ECE 602 – Section 6 Lagrangian Duality

- Lagrangian and Lagrangian multipliers
- Dual variables and dual function
- Weak vs strong duality
- Saddle-point theorem
- Karush-Kuhn-Tucker conditions
- Alternating Direction Method of Multipliers

• Consider the problem

$$\min_{x} f_0(x)$$

s.t. $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

with $\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i \neq \emptyset$ and optimal value p^* .

• We define the associated *Lagrangian function* as

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

with the variables $x \in \mathbf{R}^n$, $\lambda \in \mathbf{R}^m_+$ and $\nu \in \mathbf{R}^p$.

• The vectors λ and ν are called the *dual variables* or *Lagrange multipliers*. In this case, x is referred to as the *primal* variable.

• The Lagrange dual function is defined as

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

- When the Lagrangian is unbounded below in x, the dual function takes on the value $-\infty$.
- The *dual function is always concave*, as its cost is a point-wise infimum over affine functions.
- Moreover, one can shown that, for any $\lambda \succeq 0$ and ν , we have

$$g(\lambda,\nu) \leq p^*$$

• We refer to (λ, ν) , with $\lambda \succeq 0$ and $(\lambda, \nu) \in \mathbf{dom} g$, as *dual feasible*.

• Consider the problem

 $\min_{x} x^{T} x$
s.t. Ax = b.

with its associated Lagrangian $L(x,\nu) = x^T x + \nu^T (Ax - b).$

• To minimize $L(x,\nu)$ over x we solve $\nabla_x L(x,\nu) = 2x + A^T \nu = 0$, which yields $x = -(1/2)A^T \nu$. Then, substituting the latter into $L(x,\nu)$ leads to

$$g(\nu) = L(-(1/2)A^{T}\nu,\nu) = -(1/4)\nu^{T}AA^{T}\nu - b^{T}\nu$$

• The dual $g(\nu)$ is obviously a concave function. Moreover, by the *low-bound property*, we have

$$-(1/4)\nu^T A A^T \nu - b^T \nu \le p^*$$

INTERPRETATION

• Let $I_{-}(x)$ and $I_{0}(x)$ be the indicator functions of the sets $-\mathbf{R}_{+}^{n}$ and $\{\bar{0}\}$, respectively. Then, the original (*primal*) problem can be expressed in an *unconstrained form* as

- The idea behind the definition of L is to approximate ("soften") $I_{-}(x)$ and $I_{0}(x)$ by their linear under-estimators.
- Note that: (1) the approximations are *exact* at 0, and (2) the "slopes" are *variables* (and hence adjustable).

DUAL AND CONJUGATE FUNCTIONS

• Consider the following *linearly constrained* problem

$$\min_{x} f_0(x) \quad \text{s.t.} \quad Ax \leq b, \ Cx = d$$

• In this case, the dual function can be expressed as

$$g(\lambda,\nu) = \inf_{x} \left(f_{0}(x) + \lambda^{T} (Ax - b) + \nu^{T} (Cx - d) \right) =$$

= $-b^{T} \lambda - d^{T} \nu + \inf_{x} \left(f_{0}(x) + (A^{T} \lambda + C^{T} \nu)^{T} x \right) =$
= $-b^{T} \lambda - d^{T} \nu - \underbrace{\sup_{x} \left((-A^{T} \lambda - C^{T} \nu)^{T} x - f_{0}(x) \right)}_{f_{0}^{*} (-A^{T} \lambda - C^{T} \nu)}$

• Therefore, we have

$$g(\lambda,\nu) = -b^T \lambda - d^T \nu - f_0^* (-A^T \lambda - C^T \nu)$$

with **dom** $g = \{(\lambda, \nu) \mid -A^T \lambda - C^T \nu \in$ **dom** $f_0^* \}.$

• Consider the following problem

$$\min_{x} \|x\|$$

s.t. $Ax = b$

where $\|\cdot\|$ is any norm.

