
ECE 602 – Section 4
Non-smooth optimization of convex functions

Subgradient, subdifferential and their properties
First-order optimality condition for sub-differentiable functions
Proximal mapping and Proximal Point Algorithm
Conjugate functions and Moreau decomposition
Proximal Gradient Method and Douglas-Rachford Splitting
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Progress so far

In the previous sections, we learned a number of methods of unconst-
rained smooth convex optimization which could be used to solve

min
x

f(x)

for some convex f : dom f → R of either C1 or C2 class.

In particular, we have discussed several first-order methods, viz.
– Gradient Descent Method (GDM)

– Conjugate Gradients Method (CGM)

– Gauss-Newton Method (GNM) (for non-linear LS problems), and

– Levenberg-Marquardt algorithm (for non-linear and possibly non-
convex problems)

In general, first-order methods share the following pros and cons:
Pros numerically “cheap" iterations (no need for ∇2f(x)), guaran-

teed convergence to a (local) minimum

Cons relatively slow convergence rates
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Introducing constraints

As the next step, we want to extend our discussion to constrained opti-
mization problems.

For a given f : dom f → R, a constrained optimization problem can be
defined as

min
x

f(x)

subject to x ∈ C

where we use “subject to" (often abbreviated as “s.t.") to require that
the optimal solution has to be found within set C.

Such set is called the set of feasible solutions, which we always assume
to be non-empty.

When f is a convex over its domain and the feasible set C is closed and
convex as well, the above optimization problem is referred to as convex.
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Unconstrained formulation

The constrained optimization problem minx∈C f(x) can be cast into an
equivalent unconstrained form using the notion of an indicator function.

Recall that, given a set C ⊂ dom f , its indicator function is defined as

IC(x) =

{
0, if x ∈ C
∞, otherwise

Assuming infx f(x) <∞, an equivalent unconstrained problem has the
form of

min
x
{f(x) + IC(x)}

Note that, in this case, we effectively minimize f̃(x) = f(x) + IC which
takes values over the extended real line (−∞,+∞].

Such functions are called extended-value functions.
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Unconstrained formulation (cont.)

To take advantage of the unconstrained formulation, we need to learn
how to deal with extended-value functions.

Fortunately, working with such functions is quite straightforward under
a few standard assumptions and some additional precautions (for more
details see Section 3.1.2 of Boyd’s textbook).

More importantly, the sublevel sets of IC , i.e. Sα = {x | IC(x) ≤ α}, are
convex and closed as long as C is convex and closed.

Hence, if f is closed and convex, so will be f̃ . And this is what turns
out to be of key importance for the algorithms of this section.

Note however that f̃ is not differentiable, meaning that our gradient-
based tools are no longer applicable.

To overcome this setback, we need to exploit some tools of non-smooth
optimization which are discussed next.
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Subgradient

The defining inequality for differentiable convex functions states

f(y) ≥ f(x) +∇f(x)T (y − x), ∀y ∈ dom f

Here the graph of f is viewed as a parametric curve, i.e. a map from
dom f to dom f ×R, namely x 7→ (x, f(x)).

For each x, the tangent vector to the curve at (x, f(x)) is obtained by
differentiating the latter w.r.t. x, resulting in [1,∇f(x)]T .

Consequently, the normal vector is defined as [∇f(x),−1]T (as shown
in the above figure).
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Subgradient (cont.)

The 1st-order approximation of f at x is a global lower bound (under-
estimator), since ∇f(x) defines a non-vertical supporting hyperplane to
epi f at point (x, f(x)).

Formally, we have[
∇f(x)
−1

]([
y
t

]
−
[

x
f(x)

])
≤ 0, ∀(y, t) ∈ epi f

Note that, initially, we perceived f as an algebraic entity, i.e. a formal
mathematical rule which establishes a relation between x and y = f(x).

Convexity makes it possible to think of f as a geometric entity, namely
epi f , which is a convex and closed subset of dom f ×R, as long as f
is closed and convex.

In this case, epi f can be defined as the intersection of all half-spaces
defined by the normals [∇f(x),−1]T .
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Subgradient (cont.)

