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Lagrangian function

Consider the problem

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

with D =
⋂m
i=0 dom fi ∩

⋂p
i=1 domhi 6= ∅ and optimal value p∗.

We define the associated Lagrangian function as

L(x, λ, ν) = f0(x)+

m∑
i=1

λifi(x)+

p∑
i=1

νihi(x)

with the variables x ∈ Rn, λ ∈ Rm
+ and ν ∈ Rp.

The vectors λ and ν are called the dual variables or Lagrange multi-
pliers. In this case, x is referred to as the primal variable.
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Lagrangian dual function

The Lagrange dual function is defined as

g(λ, ν) = inf
x∈D

L(x, λ, ν)

When the Lagrangian is unbounded below in x, the dual function takes
on the value −∞.

The dual function is always concave, as its cost is a point-wise infimum
over affine functions.

Moreover, one can shown that, for any λ � 0 and ν, we have

g(λ, ν) ≤ p∗

We refer to (λ, ν), with λ � 0 and (λ, ν) ∈ dom g, as dual feasible.
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Example: LS solution of linear equations

Consider the problem

min
x

xTx

s.t. Ax = b.

with its associated Lagrangian L(x, ν) = xTx+ νT (Ax− b).

To minimize L(x, ν) over x we solve ∇xL(x, ν) = 2x+AT ν = 0, which
yields x = −(1/2)AT ν. Then, substituting the latter into L(x, ν) leads
to

g(ν) = L
(
− (1/2)AT ν, ν

)
= −(1/4)νTAAT ν − bT ν,

The dual g(ν) is obviously a concave function. Moreover, by the low-
bound property, we have

−(1/4)νTAAT ν − bT ν ≤ p∗
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Interpretation

Let I−(x) and I0(x) be the indicator functions of the sets −Rn
+ and

{0̄}, respectively. Then, the original (primal) problem can be expres-
sed in an unconstrained form as

min
x

f0(x) +
m∑
i=1

I−(fi(x))︸ ︷︷ ︸
≈λi fi (x)

+

p∑
i=1

I0(hi(x))︸ ︷︷ ︸
≈νihi (x)

The idea behind the definition of L is to approximate (“soften") I−(x)
and I0(x) by their linear under-estimators.

Note that: (1) the approximations are exact at 0, and (2) the “slopes"
are variables (and hence adjustable).
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Dual and conjugate functions

Consider the following linearly constrained problem

min
x

f0(x) s.t. Ax � b, Cx = d

In this case, the dual function can be expressed as

g(λ, ν) = inf
x

(
f0(x) + λT (Ax− b) + νT (Cx− d)

)
=

= −bTλ− dT ν + inf
x

(
f0(x) + (ATλ+ CT ν)Tx

)
=

= −bTλ− dT ν − sup
x

(
(−ATλ− CT ν)Tx− f0(x)

)
︸ ︷︷ ︸

f∗0 (−AT λ−CT ν)

Therefore, we have

g(λ, ν) = −bTλ−dT ν− f∗0 (−ATλ−CT ν)

with dom g =
{

(λ, ν) | −ATλ− CT ν ∈ dom f∗0
}
.
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Example: Equality constrained norm minimization

Consider the following problem

min
x
‖x‖

s.t. Ax = b

where ‖ · ‖ is any norm.

The conjugate of ‖x‖ is given by the indicator function of the unit ball
B∗ = {u | ‖u‖∗ ≤ 1}, namely

f∗0 (y) = IB∗(y) =

{
0 ‖y‖∗ ≤ 1

∞ otherwise,

Consequently, we have

g(ν) = −bT ν − IB∗(−AT ν)
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Example: Standard form LP

Consider an LP in standard form

min
x

cTx

s.t. Ax = b, x � 0

The associated Lagrangian is given by

L(x, λ, ν) = cTx− λTx+ νT (Ax− b) = −νT b+ (c+AT ν − λ)Tx

The dual function is

g(λ, ν) = inf
x
L(x, λ, ν) = −νT b+ inf

x
(c+AT ν − λ)Tx

=

{
−νT b, if c+AT ν − λ = 0

−∞, otherwise

The lower bound property is nontrivial only when AT ν − λ+ c = 0 and
λ � 0. When this occurs, −bT ν is a lower bound on the optimal value
of the LP.
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Lagrangian dual problem

For each pair (λ, ν) with λ � 0, the Lagrange dual function gives us a
lower bound on p∗.