• The conjugate of ||x|| is given by the indicator function of the unit ball $\mathcal{B}^* = \{u \mid ||u||_* \leq 1\}$, namely

$$f_0^*(y) = I_{\mathcal{B}^*}(y) = \begin{cases} 0 & \|y\|_* \le 1\\ \infty & \text{otherwise,} \end{cases}$$

• Consequently, we have

$$g(\nu) = -b^T \nu - I_{\mathcal{B}^*}(-A^T \nu)$$

EXAMPLE: STANDARD FORM LP

• Consider an LP in standard form

$$\min_{x} c^{T} x$$

s.t. $Ax = b, x \succeq 0$

• The associated Lagrangian is given by

$$L(x,\lambda,\nu) = c^T x - \lambda^T x + \nu^T (Ax - b) = -\nu^T b + (c + A^T \nu - \lambda)^T x$$

• The dual function is

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = -\nu^{T}b + \inf_{x} (c + A^{T}\nu - \lambda)^{T}x$$
$$= \begin{cases} -\nu^{T}b, & \text{if } c + A^{T}\nu - \lambda = 0\\ -\infty, & \text{otherwise} \end{cases}$$

• The lower bound property is nontrivial only when $A^T \nu - \lambda + c = 0$ and $\lambda \succeq 0$. When this occurs, $-b^T \nu$ is a *lower bound* on the optimal value of the LP.

LAGRANGIAN DUAL PROBLEM

- For each pair (λ, ν) with λ ≥ 0, the Lagrange dual function gives us a lower bound on p^{*}.
- The *best lower bound* can be found by solving

$$egin{array}{l} \max_{\lambda,
u} g(\lambda,
u) \ {
m s.t.} \ \lambda \succeq 0, \end{array}$$

which is called the Lagrange dual problem.

- We refer to (λ^*, ν^*) as the *dual optimal* or *optimal Lagrange multipliers*.
- The dual problem is always a convex optimization problem, regardless whether or not f_0 is convex.

EXAMPLE: LAGRANGE DUAL OF STANDARD FORM LP

• Consider the following LP problem in *standard form*

$$\min_{x} c^{T} x$$

s.t. $Ax = b, x \succeq 0$

• Its Lagrange dual function is given by

$$g(\nu) = \begin{cases} -b^T \nu, & A^T \nu - \lambda + c = 0\\ -\infty, & \text{otherwise} \end{cases}$$

• Therefore, the Lagrange dual problem of the standard form LP is

$$\max_{x} \quad -b^{T}\nu$$
 s.t. $A^{T}\nu - \lambda + c = 0, \ \lambda \succeq 0$

or, equivalently,

$$\max_{x} - b^{T} \nu$$

s.t. $A^{T} \nu + c \succeq 0$

which is an LP in *inequality form*

• Consider the following LP problem in *inequality form*

 $\min_{x} c^{T} x$
s.t. $Ax \leq b$

• Its Lagrange dual function is given by

$$g(\nu) = \begin{cases} -b^T \lambda, & A^T \lambda + c = 0\\ -\infty, & \text{otherwise.} \end{cases}$$

Note that λ dual feasible if $\lambda \succeq 0$ and $A^T \lambda + c = 0$.

• Therefore, the dual form of the LP in inequality form is

$$\max_{x} - b^{T} \lambda$$

s.t. $A^{T} \lambda = -c, \ \lambda \succeq 0$

which is an LP in *standard form*.

WEAK VS STRONG DUALITY

• The optimal value of the Lagrange dual problem d^* satisfies

$$d^* \le p^*$$

This property is called *weak duality*.

- Weak duality holds for both convex and non-convex problems.
- The difference $p^* d^*$ is referred to as the *optimal duality gap*.
- The bound can be used to find lower bounds for difficult problems.
- We say that *strong duality* holds if

$$d^* = p^*$$

- Strong duality does not hold, in general.
- If the *primal* problem is convex, we usually have strong duality.
- The conditions which guarantee strong duality in convex problems are called *constraint qualifications*.

12/34

SLATER'S CONSTRAINT QUALIFICATION

• Consider the optimization problem

(P0)
$$\min_{x} f_0(x)$$

s.t. $Ax = b, f_i(x) \le 0, i = 1, ..., m$

- The constraint *i* is called *active* at point *x* if $f_i(x) = 0$. Otherwise, if $f_i(x) < 0$, the constraint *i* is called *inactive* at *x*.
- The problem **P0** is called *strictly feasible* if there exists $x \in int \mathcal{D}$ such that

$$A x = b$$
 and $f_i(x) < 0, i = 1, \dots, m$

or, $f_i(x) \leq 0$, when $f_i(x) = a_i^T x - b_i$. In other words, all the inequality constraints are *inactive* at x.