Now assume that f is still convex but not differentiable continuously
everywhere in the interior of its domain, i.e. int dom f .

In this case, its subgradient at x is any vector g that satisfies

f(y) ≥ f(x) + gT (y − x), ∀y ∈ dom f

Here, g1, g2 are subgradient of f at x1, while g3 is a subgradient of f
at x2.
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Subdifferential

One can see, at the points of discontinuity of f ′(x) (or, more generally,
of ∇f(x)), there might be multiple subgradients.

At each x ∈ dom f , all available subgradients are combined into a set
∂f(x) called the subdifferential of f at x. Formally,

∂f(x) =
{
g | gT (y − x) ≤ f(y)− f(x),∀y ∈ dom f

}

Note that the notation gT (y − x) is more appropriate in the case when
all the vectors are in Rn. More generally, we should use 〈g, y − x〉.

As ∂f(x) is an intersection of (closed) half-spaces, it is a closed convex
set. Moreover, if x ∈ int dom f , then ∂f(x) is nonempty and bounded.
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Examples

Consider f(x) = max{f1(x), f2(x)}, with both f1(x) and f2(x) being
convex and differentiable.

∂f(y) =


{∇f1(y)}, if y > x

[∇f1(y),∇f1(y)], if y = x

{∇f2(y)}, if y < x

Let x ∈ Rn and consider f(x) = ‖x‖2. In this case,

∂f(x) =

{
{x/‖x‖2}, if x 6= 0

{g ∈ Rn | ‖g‖2 ≤ 1}, if x = 0
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Subgradient and sub-level sets

Suppose x satisfies f(x) ≥ f(y), then this implies gT (y − x) ≤ 0, where
g is a subgradient of f at x.

In other words, the nonzero subgradients at x define supporting hyper-
planes to the sub-level set

{y | f(y) ≤ f(x)}
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Optimality condition for sub-differentiable functions

Using the subdifferential, we can now define the first-order optimality
condition of non-smooth convex optimization.

In the unconstrained setting, x∗ minimizes f(x) if and only if

0̄ ∈ ∂f(x∗)

where 0̄ is a zero-vector of the same dimensionality as x.

Note that the validity of the above statement is easy to confirm, since,
by definition:

f(y) ≥ f(x∗) + 〈0̄, y − x∗〉, ∀y,

and, therefore, 0̄ ∈ ∂f(x∗).
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Subdifferential as a monotone operator

Recall that, the gradient ∇f of a continuously differentiable function f
can be viewed as a linear operator x 7→ ∇f(x), ∀x ∈ int dom f .

In this case, if f is also convex then, for any x, y ∈ int dom f , we have

〈∇f(x)−∇f(y), x− y〉 ≥ 0

which characterizes the gradient operator as monotone (or strictly mo-
notone, when f is strictly convex).

Just like the gradient operator, subdifferential is also a linear operator.
Moreover, it can also be shown to be monotone for convex f , viz.

〈u− v, x− y〉 ≥ 0

for all x, y ∈ dom f and u ∈ ∂f(x), v ∈ ∂f(y).

Yet, in contrast to the gradient, the subdifferential map is multivalued
or set-valued, since its value at x is, in fact, a set.

Note that if f is differentiable at x, then ∂f(x) is a singleton (i.e., a set
of one element), viz. ∂f(x) = {∇f(x)}.
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Importance of monotonicity

To appreciate the effect of monotonicity of ∂f , let us consider

min
x

{
1

2
‖x− y‖22 + λ‖x‖1

}
for some given y ∈ Rn and a (regularization parameter) λ > 0.

First, we note that the problem is separable since

f(x) =
1

2
‖x− y‖22 + λ‖x‖1 =

n∑
i=1

(
1

2
|xi − yi|2 + λ|xi|

)
︸ ︷︷ ︸

ϕi(xi)

=

n∑
i=1

ϕi(xi)

and, therefore, f(x) can be minimized via independent minimization of
ϕi(xi), for all i = 1, 2, . . . , n.

Thus, all we need now is to solve a scalar problem of the form

min
xi

{
1

2
|xi − yi|2 + λ|xi|

}
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Importance of monotonicity (cont.)

