ECE 602 — Section 5

Standard optimization problems

Standard optimization problem

o Equivalent optimization problems

Linear and Quadratic Programming
@ Conic programming and SOCP

o Semidefinite Programming
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OPTIMIZATION PROBLEM IN STANDARD FORM

o Standard optimization problem has the following form

min fo(z)

where:

z € R is the optimization variable
— fo: R™ = R is the cost (or objective) function
— fi : R™ — R are inequality constraint functions
— hj : R™ — R are equality constraint functions

o The domain of the problem is D = (|, dom f; N (\}_, domA;

o The optimal value is

p* = inf{fo(x) | fi(x) < 0,hy(x) = 0, Y, }
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OPTIMAL AND LOCALLY OPTIMAL POINTS

o A point x € D is feasible if it satisfies all the constraints.

@ The problem is feasible if the set of feasible points is non-empty. If the
problem is infeasible, we have p* = oo.

e z* is an optimal point, if x* is feasible and fo(z*) = p~.

The set of all optimal points is the optimal set
Xopt = {x | z is feasible and f(z) = p*}
o A feasible x is locally optimal, if 3 R > 0 such that x is optimal for
mzin fo(z)
subject to fi(z) <0, i=1,....,m
hj(z) =0, j=1,...,p
|z —zlls <R

o This means x minimizes fy over nearby points in the feasible set.
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SOME EXAMPLES

Consider the following unconstrained scalar problems.

e fo(xz) =1/x with dom fo = Ry

In this case, p* = 0, but there is no optimal point.

o fo(zr) = —logz with dom fo = R4

In this case, the cost function is unbounded below and thus p* = —oo.

o fo(z) = zlogz with dom fo = R4
This problem has an optimal p* = —1/e attained at unique z* = 1/e.
o fo(z) = x® — 3z with dom fy = R ;
{
N

This problem is unbounded from below,
i.e. p* = —oo. However, there is a local

minimum at zj,. = 1. hole) =* - 32
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FEASIBILITY PROBLEM

o If the objective function is identically zero (i.e., fo = 0), then

. {0, feasible set # ()
p =

oo, feasible set = ()
@ Thus, the standard-form optimization problem
mzin 0
subject to fi(z) <0, i=1,...,m
hj(x)=0, j=1,...,p

is equivalent to the feasibility problem that is given by

find x
subject to fi(z) <0, i=1,...,m
h,j(.%‘)IO, '21,...,])
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EXPRESSING PROBLEMS IN STANDARD FORM

o Consider the following example with box constraints:
min fo(z)
subject to l; < z; <wu;, t=1,...,n

e We can express this problem in a standard form as

min fo(x)
x
subject to l; —x; <0, i=1,...,n
ri—u; <0, ¢1=1,...,n

o In this case, we have 2n equality constraint functions of the form

filz)=li—=z, i=1,...,n
filx) =mi—wi, i=n+1,...,2n
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CHANGE OF VARIABLES

e Suppose ¢ : R™ — R" is one-to-one with ¢(dom ¢) C D.

@ Define ~ ~
fi(z) = fi(¢(2)), Vi and h;(2) = h;(4(2)), Vi

@ Then the problem
min fo(z)

hj(Z)IO, j:l,...,p

subject to f;(z) <0, i=1,...,m

is related to the original problem by the change of variables x = ¢(z).

o If z solves the above problem, then z = ¢(z) solves the original one.

o If x solves the original problem, then z = (;571(:6) solves the new one.
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TRANSFORMATION OF OBJECTIVE AND CONSTRAINTS

@ Suppose that ¥ : R — R is monotone increasing, and

o Y1,...,¥m : R — Rsatisfy ¢;(u) <0iff u <0
0 Vmt1,- - s Ymip : R = Rosatisfy ¢;(u) =0iff u =0

@ Define the following functions

file) =¢i(fi(z)), i=0,...,m
ilJ(CC) I’(/)eri(hz‘(I)), j:07...,p

@ Then the problem
min fo()
subject to fl(;z:) <0, i=1,....m
hi(x) =0, j=1,...,p

is equivalent to the original problem.

o For example, min, ||Az — b||2 and min, ||Az — b||3 are equivalent.
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IMPLICIT AND EXPLICIT CONSTRAINTS

o As a simple example, consider the unconstrained problem

min f(z), where f(z) = {xTxy Az =b

00, otherwise
@ The problem has an implicit equality constraint Ax = b.
o The implicit constraint can be made explicit by considering instead
. T
min =~ x
x
subject to Az =b

@ The problems are clearly equivalent, they are not the same.

@ While the first problem is unconstrained and non-differentiable, the
second is constrained and differentiable.
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CONVEX OPTIMIZATION PROBLEMS

o A convex optimization problem is one of the form

min fo(x)

subject to fi(z) <0, i=1,...,m

aijzbj, ji=1...,p

where fo, f1,..., fm are lconvex functions.
@ The feasible set of a convex optimization problem is convex.