Slater's constraint qualification

If the problem **P0** is *strictly feasible* with an optimal value $p^* > -\infty$, then the dual optimum is attained, implying there exists dual feasible (λ^*, ν^*) such that

$$g(\lambda^*,\nu^*) = d^* = p^*$$

MAX-MIN CHARACTERIZATION

• The optimal values of the primal and dual problems are given by

$$p^* = \inf_x \sup_{\lambda \succeq 0} L(x, \lambda) \quad \text{and} \quad d^* = \sup_{\lambda \succeq 0} \inf_x L(x, \lambda)$$

• Weak duality can be expressed as the min-max inequality

$$\sup_{\lambda \succeq 0} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda \succeq 0} L(x,\lambda)$$

• Strong duality is characterized by the saddle-point property

$$\sup_{\lambda \succeq 0} \inf_{x} L(x, \lambda) =$$

$$= \inf_{x} \sup_{\lambda \succeq 0} L(x, \lambda)$$

• The saddle-point property allows *switching the order* of the "min over x" and the "max over λ " without affecting the final result.

14/34

SOLVING THE PRIMAL PROBLEM VIA THE DUAL

- If strong duality holds and a dual optimal solution (λ^*, ν^*) exists, then any primal optimal point is also a minimizer of $L(x, \lambda^*, \nu^*)$.
- This sometimes allows us to compute a *primal* optimal solution from a *dual* optimal solution (that is obtained via convex optimization).
- More precisely, suppose we have strong duality, (λ^*, ν^*) are known and the minimizer of $L(x, \lambda^*, \nu^*)$ is unique. Then, the solution to

$$x^* = \arg\min_x \, L(x, \lambda^*, \nu^*)$$

with $L(x, \lambda^*, \nu^*) = f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x)$, must be primal feasible, and hence primal optimal.

• In practice, $L(x, \lambda^*, \nu^*)$ can be minimized by means of any method of *unconstrained* optimization.

15/34

EXAMPLE: ENTROPY MAXIMIZATION

• Consider the entropy maximization problem

$$\min_{x} f_0(x) = \sum_{i=1}^{n} x_i \log x_i$$

s.t. $A x \preceq b, \ \mathbf{1}^T x = 1$

with **dom** $f_0 = \mathbf{R}_{++}^n$. The (convex) set defined by $\mathbf{1}^T x = 1$ is called the *probability simplex*.

• The conjugate of the *negative entropy function* $u \log u$ (with u > 0) is $\exp(v - 1)$. Then, due to the separability of f_0 , we have

$$f_0^*(y) = \sum_{i=1}^n \exp(y_i - 1), \text{ with } \mathbf{dom} f_0^* = \mathbf{R}^n$$

• Therefore, the associated dual function is given by

$$g(\lambda,\nu) = -b^T \lambda - \nu - \sum_{i=1}^n \exp\left(-a_i^T \lambda - \nu - 1\right)$$

where a_i is the *i*th column of A.

EXAMPLE: ENTROPY MAXIMIZATION (CONT.)

• The dual problem can then be expressed as

$$\max_{\substack{\lambda,\nu}\\ \text{s.t. } \lambda \succeq 0} b^T \lambda - \nu - e^{-\nu - 1} \left(\mathbf{1}^T e^{-A^T \lambda} \right)$$

and Slater condition tells us that the optimal duality gap is zero, if there exists an $x \succ 0$ with $Ax \leq b$ and $\mathbf{1}^T x = 1$.

 For fixed λ, the objective function is maximized when its derivative w.r.t. ν is zero, i.e.,

$$v = \log\left(\mathbf{1}^T e^{-A^T \lambda}\right) - 1$$

• Substituting the above value back into the objective yields

$$\max_{\lambda} - b^T \lambda - \log \left(\mathbf{1}^T e^{-A^T \lambda} \right)$$

s.t. $\lambda \succeq 0$

• The dual problem has the form of a *geometric program* with non-negativity constraints.