The subdifferential of ϕi(xi) is given by ∂ϕi(xi) = (xi − yi) + λ∂(|xi|),
with ∂(|xi|) defined as

∂(|xi|) =


1, if xi > 0

[−1, 1], if xi = 0

−1, if xi < 0

Note that ∂(|xi|) is a monotone function.

Therefore, the 1st-order optimality condition suggests that

yi ∈

Fi(x
∗
i )︷ ︸︸ ︷

x∗i + λ∂(|x∗i |)

Note that function Fi is strictly monotone
and onto, which suggests that

x∗i = F−1
i (yi)
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Resolvent

Due to the properties of Fi, its inverse function Sλ := F−1
i is always

well-defined. In particular, in the case at hand, this function is known
as soft-thresholding.

x∗i = Sλ(yi) = (|yi| − λ)+ sign(yi) =

=


yi − λ, if yi > λ

0, if − λ ≤ yi ≤ λ
yi + λ, if yi < −λ

The optimal solution to the original problem can be defined as

x∗ = Sλ(y) = [Sλ(y1),Sλ(y2), . . . ,Sλ(yn)]T

Note that x∗ is obtained via applying Sλ to each coordinate yi of y in-
dependently (i.e., separably).

The above solution has been made possible due to the monotonicity of
the subdifferential of ‖x‖1.
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Resolvent (cont.)

The previous examples demonstrates a number of important concepts.

Let f : Rn → R be convex, closed and sub-differentiable. Consider an
optimization problem of the form

min
x

{
1

2
‖x− y‖22 + λ f(x)

}
with its associated optimality condition

y ∈ x∗ + λ∂f(x∗) = (I + λ∂f)(x∗)

where I + λ∂f needs to be viewed as an operator from Rn to itself
(with I being the identity operator).

As I + λ∂f is strictly monotone and onto (and, therefore, injective),
its inverse Rλ = (I + λ∂f)−1 – called the resolvent of ∂f – is always
well-defined.

Moreover, the optimal solution to our optimization problem can now
be defined as

x∗ = Rλ(y)
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Proximal mapping

When the resolvent in question pertains to the subdifferential ∂f of a
convex function f , its commonly referred to as the proximal mapping
(aka proximal operator) of f . Formally,

proxλf (y) = arg min
x

{
1

2
‖x− y‖22 + λ f(x)

}

and it is unique if f is closed.

In some sense, prox generalizes the notion of orthogonal projection. In-
deed, let f(x) = IC(x), for some closed and convex set C. Then,

proxIC (y) = arg min
x∈C
‖x− y‖22 = PC(y)

which is the orthogonal projection of y onto C.

Note that, for f(x) = 0, proxλf (y) = y.
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Proximal mapping (cont.)

The above figure shows the level curves of a convex function f(x) over
its domain.

Applying proxf to the “blue" points moves them to the corresponding
“red" points.

The “outside" blue points move simultaneously towards the minimum
of f(x) and the boundary of dom f .

ECE 602 - Section 4 Instructor: Dr. O. Michailovich, 2022 19/52



Proximal Point Algorithm

Let f : Rn → R be a closed and convex function and let x∗ be its glo-
bal minimizer, i.e. f(x∗) ≤ f(x) for all x. Then,

proxf (x∗) = arg min
x

{
1

2
‖x− x∗‖22 + f(x)

}
= x∗.

Consequently, the point x∗ minimizes f if and only if

x∗ = proxf (x∗)

In other words, the global minimizer of f is a fixed point of its proximal
mapping.

It can also be shown that, for closed and strongly convex f , proxf (·) is
always contractive, i.e.

‖proxf (x)− proxf (y)‖ ≤ κ‖x− y‖, with 0 < κ < 1

Such operators play a special role in the Fixed-Point Theorem, which
we recall next.
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Proximal Point Algorithm (cont.)

Fixed Point Theorem
Let (X , ‖·‖) be a complete normed (aka Banach) space (such as, e.g.,
Rn with any norm). Also, let T : X → X be a contraction. Then,
there is a unique x∗ such that T (x∗) = x∗.
Moreover, starting with any x(0) ∈ X , the sequence of iterations

x(t+1) = T (x(t))

is guaranteed to converge to x∗, i.e. ‖x(t) − x∗‖ −→
t→∞

0.