The best lower bound can be found by solving

max
λ,ν

g(λ, ν)

s.t. λ � 0,

which is called the Lagrange dual problem.

We refer to (λ∗, ν∗) as the dual optimal or optimal Lagrange multipliers.

The dual problem is always a convex optimization problem, regardless
whether or not f0 is convex.
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Example: Lagrange dual of standard form LP

Consider the following LP problem in standard form

min
x

cTx

s.t. Ax = b, x � 0

Its Lagrange dual function is given by

g(ν) =

{
−bT ν, AT ν − λ+ c = 0

−∞, otherwise

Therefore, the Lagrange dual problem of the standard form LP is

max
x
− bT ν

s.t. AT ν − λ+ c = 0, λ � 0

or, equivalently,

max
x
− bT ν

s.t. AT ν + c � 0

which is an LP in inequality form
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Example: Lagrange dual of inequality form LP

Consider the following LP problem in inequality form

min
x

cTx

s.t. Ax � b

Its Lagrange dual function is given by

g(ν) =

{
−bTλ, ATλ+ c = 0

−∞, otherwise.

Note that λ dual feasible if λ � 0 and ATλ+ c = 0.

Therefore, the dual form of the LP in inequality form is

max
x
− bTλ

s.t. ATλ = −c, λ � 0

which is an LP in standard form.
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Weak vs strong duality

The optimal value of the Lagrange dual problem d∗ satisfies

d∗ ≤ p∗

This property is called weak duality.
– Weak duality holds for both convex and non-convex problems.
– The difference p∗ − d∗ is referred to as the optimal duality gap.
– The bound can be used to find lower bounds for difficult problems.

We say that strong duality holds if

d∗ = p∗

– Strong duality does not hold, in general.
– If the primal problem is convex, we usually have strong duality.
– The conditions which guarantee strong duality in convex problems

are called constraint qualifications.
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Slater’s constraint qualification

Consider the optimization problem

(P0) min
x

f0(x)

s.t. Ax = b, fi(x) ≤ 0, i = 1, . . . ,m

The constraint i is called active at point x if fi(x) = 0. Otherwise, if
fi(x) < 0, the constraint i is called inactive at x.

The problem P0 is called strictly feasible if there exists x ∈ intD such
that

Ax = b and fi(x) < 0, i = 1, . . . ,m

or, fi(x) ≤ 0, when fi(x) = aTi x− bi. In other words, all the inequality
constraints are inactive at x.

Slater’s constraint qualification

If the problem P0 is strictly feasible with an optimal value p∗ > −∞,
then the dual optimum is attained, implying there exists dual feasible
(λ∗, ν∗) such that

g(λ∗, ν∗) = d∗ = p∗
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Max-min characterization

The optimal values of the primal and dual problems are given by

p∗ = inf
x

sup
λ�0

L(x, λ) and d∗ = sup
λ�0

inf
x
L(x, λ)

Weak duality can be expressed as the min-max inequality

sup
λ�0

inf
x
L(x, λ) ≤ inf

x
sup
λ�0

L(x, λ)

Strong duality is characterized by the saddle-point property

sup
λ�0

inf
x
L(x, λ) =

= inf
x

sup
λ�0

L(x, λ)

The saddle-point property allows switching the order of the “min over
x" and the “max over λ" without affecting the final result.
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Solving the primal problem via the dual

If strong duality holds and a dual optimal solution (λ∗, ν∗) exists, then
any primal optimal point is also a minimizer of L(x, λ∗, ν∗).

This sometimes allows us to compute a primal optimal solution from a
dual optimal solution (that is obtained via convex optimization).

More precisely, suppose we have strong duality, (λ∗, ν∗) are known and
the minimizer of L(x, λ∗, ν∗) is unique. Then, the solution to

x∗ = arg min
x

L(x, λ∗, ν∗)

with L(x, λ∗, ν∗) = f0(x) +
∑m
i=1 λ

∗
i fi(x) +

∑p
i=1 ν

∗
i hi(x), must be pri-

mal feasible, and hence primal optimal.

In practice, L(x, λ∗, ν∗) can be minimized by means of any method of
unconstrained optimization.
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Example: Entropy maximization

Consider the entropy maximization problem

min
x

f0(x) =

n∑
i=1

xi log xi

s.t. Ax � b, 1Tx = 1

with dom f0 = Rn
++. The (convex) set defined by 1Tx = 1 is called

the probability simplex.