KKT OPTIMALITY CONDITIONS

- For any optimization problem with differentiable f_i and h_i , for which strong duality holds, any pair of primal and dual optimal points must satisfy the Karush-Kuhn-Tucker (KKT) conditions.
- The KKT conditions characterize the primal optimal x^{*} and dual optimal (λ^{*}, ν^{*}) solutions using four principal statements.
- Primal feasibility

$$f_i(x^*) \le 0, \ i = 1, \dots, m, \quad h_i(x^*) = 0, \ i = 1, \dots, p$$

• Dual feasibility

$$\lambda^* \ge 0, \ i = 1, \dots, m$$

• First-order optimality

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$

• Complementary slackness

$$\lambda_i^* f_i(x^*) = 0, \ i = 1, \dots, m$$

18/34

FIRST-ORDER OPTIMALITY

• To understand "how Lagrange multipliers work", consider the convex (differentiable) problem

 $\min_{x} f_0(x) \quad \text{s.t.} f_1(x) \le 0$

Can you see the duality?

I ∃ →

FIRST-ORDER OPTIMALITY (CONT.)

- The optimal solution is located on the *boundary* of the feasible set.
- At point x, the direction orthogonal to $\nabla f_1(x)$ defines a *feasible direction*. If we move *locally* near x along this tangent direction, the (active) constraint $f_1(x) = 0$ holds.
- However, $\nabla f_0(x)$ is *not* orthogonal to the feasible direction, meaning that, when we move near x along the feasible direction, the values of $f_0(x)$ keep changing.
- At the optimal point x^* , $\nabla f_0(x^*)$ is orthogonal to the feasible direction and, therefore, when we move near x along this line, the value of $f_0(x)$ remains constant.
- In this case, $\nabla f_0(x^*)$ and $\nabla f_1(x^*)$ are *collinear*, implying there exists a *proportionality coefficient* $\lambda^* > 0$ such that

$$\nabla f_0(x^*) + \lambda^* \nabla f_1(x^*) = 0$$

This λ^* is the optimal dual variable.

• Recall that, for $\min_{x:Ax=b} f_0(x)$, we have $\nabla f_0(x^*) + A^T \nu^* = 0$.

COMPLIMENTARY SLACKNESS

- The complimentary slackness condition states that, if $f_i(x^*) < 0$ (i.e., the *i*th constraint is *inactive*), $\lambda_i^* = 0$. At the same time, if $f_i(x^*) = 0$ (i.e., the constraint is *active*), $\lambda_i^* > 0$.
- Recall that, due to the strong duality, we have $f_0(x^*) = L(x^*, \lambda^*, \nu^*)$. Since the inactive inequality constraints could potentially disturb this "balance", their constraint functions are multiplied by $\lambda_i^* = 0$.
- For the active constraints, the "slopes" $\lambda_i^* > 0$ are set according to the first-order optimality condition. However, the factual values of λ_i^* have no effect on the optimal value, since they are multiplied by $f_i(x^*) = 0$.
- The inactive constraints are, in fact, *redundant*.

AUGMENTED LAGRANGIAN

• Consider the equality constrained problem

$$\min_{x} f_0(x) \quad \text{s.t. } A x = b$$

for some $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$.

• For this problem, the *augmented Lagrangian function* is defined as

$$L_{\rho}(x,\nu) = f_0(x) + \nu^T (Ax - b) + \frac{\rho}{2} ||Ax - b||_2^2$$

for some *penalty parameter* $\rho > 0$. Note that, at the optimal solution, $L(x^*, \nu^*) = L_{\rho}(x^*, \nu^*) = f_0(x^*)$.

- The benefit of including the penalty term is that $g_{\rho}(\nu) = \inf_{x} L_{\rho}(x,\nu)$ can be shown to be differentiable under rather mild conditions on f_0 .
- By completing the squares, the augmented Lagrangian function can also be expressed as

$$L_{\rho}(x,\nu) = f_0(x) + \frac{\rho}{2} \|Ax - b + \nu/\rho\|_2^2 - \frac{1}{2\rho} \|\nu\|_2^2$$

METHOD OF MULTIPLIERS

• The Method of Multiplier iterates between the estimates of x and ν according to

$$x^{(t+1)} = \arg\min_{x} L_{\rho}(x, \nu^{(t)})$$
$$\nu^{(t+1)} = \nu^{(t)} + \rho(Ax^{(t+1)} - b)$$