The theorem suggests the possibility to find a global minimizer of f as
a fixed point of its associated proximal mapping.

Specifically, the Proximal Point Algorith (PPA) relies on the iterative
up-dates performed according to

x(t+1) = proxλf (x(t))
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Proximal Point Algorithm (cont.)

The PPA is guaranteed to converge under rather general conditions on
f (that can either be differentiable or sub-differentiable). Particularly,
f can be an extended-value function!

When the convexity of f is not strong, its proximal mapping is not a
contraction, in general. So, do we still have a convergence?

It turns out, in the case of weakly convex f , the algorithm still conver-
ges to their global minimizers (which might no longer be unique).

Moreover, it converges under the mildest possible assumption, which is
simply that a minimizer exists.

On the practical side, working with proximal mappings is particularly
advantageous in view of their special properties which we mention next.
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Properties of proximal operators

Separable sum

If f is separable across two variables, i.e. f(x, y) = ϕ(x) + ψ(y), then

proxf (v, w) =
(
proxϕ(v), proxψ(w)

)
More generally, if f is fully separable, i.e. f(x) =

∑n
i=1 fi(xi), then(

proxf (v)
)
i

= proxfi(vi)

for i = 1, 2, . . . , n.

Postcomposition

If f(x) = αϕ(x) + b, with α > 0, then

proxλf (v) = proxαλϕ(v)

Precomposition

If f(x) = ϕ(αx+ b), with α 6= 0, then

proxλf (v) =
1

α

(
proxα2λϕ(αv + b)− b

)
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Properties of proximal operators (cont.)

Rotational invariance

If f(x) = ϕ(Qx), where QTQ = QQT = I, then

proxλf (v) = QT proxλϕ(Qv)

Affine addition

If f(x) = ϕ(x) + aTx+ b, then

proxλf (v) = proxλϕ(v − λa)

Regularization

If f(x) = ϕ(x) + (ρ/2)‖x− a‖22, then

proxλf (v) = proxλ̃ϕ

(
(λ̃/λ) v + (ρλ̃) a

)
where λ̃ = λ/(1 + λρ).
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Legendre transform

Proximal mappings have several properties which make them resemble
orthogonal projections onto convex sets. To understand these properti-
es, we need to recall the definition of Legendre transform.

Let f : Rn → R be convex and differentiable. Then, at each x0 ∈ Rn,
one can define the supporting (aka tangent) line as given by

L(x;x0) = f(x0) +∇f(x0)T (x− x0) ≤ f(x)

for all x ∈ Rn.

Let g(x) = −L(0;x), so that the tan-
gent line crosses the vertical axis at
−g(x0). Hence, for each x, we have{

g(y) = yTx− f(x)

y = ∇f(x)

These two equations define precisely what the Legendre transform (LT)
of f is.
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Legendre transform (cont.)

In particular, the LT enables a dual representation of f(x) in terms of
its “slopes" described by the dual variable y.

If f admits a supporting line at x with slope y, then g admits a sup-
porting line at y with slope x.

Moreover, it can be shown that, if f admits a strict supporting line at
x with slope k, then g admits a tangent supporting line at y with slope

∇g(y) = x

and, hence, g is differentiable.
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Conjugate transform

The conjugate transform (aka the Legendre-Fenchel transform) extends
the LT to sub-differentiable convex functions, and it is defined as

f∗(y) = sup
x∈dom f

(
yTx− f(x)

)

with dom f∗ = {y | yTx− f(x) is bounded}.

Important: f∗ is a convex function,
whether or not f is convex.

Similarly to the LT, the conjugate transform “encodes" f in terms of
its tangents comprising the dual space of variable y.
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Conjugate transform (cont.)

Each point (x, f(x)) on the differentiable branches of f admits a strict
supporting line (or hyperplane) with slope ∇f(x) = k.

The non-differentiable point xc admits infinitely many supporting lines
with slopes in the range [kl, kh].