The conjugate of the negative entropy function u log u (with u > 0) is
exp (v − 1). Then, due to the separability of f0, we have

f∗0 (y) =
n∑
i=1

exp (yi − 1), with dom f∗0 = Rn

Therefore, the associated dual function is given by

g(λ, ν) = −bTλ− ν −
n∑
i=1

exp (−aTi λ− ν − 1)

where ai is the ith column of A.
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Example: Entropy maximization (cont.)

The dual problem can then be expressed as

max
λ,ν

− bTλ− ν − e−ν−1(1T e−AT λ)
s.t. λ � 0

and Slater condition tells us that the optimal duality gap is zero, if
there exists an x � 0 with Ax � b and 1Tx = 1.

For fixed λ, the objective function is maximized when its derivative
w.r.t. ν is zero, i.e.,

v = log
(
1T e−A

T λ)− 1

Substituting the above value back into the objective yields

max
λ
− bTλ− log

(
1T e−A

T λ)
s.t. λ � 0

The dual problem has the form of a geometric program with non-nega-
tivity constraints.
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KKT optimality conditions

For any optimization problem with differentiable fi and hi, for which
strong duality holds, any pair of primal and dual optimal points must
satisfy the Karush-Kuhn-Tucker (KKT) conditions.
The KKT conditions characterize the primal optimal x∗ and dual op-
timal (λ∗, ν∗) solutions using four principal statements.
Primal feasibility

fi(x
∗) ≤ 0, i = 1, . . . ,m, hi(x

∗) = 0, i = 1, . . . , p

Dual feasibility
λ∗ ≥ 0, i = 1, . . . ,m

First-order optimality

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0

Complementary slackness

λ∗i fi(x
∗) = 0, i = 1, . . . ,m
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First-order optimality

To understand “how Lagrange multipliers work", consider the convex
(differentiable) problem

min
x

f0(x) s.t. f1(x) ≤ 0

Can you see the duality?
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First-order optimality (cont.)

The optimal solution is located on the boundary of the feasible set.

At point x, the direction orthogonal to ∇f1(x) defines a feasible direc-
tion. If we move locally near x along this tangent direction, the (active)
constraint f1(x) = 0 holds.

However, ∇f0(x) is not orthogonal to the feasible direction, meaning
that, when we move near x along the feasible direction, the values of
f0(x) keep changing.

At the optimal point x∗, ∇f0(x∗) is orthogonal to the feasible direction
and, therefore, when we move near x along this line, the value of f0(x)
remains constant.

In this case, ∇f0(x∗) and ∇f1(x∗) are collinear, implying there exists a
proportionality coefficient λ∗ > 0 such that

∇f0(x∗) + λ∗∇f1(x∗) = 0

This λ∗ is the optimal dual variable.

Recall that, for minx:Ax=b f0(x), we have ∇f0(x∗) +AT ν∗ = 0.
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Complimentary slackness

The complimentary slackness condition states that, if fi(x∗) < 0 (i.e.,
the ith constraint is inactive), λ∗i = 0. At the same time, if fi(x∗) = 0
(i.e., the constraint is active), λ∗i > 0.

Recall that, due to the strong duality, we have f0(x∗) = L(x∗, λ∗, ν∗).
Since the inactive inequality constraints could potentially disturb this
“balance", their constraint functions are multiplied by λ∗i = 0.

For the active constraints, the “slopes" λ∗i > 0 are set according to the
first-order optimality condition. However, the factual values of λ∗i have
no effect on the optimal value, since they are multiplied by fi(x∗) = 0.

The inactive constraints are, in fact, redundant.
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Augmented Lagrangian

Consider the equality constrained problem

min
x

f0(x) s.t. Ax = b

for some A ∈ Rm×n and b ∈ Rm.

For this problem, the augmented Lagrangian function is defined as

Lρ(x, ν) = f0(x) + νT (Ax− b) +
ρ

2
‖Ax− b‖22

for some penalty parameter ρ > 0. Note that, at the optimal solution,
L(x∗, ν∗) = Lρ(x

∗, ν∗) = f0(x∗).

The benefit of including the penalty term is that gρ(ν) = infx Lρ(x, ν)
can be shown to be differentiable under rather mild conditions on f0.

By completing the squares, the augmented Lagrangian function can
also be expressed as

Lρ(x, ν) = f0(x) +
ρ

2

∥∥Ax− b+ ν/ρ
∥∥2
2
− 1

2ρ

∥∥ν∥∥2
2
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Method of Multipliers

The Method of Multiplier iterates between the estimates of x and ν
according to

x(t+1) = arg min
x

Lρ(x, ν
(t))

ν(t+1) = ν(t) + ρ(Ax(t+1) − b)

The first step minimizes Lρ w.r.t. the primal variable, with the dual
variable being fixed at its “old" value ν(t).

