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Optimization problem in standard form

Standard optimization problem has the following form

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

where:
– x ∈ R is the optimization variable
– f0 : Rn → R is the cost (or objective) function
– fi : Rn → R are inequality constraint functions
– hj : Rn → R are equality constraint functions

The domain of the problem is D =
⋂m

i=0 dom fi ∩
⋂p

j=1 domhj .

The optimal value is

p∗ = inf
x
{f0(x) | fi(x) ≤ 0, hj(x) = 0, ∀i, j}
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Optimal and locally optimal points

A point x ∈ D is feasible if it satisfies all the constraints.

The problem is feasible if the set of feasible points is non-empty. If the
problem is infeasible, we have p∗ =∞.

x∗ is an optimal point, if x∗ is feasible and f0(x∗) = p∗.

The set of all optimal points is the optimal set

Xopt = {x | x is feasible and f(x) = p∗}

A feasible x is locally optimal, if ∃R > 0 such that x is optimal for

min
z

f0(z)

subject to fi(z) ≤ 0, i = 1, . . . ,m

hj(z) = 0, j = 1, . . . , p

‖z − x‖2 ≤ R

This means x minimizes f0 over nearby points in the feasible set.
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Some examples

Consider the following unconstrained scalar problems.

f0(x) = 1/x with dom f0 = R+

In this case, p∗ = 0, but there is no optimal point.

f0(x) = − log x with dom f0 = R+

In this case, the cost function is unbounded below and thus p∗ = −∞.

f0(x) = x log x with dom f0 = R+

This problem has an optimal p∗ = −1/e attained at unique x∗ = 1/e.

f0(x) = x3 − 3x with dom f0 = R

This problem is unbounded from below,
i.e. p∗ = −∞. However, there is a local
minimum at x∗loc = 1.
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Feasibility problem

If the objective function is identically zero (i.e., f0 ≡ 0), then

p∗ =

{
0, feasible set 6= ∅
∞, feasible set = ∅

Thus, the standard-form optimization problem

min
x

0

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

is equivalent to the feasibility problem that is given by

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

which aims at finding a feasible (not optimal!) solution.
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Expressing problems in standard form

Consider the following example with box constraints:

min
x

f0(x)

subject to li ≤ xi ≤ ui, i = 1, . . . , n

We can express this problem in a standard form as

min
x

f0(x)

subject to li − xi ≤ 0, i = 1, . . . , n

xi − ui ≤ 0, i = 1, . . . , n

In this case, we have 2n equality constraint functions of the form

fi(x) = li − xi, i = 1, . . . , n

fi(x) = xi − ui, i = n+ 1, . . . , 2n
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Change of variables

Suppose φ : Rn → Rn is one-to-one with φ(domφ) ⊆ D.

Define
f̃i(z) = fi(φ(z)), ∀i and h̃j(z) = hj(φ(z)), ∀j

Then the problem

min
z

f̃0(z)

subject to f̃i(z) ≤ 0, i = 1, . . . ,m

h̃j(z) = 0, j = 1, . . . , p

is related to the original problem by the change of variables x = φ(z).

If z solves the above problem, then x = φ(z) solves the original one.

If x solves the original problem, then z = φ−1(x) solves the new one.
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Transformation of objective and constraints

Suppose that ψ0 : R→ R is monotone increasing, and
ψ1, . . . , ψm : R→ R satisfy ψi(u) ≤ 0 iff u ≤ 0
ψm+1, . . . , ψm+p : R→ R satisfy ψi(u) = 0 iff u = 0

Define the following functions

f̃i(x) = ψi(fi(x)), i = 0, . . . ,m

h̃j(x) = ψm+i(hi(x)), j = 0, . . . , p

Then the problem

min
x

f̃0(x)

subject to f̃i(x) ≤ 0, i = 1, . . . ,m

h̃j(x) = 0, j = 1, . . . , p

is equivalent to the original problem.