So, each point of f∗(k) with k ∈ [kl, kh] must admit a supporting line
with constant slope xc (branch c′).

In this case, we say that f∗ is affine or linear over (kl, kh).
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Conjugate transform (cont.)

In the case, we f is convex, we have f∗∗ = f .

A convex function f having an affine part has f∗ with one non-diffe-
rentiable point.

More precisely, if f is affine over (xl, xh) with slope kc in that interval,
then f∗ will have a non-differentiable point at kc with left- and right-
derivatives at kc given by xl and xh, respectively.
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Conjugate transform (cont.)

In the case when f is non-convex, the conjugate transform follows the
boundary of the convex hull of epi f .

Define the convex extrapolation of f to be the function obtained by re-
placing its non-convex branch (c) by the supporting line that connects
the two convex branches of f (a and b).

Then, the conjugate transforms of f and its convex extrapolation both
yield f∗. For this reason, f∗∗ is also called the convex envelope of f .
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Results to remember

The conjugate transform yields only convex functions, i.e f∗ is convex
and so is f∗∗.

Points of f are transformed into slopes of f∗, and slopes of f are trans-
formed into points of f∗.

Non-differentiable points are transformed into affine branches of f∗.

Affine or non-convex branches of f are transformed into non-differen-
tiable points of f∗ (the only two cases).

f(x) = f∗∗(x) if and only if f admits a supporting hyperplane at x.

If f∗ is differentiable at y, then f(x) = f∗∗(x) at x = ∇f∗(y).
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Examples

Define f(x) = − log x, then

f∗(y) = sup
x>0

(yx+ log x) =

{
−1− log(−y), y < 0

∞, y ≥ 0

Define f(x) = (1/2)xTQx, with x ∈ Rn and Q ∈ Sn++. Then,

f∗(y) = sup
x

(
yTx− (1/2)xTQx

)
= (1/2)yTQ−1y

Define f(X) = log detX−1, with X ∈ Sn++. Then,

f∗(Y ) = sup
X�0

(tr(Y X) + log detX) = log det(−Y )−1 − n,

with dom f∗ = −Sn++.
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Examples (cont.)

Let f(x) = IC(x) be the indicator function of a set C ⊂ Rn. Then,

I∗C(y) = sup
x∈C

yTx,

which is the support function of C.

Let f(x) = ‖x‖ be a norm on Rn with its associated dual norm ‖ · ‖∗.
Then the conjugate of f is given by

f∗(y) =

{
0, ‖y‖∗ ≤ 1

∞, otherwise
= IB∗(y)

which is the indicator function of the unit ball in the dual-norm space.

It can also be shown that the conjugate of f(x) = (1/2)‖x‖2 is equal to
f∗(y) = (1/2)‖y‖2∗.
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Additional properties

Fenchel’s inequality extends (1/2)xTx+ (1/2)yT y ≥ xT y to non-quad-
ratic functions as

f(x) + f∗(y) ≥ xT y

For example, (1/2)xTQx+ (1/2)yTQ−1y ≥ xT y for Q ∈ Sn++.

Some other useful properties of f∗ are listed below.

f(x) f∗(y)

f1(x1) + f2(x2) f∗1 (y1) + f∗2 (y2)
ag(x) ag∗(y/a)
g(Ax) f∗(y) = g∗(A−T y)
g(x− b) g∗(y) + bT y

g(x) + aTx+ b g∗(y − a)− b
infu+v=x(f1(u) + f2(v)) f∗1 (y) + f∗2 (y)

Note that the operation infu+v=x(f1(u) + f2(v)) is called the infimal
convolution of f1 and f2.
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Moreau decomposition

Recall the subgradient characterization of prox f is given by

y = proxf (x) ⇐⇒ x− y ∈ ∂f(y)

for any convex and sub-differentiable f : Rn → R.

However, by the definition of the conjugate transform, we then have

x− y ∈ ∂f(y) ⇐⇒ y ∈ ∂f∗(x− y) ⇐⇒ x− y = proxf∗(x)

The above relations suggest a very important result, namely

x = proxf (x) + proxf∗(x)

which is known as Moreau decomposition – the main relationship bet-
ween proximal operators and duality.