The second step maximizes Lρ w.r.t. the dual variable by means of
gradient ascent with a step-size ρ.

Note that the feasibility requires Ax∗ − b = 0 and ∇f0(x∗) +AT ν∗ = 0.
Since x(t+1) minimizes Lρ(x, ν(t)), we have

0 = ∇xLρ(x(t+1), ν(t)) = ∇f0(x(t+1)) +AT
(
ν(t) + ρ (Ax(t+1) − b)︸ ︷︷ ︸

ν(t+1)

)

By using ρ as the step size, the iterate (x(t+1), ν(t+1)) is dual feasible.
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Alternating Direction Method of Multipliers

Consider the following unconstrained problem

min
x

f(Ax) + g(B x)

with A ∈ Rm×n, B ∈ Rp×n and some sub-differentiable f and g.

Using two auxiliary variables u and v, the problem can be expressed in
a constrained form as

min
x,u,v

f(u) + g(v)

s.t. Ax = u, Bx = v

The associated augmented Lagrangian is given by

Lρu,ρv (x, u, v, νu, νv) = f(u) + g(v)+

+
ρu
2

∥∥Ax− u+ νu/ρu︸ ︷︷ ︸
pu

∥∥2
2

+
ρv
2

∥∥Bx− v + νv/ρv︸ ︷︷ ︸
pv

∥∥2
2

+ resid.

where pu and pv can be viewed as scaled Lagrange multipliers.
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Alternating Direction Method of Multipliers (cont.)

The Alternating Direction Method of Multipliers (ADMM) updates the
primal variable one at a time, followed by gradient ascent on the dual
variables. The ADMM consists of a primal and a dual update.

Primal Update

x(t+1) = arg min
x

{ρu
2

∥∥Ax− u(t) + p(t)u
∥∥2
2

+
ρv
2

∥∥Bx− v(t) + p(t)v
∥∥2
2

}
=

=
(
ρuA

TA+ ρv B
TB
)−1(

ρuA
T (u(t) − p(t)u ) + ρv B

T (v(t) − p(t)v )
)

u(t+1) = arg min
u

{
f(u) +

ρu
2

∥∥Ax(t+1) − u+ p(t)u
∥∥2
2

}
=

= prox(1/ρu)f

(
Ax(t+1) + p(t)u

)

v(t+1) = arg min
v

{
g(v) +

ρv
2

∥∥Bx(t+1) − v + p(t)v
∥∥2
2

}
=

= prox(1/ρv)g

(
Bx(t+1) + p(t)v

)
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Alternating Direction Method of Multipliers (cont.)

Dual Update

p(t+1)
u = p(t)u +Ax(t+1) − u(t+1)

p(t+1)
v = p(t)v +Bx(t+1) − v(t+1)

If both f and g are convex, it can be shown that f(u(t)) + g(v(t))→ p∗

as t→∞, i.e., the objective function of the iterates approaches p∗.

It is often the case that ADMM converges to modest accuracy – suffici-
ent for many applications – within a few tens of iterations.

The method is not symmetric in the order of updates.

In theory, the ADMM is guaranteed to converge for any values of the
penalty parameters ρu and ρv (e.g., ρu = ρv = 1). In practice, however,
their choice can influence the rate of convergence.

There are several heuristics for setting ρu and ρv adaptively.
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Example: Parallel projections

Let A1,A2, . . . ,AN be a set of N convex and closed sets in Rn. Con-
sider the problem of finding a point in the intersection

⋂N
i=1Ai.

Let C and D be two subsets in RnN defined as

C = A1 ×A2 × . . .×AN
D =

{
(x1, x2, . . . , xN ) ∈ RnN | x1 = x2 = . . . = xN

}
If (x1, x2, . . . , xN ) ∈ RnN , then its orthogonal projection onto C is given
by

PC(x) =
(
PA1(x1),PA2(x2), . . . ,PAN (xN )

)
∈ C ⊂ RnN

Let x̄ = (1/N)
∑N
i=1 xi be the average of x1, x2, . . . , xN . Then, the or-

thogonal projection onto D is given by

PC(x) =
( n times︷ ︸︸ ︷
x̄, x̄, . . . , x̄

)
∈ C ⊂ RnN
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Example: Parallel projections (cont.)