For example, minx ‖Ax− b‖2 and minx ‖Ax− b‖22 are equivalent.
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Implicit and explicit constraints

As a simple example, consider the unconstrained problem

min
x

f(x), where f(x) =

{
xTx, Ax = b

∞, otherwise

The problem has an implicit equality constraint Ax = b.

The implicit constraint can be made explicit by considering instead

min
x

xTx

subject to Ax = b

The problems are clearly equivalent, they are not the same.

While the first problem is unconstrained and non-differentiable, the
second is constrained and differentiable.
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Convex optimization problems

A convex optimization problem is one of the form

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

aTj x = bj , j = 1, . . . , p

where f0, f1, . . . , fm are ł̧convex functions.

The feasible set of a convex optimization problem is convex.

Thus, in a convex optimization problem, we minimize a convex cost
function over a convex set.

If f0(x) is concave, we replace minimization by maximization in order
to still regard the problem as "convex".
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Example

Consider the following problem

min
x

f0(x) = x21 + x22

subject to f1(x) = x1/(1 + x22) ≤ 0

h1(x) = (x1 + x2)2 = 0

This problem is not a convex optimization problem in standard form,
although the feasible set {x | x1 ≤ 0, x1 + x2 = 0} is convex.

The problem can be reformulated as

min
x

f0(x) = x21 + x22

subject to f1(x) = x1 ≤ 0

h1(x) = x1 + x2 = 0

which is a convex optimization problem in standard form.
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Optimality criterion for differentiable costs

A fundamental property of convex optimization problems is that their
locally optimal points are also globally optimal.

Suppose that f0 is differentiable, so that for all x, y ∈ dom f0,

f0(y) ≥ f0(x) +∇f0(x)T (y − x)

Let X denote the feasible set. Then, x is optimal if and only if x ∈ X
and

−∇f0(x)T (y − x) ≤ 0, ∀y ∈ X

Thus, if nonzero, ∇f0(x) defines a supporting hyperplane to X at x.

Note that, when X = Rn (i.e. no constraints), the above condition is
trivially reduced to ∇f0(x) = 0̄.
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Special cases

Unconstrained problem: min f0(x)

In this case, x is optimal if and only if

x ∈ dom f0 & ∇f0(x) = 0

Equality constrained problem: min f0(x) subject to Ax = b

Here, x is optimal if and only if ∃ ν such that

x ∈ dom f0 & Ax = b & ∇f0(x) +AT ν = 0

Note that the latter implies that −∇f0(x) ∈ Col(AT ) (= Row(A)).

Minimization over R+: min f0(x) subject to x � 0

In this case, x is optimal if and only if

x ∈ dom f0 & x � 0 &

{
∇f0(x)i ≥ 0, xi = 0

∇f0(x)i = 0, xi > 0

(For more details, see Section 4.2.3 of Boyd’s textbook.)
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Eliminating equality constraints

Consider the following optimization problem:

min
x

f0(x)

subject to Ax = b

where A ∈ Rm×n, with rank(A) = m < n.

Since A is “wide", there are infinitely many solutions to Ax = b. Let x0
be a particular solution to this system (e.g., x0 = AT (AAT )−1b = A†b).
Then, a general solution to Ax = b can be expressed as x = x0 + xhom,
where xhom is any solution to Ax = 0.

Recall that the space of the homogeneous solutions NA = {u | Au = 0}
is a linear subspace of Rn of dimension p = n−m. Hence, any u ∈ NA

can be represented as u = Bz, with the columns of B ∈ Rn×p forming
a basis in NA.

Then, solutions to the above problem can be expressed as x = x0 +Bz,
thus reducing it to

min
z

f0(Bz + x0)

with x∗ = Bz∗ + x0.
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Equivalent convex problems

Introducing equality constraints:

min
x

f0(A0x+ b0)

subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

min
x,y

f0(y0)

subject to fi(yi) ≤ 0, i = 1, . . . ,m

yj = Ajx+ bj , j = 0, 1, . . . ,m

Introducing slack variables:

min
x

f0(x)

subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

min
x,s

f0(x)

subject to aTj x+ sj = bj , j = 1, . . . ,m

si ≥ 0, i = 1, . . . ,m
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Equivalent convex problems (cont.)