Note that, more generally, we have

x = proxλf (x) + λproxλ−1f∗(x/λ)
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Moreau decomposition (cont.)

Let V be a linear (hence convex and closed) subspace in Rn. Also, let
f be the indicator function of V, i.e. f(x) = IV(x).

In this case, proxf (x) = PV(x), where PV : Rn → V denotes the ope-
rator of orthogonal projection onto V. Indeed,

proxf (x) = arg min
x′

{
1

2
‖x′ − x‖22 + IV(x′)

}
=

= arg min
x′∈V

{
1

2
‖x′ − x‖22

}
= PV(x)

It is straightforward to see that the conjugate of f(x) = IV(x) is equal
to f∗(x) = IV⊥(x), with V⊥ being the orthogonal complement of V in
Rn, which suggests that proxf∗(x) = PV⊥(x).

In this case, Moreau decomposition suggests

x = proxf (x) + proxf∗(x) = PV(x) + PV⊥(x)

which is nothing else but the orthogonal decomposition of x w.r.t. V.
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Moreau decomposition (cont.)

In general, Moreau decomposition gives a simple way to obtain the pro-
ximal operator of a function f in terms of the proximal operator of f∗.

For example, if f(x) = ‖x‖ is a general norm, then f∗ = IB∗ , where

B∗ = {x | ‖x‖∗ ≤ 1}

is the unit ball for the dual norm ‖ · ‖∗.

By Moreau decomposition, this implies that

x = proxf (x) + PB∗(x)

thus suggesting that proxf (x) = x− PB∗(x).

Thus, we can easily evaluate proxf if we know how to project on B∗.

In general, Moreau decomposition is very useful in cases when compu-
ting proxf is “expansive", while computing proxf∗ is “cheap" (or vice
versa).
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More examples of proximal mappings

Quadratic function

f(x) =
1

2
xTAx+ bTx+ c ⇐⇒ proxλf = (I + λA)−1(x− λb)

Euclidean norm

f(x) = ‖x‖2 ⇐⇒ proxλf =

{
(1− λ/‖x‖2)x, if ‖x‖2 ≥ λ
0, otherwise

Logarithmic barrier

f(x) = −
n∑
i=1

log xi ⇐⇒
(
proxλf (x)

)
i

=
xi +

√
x2i + 4λ

2
, i = 1, . . . , n

`1 norm

f(x) = ‖x‖1 ⇐⇒ proxλf (x) = Sλ(x) = (|x| − λ)+ sign(x)
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Proximal Gradient Method

Consider the following optimization problem

min
x

f(x) + g(x)

where f is convex with a Lipschitz continuous gradient (i.e., ∃L > 0:
‖∇f(x)−∇f(y)‖22 ≤ L‖x− y‖22, ∀x, y) and g is closed and convex but
only sub-differentiable.

Given some sub-optimal point x(t), let
q(x;x(t)) be a global over-estimator
(aka majorizer) of f(x) defined as

q(x;x(t)) = f(x(t))+∇f(x(t))T (x−x(t))+

+
κ

2
‖x− x(t)‖22, with κ > L.

The majorizer satisfies q(x(t);x(t)) = f(x(t)), while q(x;x(t)) ≥ f(x) for
all x 6= x(t). Therefore

q(x;x(t)) + g(x) ≥ f(x) + g(x)
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Proximal Gradient Method (cont.)

The principal idea of the Proximal Gradient Method (PGM) is to mi-
nimize f(x) + g(x) based on the majorization-minimization iterations
of the form

x(t+1) = arg min
x
{q(x;x(t)) + g(x)}

In particular, using completion of squares, q(x;x(t)) can be expressed as

q(x;x(t)) =
κ

2

∥∥x− (x(t) − 1

κ
∇f(x(t)))

∥∥2
2

+ const

where the last term is independent of x. As a result, we have

x(t+1) = arg min
x

{κ
2

∥∥∥x− (x(t) − 1

κ
∇f(x(t)))

∥∥2
2

+ g(x)
}

Consequently, the PGM iterations are defined by

x(t+1) = prox(1/κ)g

(
x(t) − 1

κ
∇f(x(t))

)
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Proximal Gradient Method (cont.)