@ Thus, in a convex optimization problem, we minimize a convexr cost
function over a convex set.

o If fo(z) is concave, we replace minimization by maximization in order
to still regard the problem as "convex".
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EXAMPLE

o Consider the following problem
mgcin fo(z) ==
subject to fi(z) = z1/(1+23) <0
hi(z) = (z1 + x2)2 =0

@ This problem is not a convex optimization problem in standard form,
although the feasible set {z | z1 <0, z1 + 22 = 0} is convex.

o The problem can be reformulated as
min fo(z) = 1 + 23

subject to fi(z) =21 <0
hi(z) =z14+x2=0

which is a convex optimization problem in standard form.

ECE 602 - ) Instructor: Dr. O. Michailovich, 2022



OPTIMALITY CRITERION FOR DIFFERENTIABLE COSTS

o A fundamental property of convex optimization problems is that their
locally optimal points are also globally optimal.

e Suppose that fo is differentiable, so that for all z,y € dom fo,
Fo(y) 2 fo(x) + ¥ fo()" (y — )

o Let X denote the feasible set. Then, = is optimal if and only if x € X
and

N .—Vfc ()

)\~ obtuse angle

[ foo(m)T(yfx)gO, Vye X J

o Thus, if nonzero, V fo(z) defines a supporting hyperplane to X at x.

o Note that, when X = R™ (i.e. no constraints), the above condition is
trivially reduced to V fo(z) = 0.
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SPECIAL CASES

o Unconstrained problem: min fo(z)

In this case, x is optimal if and only if

zedomfy, & Vifo(zx)=0

o Equality constrained problem: min fo(x) subject to Ax =b

Here, z is optimal if and only if v such that
redomfy & Azr=b & Vfo(z)+ATv=0

Note that the latter implies that —V fo(z) € Col(A”T) (= Row(A)).

e Minimization over Ry: min fo(z) subject to = 0

In this case, x is optimal if and only if

>0, x; =
r€domfy & x>0 & {Vfo(x) :8 ze=0

Vfo(l‘)l x; >0

(For more details, see Section 4.2.3 of Boyd’s textbook.)
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ELIMINATING EQUALITY CONSTRAINTS

o Consider the following optimization problem:
min fo(x)
x
subject to Az =b

where A € R™*"™, with rank(A4) = m < n.

@ Since A is “wide", there are infinitely many solutions to Ax = b. Let xo
be a particular solution to this system (e.g., zo = AT(AAT) 1o = A'b).
Then, a general solution to Ax = b can be expressed as £ = Zo + Thom,
where Zhom is any solution to Az = 0.

o Recall that the space of the homogeneous solutions Na = {u | Au = 0}
is a linear subspace of R" of dimension p = n — m. Hence, any u € Na
can be represented as u = Bz, with the columns of B € R™*? forming
a basis in NM4.

o Then, solutions to the above problem can be expressed as x = zo + Bz,
thus reducing it to
min fo(Bz + xo)
z

with 2* = Bz* + zo.
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EQUIVALENT CONVEX PROBLEMS

o Introducing equality constraints:
rr;in fo(Aox + bo)
subject to fi(Aix +b;) <0, i=1,....,m
is equivalent to
min fo(yo)
subject to fi(y:) <0, i=1,...,m
yi =Ajxe+b;, j=0,1,....,m
e Introducing slack variables:
mzin fo(zx)
subject to alz < by, 1=1,...,m
is equivalent to
min fo(z)
subject to a;‘-rx—l—sj =b;, j=1,...,m

>0, 1=1,....,m
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EQUIVALENT CONVEX PROBLEMS (CONT.)

o Epigraph form:

min ¢
x,t

o Marginization:

min fo(x1,x2)
x1,x2

subject to fi(z1) <0, i=1,...,p

is equivalent to
min fo (.T1)
T
subject to fi(z1) <0,

where fo(z1) = inf,, fo(x1,22) (which is unconstrained)
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LINEAR OPTIMIZATION PROBLEMS

o A general linear program (LP) has the form

. T
mim ¢ T
T

st. Az <b, Cx=d

where A e R™*", C € RP*", b€ R™ and d € R”.

o A maximization problem with affine objective and constraint functions
is an LP as well.

o The feasible set of an LP is a polyhed-
ron.

o Numerically, optimal solutions occur at
the wvertices.
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STANDARD AND INEQUALITY FORMS OF LP

o If the LP has no equality constraints, it is called an inequality form LP

min ¢z, st. Az <b
x

o Since z = 2zt — 27, with 27 = max{z,0} and = = min{z, 0}, the cost

can be redefined as ¢’z = [¢, =] [z, 27]7, with [zF,z7]7 > 0.

o Let s = 0 be a vector of slack variables such that Az + s = b and define
a new optimization variable y = [T, 27, s]T > 0.