Epigraph form:

min
x,t

t

subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

Marginization:

min
x1,x2

f0(x1, x2)

subject to fi(x1) ≤ 0, i = 1, . . . , p

is equivalent to

min
x1

f̃0(x1)

subject to fi(x1) ≤ 0, i = 1, . . . , p

where f̃0(x1) = infx2 f0(x1, x2) (which is unconstrained).
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Linear optimization problems

A general linear program (LP) has the form

min
x

cTx

s.t. Ax � b, Cx = d

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm and d ∈ Rp.

A maximization problem with affine objective and constraint functions
is an LP as well.

The feasible set of an LP is a polyhed-
ron.
Numerically, optimal solutions occur at
the vertices.
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Standard and inequality forms of LP

If the LP has no equality constraints, it is called an inequality form LP

min
x

cTx, s.t. Ax � b

Since x = x+ − x−, with x+ = max{x, 0} and x− = min{x, 0}, the cost
can be redefined as cTx = [c,−c] [x+, x−]T , with [x+, x−]T � 0.

Let s � 0 be a vector of slack variables such that Ax+ s = b and define
a new optimization variable y = [x+, x−, s]T � 0.

Then, with C = [A,−A, I] and d = [c,−c, 0]T , the original LP can be
equivalently written as

min
y

dT y, s.t. Cy = b, y � 0

which is known as a standard form LP.
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Examples: Norm minimization

`∞-norm approximation: f(x) = ‖Ax− b‖∞

Let 1 ∈ Rm be vector of ones. Then, the problem can be expressed as

min
x,t

t

s.t. Ax− b � t1
Ax− b � −t1

Indeed, the constraints require that |aTk x− bk| ≤ t, for all k, and thus

t ≥ max
k
|aTk x− bk| = ‖Ax− b‖∞

`1-norm approximation: f(x) = ‖Ax− b‖1

In this case, the equivalent LP is

min
x,s

1T s

s.t. Ax− b � s
Ax− b � −s

where the constraints require that |aTk x− bk| ≤ sk, for all k.
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Examples: Chebyshev centre

Let C be a polyhedron defined as

C =
{
x ∈ Rn | aTi x ≤ bi, i = 1, 2, . . . ,m

}
Consider the problem of finding the largest ball B = {xc + u | ‖u‖ ≤ r}
(with unknowns xc and r) that lies inside of C. In this case, xc is refer-
red to as the Chebyshev centre of C.

Note that the inclusion requires that

aTi (xc + u) ≤ bi, i = 1, 2, . . . ,m

holds for any u. Therefore,

sup
u:‖u‖≤r

(
aTi (xc+u)

)
= aTi xc+

r‖ai‖∗︷ ︸︸ ︷
sup

u:‖u‖≤r

(
aTi u

)
thus requiring aTi xc + r‖ai‖∗ ≤ bi, ∀i.

As a result, we arrive at an LP of the form

max
xc,r

r subject to
[

ai
‖ai‖∗

]T [
xc
r

]
≤ bi, i = 1, 2, . . . ,m
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Quadratic optimization problems

A quadratic program (QP) is defined as

min
x

1

2
xTPx+ qTx+ r

s.t. Ax � b, Cx = d

where P ∈ Sn
++, A ∈ Rm×n and C ∈ Rp×n.

A quadratically constrained quadratic program (QCQP) has the form

min
x

1

2
xTP0x+ qT0 x+ r0

s.t.
1

2
xTPix+ qTi x+ ri ≤ 0

Ax = b

where Pi ∈ Sn
++, for all i = 0, 1, . . . ,m.
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Example: least-squares and distance

The problem of minimizing the convex quadratic function

‖Ax− b‖22 = xTATAx− 2bTAx+ bT b

is an (unconstrained) QP.