In a more general form, the PGM iterations can be also defined by

x(t+1) = proxγ(t)g
(
x(t) − γ(t)∇f(x(t))

)
for values of the step-size parameter γ(t) (with 0 < γ(t) < 2/L).

Note that, if g(x) = 0, the PGM iterations are reduced to

x(t+1) = x(t) − γ(t)∇f(x(t))

suggesting that PGM becomes GDM.

On the other hand, if f(x) = 0, the PGM iterations are reduced to

x(t+1) = proxγ(t)g(x
(t))

which suggests that PGM becomes PPA.

When g(x) = IC(x), with C ∈ Rn being convex and closed, the PGM
iterations have the form of

x(t+1) = PC
(
x(t) − γ(t)∇f(x(t))

)
which is also known as the Projected Gradient Method.
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Forward-backward splitting

Each PGM iteration is based on a forward-backward splitting scheme,
viz.

x(t+1) = proxγ(t)g︸ ︷︷ ︸
backward step

(
x(t) − γ(t)∇f(x(t))

)︸ ︷︷ ︸
forward step

It can be broken up into a forward (explicit) gradient step using the
function f , and a backward (implicit) step using the function g.

Forward-Backward Algorithm

given x(0), ε ∈ (0,min{1, L−1}), γ(t) ∈ [ε, 2/L− ε], λ(t) ∈ [ε, 1]

for t = 0, 1, 2, . . .

1. Set y(t) := x(t) − γ(t)∇f(x(t))

2. Update x(t+1) := x(t) + λ(t)(proxγ(t)g(y
(t))− x(t))

end

Note that the above version of PGM incorporates relaxation parame-
ters {λ(t)} (yielding the standard form, if λ(t) = 1 for all t).
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Examples

Let f(x) = ‖Ax− b‖22/2 and g(x) = IC(x), with C ⊂ Rn being convex
and closed. The resulting minimization problem is

min
x∈C
‖Ax− b‖22

which is known as constrained least-squares (LS).

Since ∇f : x 7→ AT (Ax− b) has L = ‖A‖2 = σmax(A)2, the PGM yields
the projected Landweber method, with its iterations given by

x(t+1) = PC
(
x(t) + γ(t)AT (b−Ax(t))

)
for some γ(t) ∈ [ε, 2/‖A‖2 − ε].

It is also possible to set γ(t) adaptively by means of line search.
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Other versions of PGM

There are several different versions of PGM.

Constant-Step Forward-Backward Algorithm (FBA)

given x(0), ε ∈ (0, 3/4), λ(t) ∈ [ε, 3/2− ε]
for t = 0, 1, 2, . . .

1. Set y(t) := x(t) − (1/L)∇f(x(t))

2. Update x(t+1) := x(t) + λ(t)(prox(1/L)γ(t)g(y
(t))− x(t))

end

Beck-Teboulle Proximal Gradient Algorithm (BTA)

given x(0), z(0) = x(0), τ (0) = 1

for t = 0, 1, 2, . . .

1. Set τ (t+1) :=
1+
√

4(τ(t))2+1

2
& λ(t) := 1 + τ(t)−1

τ(t+1)

2. Set y(t) := z(t) − (1/L)∇f(z(t))

3. Update x(t+1) := prox(1/L)g(y
(t))

4. Update z(t+1) := x(t) + λ(t)(x(t+1) − x(t))
end

ECE 602 - Section 4 Instructor: Dr. O. Michailovich, 2022 44/52



Convergence of PGM-type methods

All these methods guarantee convergence to a solution of the original
problem, i.e., to an optimal point x∗ at which 0̄ ∈ ∇f(x∗) + ∂g(x∗).

Consider the problem of finding x∗ in C ∈ Rn which is at the shortest
possible distance dD from another set D ∈ Rn.

In this case, we formally have f(x) = dD(x)2/2 and g(x) = IC(x).

For the reasons demonstrated by the above example, BTA is often pre-
ferred in practice.
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Douglas-Rachford Splitting

Consider the previous problem

min
x

f(x) + g(x)

where now both f and g are sub-differentiable (as well as closed and
convex, as before).