- The first step *minimizes* L_{ρ} w.r.t. the primal variable, with the dual variable being fixed at its "old" value $\nu^{(t)}$.
- The second step maximizes L_{ρ} w.r.t. the dual variable by means of gradient ascent with a step-size ρ .
- Note that the feasibility requires $Ax^* b = 0$ and $\nabla f_0(x^*) + A^T \nu^* = 0$. Since $x^{(t+1)}$ minimizes $L_{\rho}(x, \nu^{(t)})$, we have

$$0 = \nabla_x L_{\rho}(x^{(t+1)}, \nu^{(t)}) = \nabla f_0(x^{(t+1)}) + A^T \left(\underbrace{\nu^{(t)} + \rho\left(Ax^{(t+1)} - b\right)}_{\nu^{(t+1)}}\right)$$

• By using ρ as the step size, the iterate $(x^{(t+1)}, \nu^{(t+1)})$ is dual feasible.

ALTERNATING DIRECTION METHOD OF MULTIPLIERS

• Consider the following *unconstrained* problem

$$\min_{x} f(Ax) + g(Bx)$$

with $A \in \mathbf{R}^{m \times n}$, $B \in \mathbf{R}^{p \times n}$ and some sub-differentiable f and g.

• Using two auxiliary variables u and v, the problem can be expressed in a *constrained form* as

$$\min_{x,u,v} f(u) + g(v)$$

s.t. $Ax = u, Bx = v$

• The associated augmented Lagrangian is given by

$$L_{\rho_{u},\rho_{v}}(x,u,v,\nu_{u},\nu_{v}) = f(u) + g(v) + \frac{\rho_{u}}{2} \|Ax - u + \underbrace{\nu_{u}/\rho_{u}}_{p_{u}}\|_{2}^{2} + \frac{\rho_{v}}{2} \|Bx - v + \underbrace{\nu_{v}/\rho_{v}}_{p_{v}}\|_{2}^{2} + \text{resid.}$$

where p_u and p_v can be viewed as *scaled* Lagrange multipliers.

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (CONT.)

• The Alternating Direction Method of Multipliers (ADMM) updates the primal variable one at a time, followed by gradient ascent on the dual variables. The ADMM consists of a primal and a dual update.

Primal Update

$$x^{(t+1)} = \arg\min_{x} \left\{ \frac{\rho_{u}}{2} \|Ax - u^{(t)} + p_{u}^{(t)}\|_{2}^{2} + \frac{\rho_{v}}{2} \|Bx - v^{(t)} + p_{v}^{(t)}\|_{2}^{2} \right\} = = \left(\rho_{u} A^{T} A + \rho_{v} B^{T} B\right)^{-1} \left(\rho_{u} A^{T} (u^{(t)} - p_{u}^{(t)}) + \rho_{v} B^{T} (v^{(t)} - p_{v}^{(t)})\right)$$

$$u^{(t+1)} = \arg\min_{u} \left\{ f(u) + \frac{\rho_u}{2} \|Ax^{(t+1)} - u + p_u^{(t)}\|_2^2 \right\} = \\ = \mathbf{prox}_{(1/\rho_u)f} \left(Ax^{(t+1)} + p_u^{(t)}\right)$$

$$v^{(t+1)} = \arg\min_{v} \left\{ g(v) + \frac{\rho_{v}}{2} \|Bx^{(t+1)} - v + p_{v}^{(t)}\|_{2}^{2} \right\} = \\ = \mathbf{prox}_{(1/\rho_{v})g} \left(Bx^{(t+1)} + p_{v}^{(t)} \right)$$

Dual Update

$$p_u^{(t+1)} = p_u^{(t)} + Ax^{(t+1)} - u^{(t+1)}$$
$$p_v^{(t+1)} = p_v^{(t)} + Bx^{(t+1)} - v^{(t+1)}$$

- If both f and g are convex, it can be shown that $f(u^{(t)}) + g(v^{(t)}) \rightarrow p^*$ as $t \rightarrow \infty$, i.e., the objective function of the iterates approaches p^* .
- It is often the case that ADMM converges to *modest accuracy* sufficient for many applications within a few tens of iterations.
- The method is not symmetric in the order of updates.
- In theory, the ADMM is guaranteed to converge for any values of the penalty parameters ρ_u and ρ_v (e.g., $\rho_u = \rho_v = 1$). In practice, however, their choice can influence the rate of convergence.
- There are several heuristics for setting ρ_u and ρ_v adaptively.

