^{(t)} \in [\epsilon, 2/||A||^2 - \epsilon].$

• It is also possible to set $\gamma^{(t)}$ adaptively by means of *line search*.

• There are several different versions of PGM.

CONSTANT-STEP FORWARD-BACKWARD ALGORITHM (FBA)

$$\begin{array}{l} \textbf{given } x^{(0)}, \, \epsilon \in (0, 3/4), \, \lambda^{(t)} \in [\epsilon, 3/2 - \epsilon] \\ \textbf{for } t = 0, 1, 2, \dots \\ 1. \, \, \textbf{Set } \, y^{(t)} := x^{(t)} - (1/L) \nabla f(x^{(t)}) \\ 2. \, \, \textbf{Update } \, x^{(t+1)} := x^{(t)} + \lambda^{(t)} (\mathbf{prox}_{(1/L)\gamma^{(t)}g}(y^{(t)}) - x^{(t)}) \\ \textbf{end} \end{array}$$

BECK-TEBOULLE PROXIMAL GRADIENT ALGORITHM (BTA)

$$\begin{array}{l} \textbf{given } x^{(0)}, \, z^{(0)} = x^{(0)}, \, \tau^{(0)} = 1 \\ \textbf{for } t = 0, 1, 2, \dots \\ 1. \, \, \textbf{Set } \tau^{(t+1)} := \frac{1 + \sqrt{4(\tau^{(t)})^2 + 1}}{2} \, \& \, \lambda^{(t)} := 1 + \frac{\tau^{(t)} - 1}{\tau^{(t+1)}} \\ 2. \, \, \textbf{Set } \, y^{(t)} := z^{(t)} - (1/L) \nabla f(z^{(t)}) \\ 3. \, \, \textbf{Update } \, x^{(t+1)} := \mathbf{prox}_{(1/L)g}(y^{(t)}) \\ 4. \, \, \textbf{Update } \, z^{(t+1)} := x^{(t)} + \lambda^{(t)}(x^{(t+1)} - x^{(t)}) \\ \textbf{end} \end{array}$$

-

• • = • • = •

Convergence of PGM-type methods

- All these methods guarantee convergence to a solution of the original problem, i.e., to an optimal point x^* at which $\overline{0} \in \nabla f(x^*) + \partial g(x^*)$.
- Consider the problem of finding x^* in $\mathcal{C} \in \mathbf{R}^n$ which is at the shortest possible distance $d_{\mathcal{D}}$ from another set $\mathcal{D} \in \mathbf{R}^n$.
- In this case, we formally have $f(x) = d_{\mathcal{D}}(x)^2/2$ and $g(x) = I_{\mathcal{C}}(x)$.

• For the reasons demonstrated by the above example, BTA is often preferred in practice. • Consider the previous problem

$$\min_{x} f(x) + g(x)$$

where now both f and g are sub-differentiable (as well as closed and convex, as before).

• The Douglas-Rachford (splitting) algorithm (DRA) iterates according to

$$\begin{aligned} x^{(t+1)} &= \mathbf{prox}_f(y^{(t)}) \\ y^{(t+1)} &= y^{(t)} + \mathbf{prox}_g(2x^{(t+1)} - y^{(t)}) - x^{(t+1)} \end{aligned}$$

- This method is useful when f and g have inexpensive proximity mappings.
- It should be noted, however, the DRA is not *symmetric* in the roles of f and g.

DOUGLAS-RACHFORD SPLITTING (CONT.)

• Let $F(y) = y + \mathbf{prox}_g(2\mathbf{prox}_f(y) - y) - \mathbf{prox}_f(y)$. Then, the DRA amounts to *fixed-point iterations* of the form

$$y^{(t+1)} = F(y^{(t)})$$

which can be shown to converge to a fixed point $y^* = F(y^*)$ such that $\bar{0} \in \partial f(y^*) + \partial g(y^*)$.

• The DRA can be re-defined in an *equivalent form* given by

$$\begin{split} y^{(t+1)} &= \mathbf{prox}_g(x^{(t)} + z^{(t)}) \\ x^{(t+1)} &= \mathbf{prox}_f(y^{(t+1)} - z^{(t)}) \\ z^{(t+1)} &= z^{(t)} + x^{(t+1)} - y^{(t+1)} \end{split}$$

starting with some $x^{(0)}$ and $z^{(0)} = \overline{0}$.

DOUGLAS-RACHFORD SPLITTING (CONT.)

• To further accelerate the convergence, the DRA can be subjected to the procedure of *relaxation* as given by

$$y^{(t+1)} = y^{(t)} + \lambda^{(t)} (F(y^{(t)}) - y^{(t)})$$

with $\lambda^{(t)} \in (0, 2)$.