The Douglas-Rachford (splitting) algorithm (DRA) iterates according to

x(t+1) = proxf (y(t))

y(t+1) = y(t) + proxg(2x
(t+1) − y(t))− x(t+1)

This method is useful when f and g have inexpensive proximity map-
pings.

It should be noted, however, the DRA is not symmetric in the roles of
f and g.
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Douglas-Rachford Splitting (cont.)

Let F (y) = y + proxg(2proxf (y)− y)− proxf (y). Then, the DRA
amounts to fixed-point iterations of the form

y(t+1) = F (y(t))

which can be shown to converge to a fixed point y∗ = F (y∗) such that
0̄ ∈ ∂f(y∗) + ∂g(y∗).

The DRA can be re-defined in an equivalent form given by

y(t+1) = proxg(x
(t) + z(t))

x(t+1) = proxf (y(t+1) − z(t))

z(t+1) = z(t) + x(t+1) − y(t+1)

starting with some x(0) and z(0) = 0̄.
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Douglas-Rachford Splitting (cont.)

To further accelerate the convergence, the DRA can be subjected to
the procedure of relaxation as given by

y(t+1) = y(t) + λ(t)(F (y(t))− y(t))

with λ(t) ∈ (0, 2).

The regime with λ(t) ∈ (0, 1) is called under-relaxation, while the re-
gime with λ(t) ∈ (1, 2) is called over-relaxation.

The DRA can also be expressed in its dual form which is derived via
the use of Moreau decomposition. In this form, we have

x(t+1) = proxf (x(t) − z(t))

z(t+1) = proxg∗(z
(t) + 2x(t+1) − x(t))

This form is preferable when computing proxg∗ is less expansive than
computing proxg.
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Example: Sparse inverse covariance selection

In multivariate data analysis, graphical models (e.g., Gaussian Markov
Random Fields) provide a way to discover meaningful interactions bet-
ween random variables.

Frequently, learning the structure of a graphical model is equivalent to
the problem of learning the zero-pattern of Σ−1, where Σ ∈ Sn++ is the
covariance of modelled variables.

Formally, the above problem amounts to solving

min
X∈Sn

++

{ 〈C,X〉︷ ︸︸ ︷
tr(CX)− logdetX + µ

∑
i>j

|Xi,j |
}

for some C ∈ Sn+ and µ > 0.

Let us set f(X) = tr(CX)− logdetX and g(X) = µ
∑
i>j |Xi,j |.

proxτf (U) is given by the positive solution to

C −X−1 +
1

τ
(X − U) = 0

while proxτf (·) is soft-thresholding (with threshold τ).
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Example: Spingarn’s method of partial inverses

Consider the following problem

min
x∈C

f(x)

with some closed and convex C ∈ Rn.

In this case, the DRA (with g(x) = IC(x)) yields

x(t+1) = proxτf (y(t))

y(t+1) = y(t) + PC(2x(t+1) − y(t))− x(t+1)

Equivalently, using Moreau decomposition, one can obtain the primal-
dual form of DRA which yields

x(t+1) = proxτf (x(t) − z(t))

z(t+1) = PC⊥(z(t) + 2x(t+1) − x(t))

Note that z(t) here is a dual variable (i.e., subgradient).
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Composite optimization problem

For x ∈ Rn and some A ∈ Rm×n, consider the following problem

min
x

f(x) + g(Ax)

where both f and g admit prox operators.

Define C = {(u, v) | v = Au}. Then, the initial problem is equivalent to
minimizing F (u, v) = f(u) + g(v) over C, viz.

min
(u,v)∈C

F (u, v)

Due to the separability of proximal mapping, we have

proxτF (u, v) =
(
proxτf (u), proxτg(v)

)
Using singular value decomposition of A, it can be shown that PC is de-
fined via solution of a system of linear equations to produce

PC(u, v) =

[
u
v

]
+

[
AT

−I

]
(I +AAT )−1

︸ ︷︷ ︸
A]

(v −Au)

(A] can be precomputed.)
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