@ Then, with C = [A, —A, I] and d = [c, —c, 0]7, the original LP can be
equivalently written as

myin dTy, st. Cy=b, y =0

which is known as a standard form LP.
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ExAMPLES: NORM MINIMIZATION

o /o-norm approximation: f(z) =|Az — b«

Let 1 € R™ be vector of ones. Then, the problem can be expressed as

min ¢

x,t

st. Az —b=<tl
Ax —b > —t1

Indeed, the constraints require that |af z — bg| < t, for all k, and thus

t> m]?x|a£m — bk| = ||Az — b||eo

e (1-norm approximation: f(z)=||Az — b1

In this case, the equivalent LP is

min 17s

x,s

st. Ar —b=<s
Ax —b > —s

where the constraints require that |af & — bx| < s, for all k.
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EXAMPLES: CHEBYSHEV CENTRE

o Let C be a polyhedron defined as
C= {xERn | al @ < b, i:1,2,...,m}
o Counsider the problem of finding the largest ball B = {xc + u | ||u]] < r}

(with unknowns z. and r) that lies inside of C. In this case, z. is refer-
red to as the Chebyshev centre of C.

o Note that the inclusion requires that
aZT(:cCJru) <b,i=12,....,m
holds for any u. Therefore,

rllagll«
~ a3

sup (a?(mc—ku)):a;zc—k sup (aiTu)

uiflul[<r wilul|<r
thus requiring a7 . 4 7la:||« < b;, Vi.

@ As a result, we arrive at an LP of the form

T
max r subject to [ i } {mc}<bi,z‘:1,2,...,m

Te,T HG/ZH*
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QUADRATIC OPTIMIZATION PROBLEMS

o A quadratic program (QP) is defined as

1
min 5 =" Pz + qu +r

st. Az <b, Czx=d

where P € ST, A€ R™*™ and C € RP*"™.

o A quadratically constrained quadratic program (QCQP) has the form

Vs ‘*Vfo(zi)
1
min 5 xTPox + qOTas + 70
1
s.t. QJZTPi.T +qlz+7: <0
Ax =D
\_

where P; € ST, foralli=0,1,...,m.
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EXAMPLE: LEAST-SQUARES AND DISTANCE

o The problem of minimizing the convex quadratic function
|Az — b||3 = 2" AT Az — 20" Az + " b
is an (unconstrained) QP.

@ The problem has many names, e.g., regression analysis or least-squares
(LS) approzimation. Tt is solved by x = ATb.

o Constrained regression or constrained least-squares is defined as
mxin | Az — b||3
st. i<z <wu,, t=1,...,n
which is also a QP.

o Let C1 = {z | Aixz < b1} and Ca = {y | A2y = b2} be two polyhedra. To
find the distance between C1 and Ca2, one needs to solve

. 2
min [z -yl
zy
s.t. Aix < by, Ay < by
which is a QP.
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EXAMPLE: LINEAR PROGRAM WITH RANDOM COST

o Consider a general LP

.7

min ¢ ©

st. Gz < h
Ar =b

@ Suppose ¢ € R" is random, with mean value E{c} = ¢ and variance
E{(c-&(c—2&T} =2 0.

o Note that E{c"z} = "z and var(c'z) = " S z.

o Define the risk sensitive cost as Ec” x + vy var(c”z), where v > 0 cont-
rols the trade-off between expected cost and variance (risk).

o To minimize the risk-sensitive cost, we solve the following QP:
min ¢’ z + ’yxTE T
x
st. Gz = h
Az =b
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SECOND-ORDER CONE PROGRAMMING

o The second-order cone program (SOCP) is defined as

S
min ag T
xT
s.t. Agxz = by
|As & + bs |2 Sc?m+di, i=1,...,m

where 4; € R"*™ and Ag € RP*™.

o Note that the constraint ||A;x + b;|]2 < cFx+d; suggests that

(Aiz + biycixz+di) € C={(x,t) €eR" xRy | ||z]]2 < t}

For this reason, it is called a second-order cone constraint.

o SOCPs are more general than QCQPs (and, of course, LPs), viz.
SOCP yields a general LP, if A; =0,i=1,...,m
— SOCP yields QCQP, if ¢; =0,:=1,...,m
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ExXAMPLE: ROBUST LINEAR PROGRAMMING

o Consider an LP in inequality form
. T
min ¢ z

st. afz<b;, i=1,2,...,m

@ Thus, for example, a; and b; could represent system parameters, with x
being design variables required to minimize a linear cost.

o Let us assume that there is some uncertainly in the parameters a; that
is formally described by the requirement

ai € Ci = {ai + Piu | |lul| <1}
with some P; € R"*™. (Note that P; = 0 means a; is known perfectly.)