EXAMPLE: PARALLEL PROJECTIONS

- Let $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_N$ be a set of N convex and closed sets in \mathbb{R}^n . Consider the problem of finding a point in the intersection $\bigcap_{i=1}^N \mathcal{A}_i$.
- Let \mathcal{C} and \mathcal{D} be two subsets in \mathbf{R}^{nN} defined as

$$\mathcal{C} = \mathcal{A}_1 \times \mathcal{A}_2 \times \ldots \times \mathcal{A}_N$$
$$\mathcal{D} = \left\{ (x_1, x_2, \ldots, x_N) \in \mathbf{R}^{nN} \mid x_1 = x_2 = \ldots = x_N \right\}$$

• If $(x_1, x_2, \ldots, x_N) \in \mathbf{R}^{nN}$, then its *orthogonal projection* onto \mathcal{C} is given by

$$\mathcal{P}_{\mathcal{C}}(x) = \left(\mathcal{P}_{\mathcal{A}_1}(x_1), \mathcal{P}_{\mathcal{A}_2}(x_2), \dots, \mathcal{P}_{\mathcal{A}_N}(x_N)\right) \in \mathcal{C} \subset \mathbf{R}^{nN}$$

• Let $\bar{x} = (1/N) \sum_{i=1}^{N} x_i$ be the *average* of x_1, x_2, \ldots, x_N . Then, the *orthogonal projection* onto \mathcal{D} is given by

$$\mathcal{P}_{\mathcal{C}}(x) = \left(\overbrace{\bar{x}, \bar{x}, \dots, \bar{x}}^{n \ times}
ight) \in \mathcal{C} \subset \mathbf{R}^{nN}$$

• • = • • = •

• Then, the ADMM iterations are defined as

$$\begin{aligned} x_i^{(t+1)} &= \mathcal{P}_{\mathcal{A}_i} \left(u^{(t)} - p_i^{(t)} \right), \; \forall i \\ u^{(t+1)} &= \frac{1}{N} \sum_{i=1}^N \left(x_i^{(t+1)} + p_i^{(t)} \right) \\ p_i^{(t+1)} &= p_i^{(t)} + x_i^{(t+1)} - u^{(t+1)}, \; \forall i \end{aligned}$$

with $u^{(t)} \in \mathbf{R}^n$ and $(p_1^{(t)}, p_2^{(t)}, \dots, p_N^{(t)}) \in \mathbf{R}^{nN}$.

• The iterations can also be redefined in a simplified form as

$$\begin{split} x_i^{(t+1)} &= \mathcal{P}_{\mathcal{A}_i} \big(\bar{x}^{(t)} - p_i^{(t)}), \; \forall i \\ p_i^{(t+1)} &= p_i^{(t)} + \big(x_i^{(t+1)} - \bar{x}^{(t+1)} \big), \; \forall i \end{split}$$

• Note that $p_i^{(t)}$ is the running sum of the "discrepancies" $x_i^{(t)} - \bar{x}^{(t)}$ (if we assume $p_i^{(0)} = 0$, for all *i*).

28/34

EXAMPLE: QUADRATIC PROGRAMMING

• Recall that the *standard form* QP is given by

$$\min_{x} (1/2) x^T P x + q^T x$$

s.t. $A x = b, \quad x \succeq 0$

for some $P \in \mathbf{S}_{++}^n$, $A \in \mathbf{R}^{m \times n}$, $q \in \mathbf{R}^n$ and $b \in \mathbf{R}^m$. Note that, if P is zero, the QP reduces to an LP in standard form.

- Let $g(x) = I_+(x)$ be the indicator function of the positive orthant \mathbf{R}^n_+ , and let $f(x) = (1/2) x^T P x + q^T x$, with **dom** $f = \{x \mid A x = b\}$.
- The QP can be expressed in ADMM form as

$$\min_{x,u} f(x) + g(u) \quad \text{s.t. } x - u = 0$$

• Consequently, the resulting ADMM iterations are

$$\begin{aligned} x^{(t+1)} &= \arg\min_{x:Ax=b} \{f(x) + (\rho/2) \, \|x - u^{(t)} + p^{(t)}\|_2^2 \} \\ u^{(t+1)} &= \left(x^{(t+1)} + p^{(t)}\right)_+ \\ p^{(t+1)} &= p^{(t)} + x^{(t+1)} - u^{(t+1)} \end{aligned}$$

EXAMPLE: QUADRATIC PROGRAMMING (CONT.)