The problem has many names, e.g., regression analysis or least-squares
(LS) approximation. It is solved by x = A†b.

Constrained regression or constrained least-squares is defined as

min
x
‖Ax− b‖22

s.t. li ≤ xi ≤ ui, i = 1, . . . , n

which is also a QP.

Let C1 = {x | A1x � b1} and C2 = {y | A2y � b2} be two polyhedra. To
find the distance between C1 and C2, one needs to solve

min
x,y

‖x− y‖22

s.t. A1x � b1, A2y � b2

which is a QP.
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Example: Linear program with random cost

Consider a general LP

min
x

cTx

s.t. Gx � h
Ax = b

Suppose c ∈ Rn is random, with mean value E{c} = c̄ and variance
E{(c− c̄)(c− c̄)T } = Σ � 0.

Note that E{cTx} = c̄Tx and var(cTx) = xT Σx.

Define the risk sensitive cost as EcTx+ γ var(cTx), where γ > 0 cont-
rols the trade-off between expected cost and variance (risk).

To minimize the risk-sensitive cost, we solve the following QP:

min
x

c̄Tx+ γ xT Σx

s.t. Gx � h
Ax = b
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Second-order cone programming

The second-order cone program (SOCP) is defined as

min
x

aT0 x

s.t. A0 x = b0

‖Ai x+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

where Ai ∈ Rni×n and A0 ∈ Rp×n.

Note that the constraint ‖Aix+ bi‖2 ≤ cTi x+ di suggests that

(Aix+ bi, c
T
i x+ di) ∈ C = {(x, t) ∈ Rn ×R+ | ‖x‖2 ≤ t}

For this reason, it is called a second-order cone constraint.

SOCPs are more general than QCQPs (and, of course, LPs), viz.
– SOCP yields a general LP, if Ai = 0, i = 1, . . . ,m
– SOCP yields QCQP, if ci = 0, i = 1, . . . ,m
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Example: Robust linear programming

Consider an LP in inequality form

min
x

cTx

s.t. aTi x ≤ bi, i = 1, 2, . . . ,m

Thus, for example, ai and bi could represent system parameters, with x
being design variables required to minimize a linear cost.

Let us assume that there is some uncertainly in the parameters ai that
is formally described by the requirement

ai ∈ Ci =
{
āi + Piu | ‖u‖ ≤ 1

}
with some Pi ∈ Rn×n. (Note that Pi = 0 means ai is known perfectly.)

Consider the following robust linear program

min
x

cTx

s.t. aTi x ≤ bi for all ai ∈ Ci, i = 1, 2, . . . ,m
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Example: Robust linear programming (cont.)

The robust linear constraint, aTi x ≤ bi, ∀ai ∈ Ci, can be expressed as

sup
ai∈Ci

aTi x ≤ bi

or, more specifically,

sup
ai∈Ci

aTi x = āTi x+ sup
u:‖u‖≤1

(uTPTx) = āTi x+ ‖PT
i x‖∗ ≤ bi

which is a second-order cone constraint when ‖ · ‖ = ‖ · ‖2 = ‖ · ‖∗.

In this case, the robust LP can be expressed as the SOCP

min
x

cTx

s.t. āTi x+ ‖PT
i x‖2 ≤ bi, i = 1, 2, . . . ,m

The terms ‖PT
i x‖2 act as regularization terms, preventing x from being

large in directions with considerable uncertainty in ai.
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Example: LP with random constraints

Consider the case when ai are independent Gaussian random vectors,
with mean āi ∈ Rn and covariance Σi � 0, ai ∼ N (āi,Σi).

We require that each constraint aTi x ≤ bi holds with a probability (or
confidence) exceeding η ≥ 0.5, viz. prob (aTi x ≤ bi) ≥ η.