o Consider the following robust linear program

: T
min ¢ x
x

st. alz <b;foralla; €Ci, i=1,2,...,m
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EXAMPLE: ROBUST LINEAR PROGRAMMING (CONT.)

o The robust linear constraint, al @ < b;, Va; € C;, can be expressed as

T
sup a; * < b;
a; €C;

or, more specifically,

supa;z=a;z+ sup (v PTz)=alz+|P z|.<b
a; €C; wifjul|<1

which is a second-order cone constraint when || - || =1 |2 =1 - ||+

o In this case, the robust LP can be expressed as the SOCP

. T
min ¢ x
x

st. arx+ HPZ-Tng <b,i=12,....,m

o The terms ||Pz||2 act as regularization terms, preventing x from being
large in directions with considerable uncertainty in a;.
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ExAMPLE: LP WITH RANDOM CONSTRAINTS

o Consider the case when a; are independent Gaussian random vectors,
with mean a@; € R™ and covariance 3; = 0, a; ~ N (a;, 3;).

o We require that each constraint al'z < b; holds with a probability (or
confidence) exceeding 1 > 0.5, viz. prob (af z < b;) > 7.

@ This results in an LP with random constraints

e For any 4, let u = al z. Note that u is a Gaussian random variable,
with mean @ = a; « and variance o2 = 7%,z = |2/ 2z||3.
o Using u, the constraint prob (aiTx < b;) > n can be expressed as

U—1u Sbifﬂ

prob (u <b;)) >n < prob( )27}

g

z Z;
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EXAMPLE: LP WITH RANDOM CONSTRAINTS (CONT.)

@ Define z = (u — @)/o and z; = (b; — ) /0.

o Since u ~ N (@, 0?), then z ~ N(0,1) and thus prob(z < z;) = ®(z),

where
B(t) = — /t e 2t
V21o J_so

is the cumulative distribution function of the normal distribution.

@ Since @ is strictly monotone, the prob constraint can be expressed as

b, — @ b, —u _ _ _
<I>( Uu)2n<:> 0u2¢1(n)<:>u+<1> Yn)o < b;
with ®~'(n) > 0 (as n > 0.5).
o Hence, the LP with random constraints can be expressed as the SOCP
min ¢’z

st arz+ @ (S Plls <bi, i=1,2,...,m
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SEMIDEFINITE PROGRAMMING

o A semidefinite program (SDP) has the form

. T
min c¢c T
st. ;i1 +xo o+ .. .2y F + G X0
Ax=b

where G, Fy, F»,...,F, € S™ and A € RP*™. The above inequality is a
linear matriz inequality.

o If the matrices G, F1, Fs, ..., F, are all diagonal, then the SDP reduces
to a linear program, viz.

. T
min ¢ T
xT

s.t. ;F1 +axo o+ .. .xnF +G <0
Ax=b>
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STANDARD AND INEQUALITY OF SDP

o A standard form SDP is defined as

min tr(CX)
x

st. tr(A;X)=b;, i=1,...,m
X >0

where C, Ay,..., A, € S™. This form is analogous to LP in standard
(equality) form.

o An inequality form SDP is defined as

. T
min ¢ x
x

s.t. x1A1 +x2A2+ .. .2, A, X B

where B, A1, Az,..., A, € S™ and c € R".
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ExXAMPLE: MATRIX NORM MINIMIZATION

o Let A(z) =x1A1 + 2242 + ... + Anxy, where A, € RI*P.

o Let ||A(x)||2 be the operator (aka nuclear) norm of A(zx), as defined by
its maximal singular value.

o Consider the following problem of matriz norm minimization
min [[A(2)])
which is a convex problem, since ||A(z)||2 is convex in x € R"™.

o Using the fact that |Al|2 < t if and only if AT A < I, the above prob-
lem can be equivalently expressed as

st. Ax)TA(z) < tI

o Since A(z)T A(z) — t I is convex in (z,t), this is a convex minimization
problem with a single (¢ X ¢) matrix inequality constraint.
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EXAMPLE: MATRIX NORM MINIMIZATION (CONT.)

o We can also use the fact that, for any ¢ > 0,

A@)TA@) 2T < 21— Ax)"A(z) = 0 < [ ﬁé S }

o This results in the SDP

min t
x,t
tI  Az)
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IN SUMMARY

o Convex optimization is a mathematically rigorous and well-studied
field, with numerous numerical packages available for academic and
research use.

o “With only a bit of exaggeration, we can say that, if you formulate a
practical problem as a conver optimization problem, then you have sol-
ved the original problem." (S. Boyd)

o That is why it is important to recognize and formulate convex optimi-
zation problems in their standard form.

@ Surprisingly many problems can be solved via convex optimization.
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