Then, the ADMM iterations are defined as

x
(t+1)
i = PAi

(
u(t) − p(t)i

)
, ∀i

u(t+1) =
1

N

N∑
i=1

(
x
(t+1)
i + p

(t)
i

)
p
(t+1)
i = p

(t)
i + x

(t+1)
i − u(t+1), ∀i

with u(t) ∈ Rn and
(
p
(t)
1 , p

(t)
2 , . . . , p

(t)
N

)
∈ RnN .

The iterations can also be redefined in a simplified form as

x
(t+1)
i = PAi

(
x̄(t) − p(t)i ), ∀i

p
(t+1)
i = p

(t)
i +

(
x
(t+1)
i − x̄(t+1)), ∀i

Note that p(t)i is the running sum of the “discrepancies" x(t)i − x̄
(t) (if

we assume p(0)i = 0, for all i).
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Example: Quadratic Programming

Recall that the standard form QP is given by

min
x

(1/2)xTP x+ qTx

s.t. Ax = b, x � 0

for some P ∈ Sn++, A ∈ Rm×n, q ∈ Rn and b ∈ Rm. Note that, if P is
zero, the QP reduces to an LP in standard form.

Let g(x) = I+(x) be the indicator function of the positive orthant Rn
+,

and let f(x) = (1/2)xTP x+ qTx, with dom f = {x | Ax = b}.

The QP can be expressed in ADMM form as

min
x,u

f(x) + g(u) s.t. x− u = 0

Consequently, the resulting ADMM iterations are

x(t+1) = arg min
x:Ax=b

{
f(x) + (ρ/2) ‖x− u(t) + p(t)‖22

}
u(t+1) =

(
x(t+1) + p(t)

)
+

p(t+1) = p(t) + x(t+1) − u(t+1)
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Example: Quadratic Programming (cont.)

The x-update is an equality-constrained LS problem. Its optimality
conditions can be expressed as

R︷ ︸︸ ︷[
P + ρI AT

A 0

] [
x(t+1)

ν

]
+

[
q − ρ (u(t) − p(t))

−b

]
= 0

where ν is the dual variable related to the equality constraint Ax = b.

To speed up computations, the matrix R can be (“pre") factorized.

If P is diagonal, possibly zero, this update has a cost of O(nm2) flops.
Subsequent updates only cost O(nm) flops.

The update in u involves projection onto Rn
+.

If the non-negativeness constraint x � 0 is replaced by a more general
conic constraint x ∈ K, where K is a convex cone, the ADMM update
for u becomes

u(t+1) = PK(x(t+1) + p(t))
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Example: Image reconstruction

Let g ∈ Rm×n be a discrete image which we consider to be a noisy and
blurred version of some “true image" f ∈ Rm×n. Formally,

g ≈ A(f)

where A : Rm×n → Rm×n is the linear operator representing the effect
of blur (i.e., low-pass filter).

Given g, our task is to find an estimate f . To this end, we consider

min
f

{
‖A(f)− g‖1 + γ ‖f‖TV

}
with some regularization parameter γ > 0.

The first term is a data fidelity term. It requires the optimal solution
to be close to g, as measured by the sum-of-absolute-values norm ‖ · ‖1.

The second term is a prior term. It requires the solution to have relati-
vely low variability, as measured by the total-variation norm ‖ · ‖TV.
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Example: Image reconstruction (cont.)

Equivalently, the desired estimate can be found as a solution to

min
f,u,v

1

γ
‖u− g‖1 + ‖v‖TV

s.t. A(f)− u = 0, f − v = 0

In this case, the ADMM update in x is found as a solution to(
ρu A

?A + ρv I
)
(x(t+1)) = ρu A

?(u(t) − p(t)u ) + ρv (v(t) − p(t)v )

which is a linear operator equation (with A? and I being the adjoint
and identity operators, respectively).
The ADMM update in u is given by

u(t+1) = S1/ρu
(
A(x(t+1)) + p(t)u + g

)
− g

where S1/ρu is the operator of (coordinate-wise) soft-thresholding.
The ADMM update in v is given by

v(t+1) = PTV∗
(
x(t+1) + p(t)v

)
where PTV∗ is the operator of projection onto the unit ball in the dual
space with norm ‖ · ‖TV∗ .
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Example: Image reconstruction (cont.)

1024× 1024 image
Gaussian blur model
“Salt-and-pepper" noise
Convergence in less than 500 iterations to ‖∇Lρu,ρu‖ ≤ 10−5.
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