This results in an LP with random constraints

min
x

cTx

s.t. prob (aTi x ≤ bi) ≥ η, i = 1, 2, . . . ,m

For any i, let u = aTi x. Note that u is a Gaussian random variable,
with mean ū = āTi x and variance σ2 = xT Σix = ‖Σ1/2x‖22.

Using u, the constraint prob (aTi x ≤ bi) ≥ η can be expressed as

prob (u ≤ bi) ≥ η ⇐⇒ prob
( u− ū

σ︸ ︷︷ ︸
z

≤ bi − ū
σ︸ ︷︷ ︸
zi

)
≥ η
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Example: LP with random constraints (cont.)

Define z = (u− ū)/σ and zi = (bi − ū)/σ.

Since u ∼ N (ū, σ2), then z ∼ N (0, 1) and thus prob(z ≤ zi) = Φ(zi),
where

Φ(t) =
1√
2πσ

∫ t

−∞
e−t2/2dt

is the cumulative distribution function of the normal distribution.

Since Φ is strictly monotone, the prob constraint can be expressed as

Φ
( bi − ū

σ

)
≥ η ⇐⇒ bi − ū

σ
≥ Φ−1(η) ⇐⇒ ū+ Φ−1(η)σ ≤ bi

with Φ−1(η) ≥ 0 (as η > 0.5).

Hence, the LP with random constraints can be expressed as the SOCP

min
x

cTx

s.t. āTi x+ Φ−1(η)‖Σ1/2
i x‖2 ≤ bi, i = 1, 2, . . . ,m

ECE 602 - Section 5 Instructor: Dr. O. Michailovich, 2022 28/33



Semidefinite programming

A semidefinite program (SDP) has the form

min
x

cTx

s.t. x1F1 + x2F2 + . . . xnFn +G � 0

Ax = b

where G,F1, F2, . . . , Fn ∈ Sm and A ∈ Rp×n. The above inequality is a
linear matrix inequality.

If the matrices G,F1, F2, . . . , Fn are all diagonal, then the SDP reduces
to a linear program, viz.

min
x

cTx

s. t. x1F1 + x2F2 + . . . xnFn +G � 0

Ax = b
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Standard and inequality of SDP

A standard form SDP is defined as

min
X

tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . ,m

X � 0

where C,A1, . . . , Am ∈ Sn. This form is analogous to LP in standard
(equality) form.

An inequality form SDP is defined as

min
x

cTx

s.t. x1A1 + x2A2 + . . . xnAn � B

where B,A1, A2, . . . , An ∈ Sm and c ∈ Rn.
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Example: Matrix norm minimization

Let A(x) = x1A1 + x2A2 + . . .+Anxn, where Ai ∈ Rq×p.

Let ‖A(x)‖2 be the operator (aka nuclear) norm of A(x), as defined by
its maximal singular value.

Consider the following problem of matrix norm minimization

min
x
‖A(x)‖2

which is a convex problem, since ‖A(x)‖2 is convex in x ∈ Rn.

Using the fact that ‖A‖2 ≤ t if and only if ATA � t2I, the above prob-
lem can be equivalently expressed as

min
x,t

t

s.t. A(x)TA(x) � t I

Since A(x)TA(x)− t I is convex in (x, t), this is a convex minimization
problem with a single (q × q) matrix inequality constraint.
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Example: Matrix norm minimization (cont.)

We can also use the fact that, for any t ≥ 0,

A(x)TA(x) � t2 I ⇐⇒ t2 I −A(x)TA(x) � 0 ⇐⇒
[
t I A
AT t I

]
� 0

This results in the SDP

min
x,t

t

s.t.
[

t I A(x)
A(x)T t I

]
� 0
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In summary

Convex optimization is a mathematically rigorous and well-studied
field, with numerous numerical packages available for academic and
research use.

“With only a bit of exaggeration, we can say that, if you formulate a
practical problem as a convex optimization problem, then you have sol-
ved the original problem." (S. Boyd)

That is why it is important to recognize and formulate convex optimi-
zation problems in their standard form.

Surprisingly many problems can be solved via convex optimization.
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