- The regime with $\lambda^{(t)} \in (0,1)$ is called *under-relaxation*, while the regime with $\lambda^{(t)} \in (1,2)$ is called *over-relaxation*.
- The DRA can also be expressed in its *dual form* which is derived via the use of Moreau decomposition. In this form, we have

$$\begin{split} x^{(t+1)} &= \mathbf{prox}_f(x^{(t)} - z^{(t)}) \\ z^{(t+1)} &= \mathbf{prox}_{g^*}(z^{(t)} + 2x^{(t+1)} - x^{(t)}) \end{split}$$

This form is preferable when computing \mathbf{prox}_{g^*} is less expansive than computing \mathbf{prox}_{g} .

EXAMPLE: Sparse inverse covariance selection

- In multivariate data analysis, *graphical models* (e.g., *Gaussian Markov Random Fields*) provide a way to discover meaningful interactions between random variables.
- Frequently, learning the structure of a graphical model is equivalent to the problem of learning the *zero-pattern* of Σ^{-1} , where $\Sigma \in \mathbf{S}_{++}^{n}$ is the covariance of modelled variables.
- Formally, the above problem amounts to solving

$$\min_{X \in \mathbf{S}_{++}^n} \left\{ \underbrace{\mathbf{tr}(CX)}_{K \in \mathbf{S}_{++}^n} - \log \det X + \mu \sum_{i>j} |X_{i,j}| \right\}$$

for some $C \in \mathbf{S}_{+}^{n}$ and $\mu > 0$.

- Let us set $f(X) = \operatorname{tr}(CX) \log \operatorname{det} X$ and $g(X) = \mu \sum_{i>j} |X_{i,j}|$.
- $\mathbf{prox}_{\tau f}(U)$ is given by the *positive solution* to

$$C - X^{-1} + \frac{1}{\tau}(X - U) = 0$$

while $\mathbf{prox}_{\tau f}(\cdot)$ is *soft-thresholding* (with threshold τ).

▶ ★ 토 ► ★ 토 ► _ 토 _

• Consider the following problem

$$\min_{x \in \mathcal{C}} f(x)$$

with some closed and convex $\mathcal{C} \in \mathbf{R}^n$.

• In this case, the DRA (with $g(x) = I_{\mathcal{C}}(x)$) yields

$$\begin{aligned} x^{(t+1)} &= \mathbf{prox}_{\tau f}(y^{(t)}) \\ y^{(t+1)} &= y^{(t)} + \mathcal{P}_{\mathcal{C}}(2x^{(t+1)} - y^{(t)}) - x^{(t+1)} \end{aligned}$$

• Equivalently, using Moreau decomposition, one can obtain the *primal-dual* form of DRA which yields

$$x^{(t+1)} = \mathbf{prox}_{\tau f}(x^{(t)} - z^{(t)})$$
$$z^{(t+1)} = \mathcal{P}_{\mathcal{C}^{\perp}}(z^{(t)} + 2x^{(t+1)} - x^{(t)})$$

Note that $z^{(t)}$ here is a *dual variable* (i.e., subgradient).

COMPOSITE OPTIMIZATION PROBLEM

• For $x \in \mathbf{R}^n$ and some $A \in \mathbf{R}^{m \times n}$, consider the following problem

 $\min_{x} f(x) + g(Ax)$

where both f and g admit **prox** operators.

• Define $C = \{(u, v) \mid v = Au\}$. Then, the initial problem is equivalent to minimizing F(u, v) = f(u) + g(v) over C, viz.

 $\min_{(u,v)\in\mathcal{C}} F(u,v)$

• Due to the *separability* of proximal mapping, we have

$$\mathbf{prox}_{\tau F}(u, v) = \left(\mathbf{prox}_{\tau f}(u), \mathbf{prox}_{\tau g}(v)\right)$$

• Using singular value decomposition of A, it can be shown that $\mathcal{P}_{\mathcal{C}}$ is defined via solution of a system of linear equations to produce

$$\mathcal{P}_{\mathcal{C}}(u,v) = \begin{bmatrix} u \\ v \end{bmatrix} + \underbrace{\begin{bmatrix} A^T \\ -I \end{bmatrix} (I + AA^T)^{-1}}_{A^{\sharp}}(v - Au)$$

 $(A^{\sharp} \text{ can be precomputed.})$

51/52

- https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf
- H. Bauschke and J. Borwein, "On projection algorithms for solving convex feasibility problems," SIAM Review, 38(3), pp. 367-426, 1996.
- A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, 2(1), pp. 183-202, 2009.
- G. Chen and R. Rockafellar, "Convergence rates in forward-backward splitting," SIAM Journal on Optimization, 7(2), pp. 421-444, 1997.
- P. Combettes and J.-C. Pesquet, "Proximal splitting methods in signal processing," Fixed-Point Algorithms for Inverse Problems in Science & Engineering, pp. 185-212, 2011.