• The *x*-update is an equality-constrained LS problem. Its optimality conditions can be expressed as

$$\overbrace{\left[\begin{array}{cc}P+\rho I & A^{T}\\A & 0\end{array}\right]}^{R} \left[\begin{array}{cc}x^{(t+1)}\\\nu\end{array}\right] + \left[\begin{array}{cc}q-\rho\left(u^{(t)}-p^{(t)}\right)\\-b\end{array}\right] = 0$$

where ν is the dual variable related to the equality constraint A x = b.

- To speed up computations, the matrix R can be ("pre") factorized.
- If P is diagonal, possibly zero, this update has a cost of $\mathcal{O}(nm^2)$ flops. Subsequent updates only cost $\mathcal{O}(nm)$ flops.
- The update in u involves projection onto \mathbf{R}^{n}_{+} .
- If the non-negativeness constraint $x \succeq 0$ is replaced by a more general *conic* constraint $x \in \mathcal{K}$, where \mathcal{K} is a *convex cone*, the ADMM update for u becomes

$$u^{(t+1)} = \mathcal{P}_{\mathcal{K}}(x^{(t+1)} + p^{(t)})$$

• Let $g \in \mathbf{R}^{m \times n}$ be a discrete image which we consider to be a noisy and blurred version of some "true image" $f \in \mathbf{R}^{m \times n}$. Formally,

$$g\approx\mathfrak{A}(f)$$

where $\mathfrak{A} : \mathbf{R}^{m \times n} \to \mathbf{R}^{m \times n}$ is the linear operator representing the effect of blur (i.e., low-pass filter).

• Given g, our task is to find an estimate f. To this end, we consider

$$\min_{f} \left\{ \|\mathfrak{A}(f) - g\|_{1} + \gamma \|f\|_{\mathrm{TV}} \right\}$$

with some regularization parameter $\gamma > 0$.

- The first term is a *data fidelity* term. It requires the optimal solution to be *close* to g, as measured by the *sum-of-absolute-values* norm $\|\cdot\|_1$.
- The second term is a *prior* term. It requires the solution to have relatively low *variability*, as measured by the *total-variation norm* $\|\cdot\|_{TV}$.

EXAMPLE: IMAGE RECONSTRUCTION (CONT.)

• Equivalently, the desired estimate can be found as a solution to

$$\min_{f,u,v} \ \frac{1}{\gamma} \|u - g\|_1 + \|v\|_{\text{TV}}$$

s.t. $\mathfrak{A}(f) - u = 0, \ f - v = 0$

 $\bullet\,$ In this case, the ADMM update in x is found as a solution to

$$\left(\rho_u \mathfrak{A}^* \mathfrak{A} + \rho_v \mathbf{I}\right)(x^{(t+1)}) = \rho_u \mathfrak{A}^*(u^{(t)} - p_u^{(t)}) + \rho_v \left(v^{(t)} - p_v^{(t)}\right)$$

which is a *linear operator equation* (with \mathfrak{A}^{\star} and I being the adjoint and identity operators, respectively).

• The ADMM update in u is given by

$$u^{(t+1)} = S_{1/\rho_u} \left(\mathfrak{A}(x^{(t+1)}) + p_u^{(t)} + g \right) - g$$

where S_{1/ρ_u} is the operator of (coordinate-wise) *soft-thresholding*.

• The ADMM update in v is given by

$$v^{(t+1)} = \mathcal{P}_{\mathrm{TV}^*} \left(x^{(t+1)} + p_v^{(t)} \right)$$

where $\mathcal{P}_{\mathrm{TV}^*}$ is the operator of projection onto the unit ball in the *dual* space with norm $\|\cdot\|_{\mathrm{TV}^*}$.

32/34

original

noisy/blurred

restored

- 1024×1024 image
- Gaussian blur model
- "Salt-and-pepper" noise
- Convergence in less than 500 iterations to $\|\nabla L_{\rho_u,\rho_u}\| \leq 10^{-5}$.

- web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf
- web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf
- www.seas.ucla.edu/~vandenbe/publications/pdsplitting.pdf
- A. Chambolle, "An Algorithm for Total Variation Minimization and Applications," Journal of Mathematical Imaging and Vision, 20, 89-97, 2004