ECE 602 — Section 7

Practical Applicati

o Approximation and fitting

@ Norm minimization problems

o Signal reconstruction and regularization

o Statistical estimation and Maximum Likelihood

@ Minimal and maximal volume ellipsoids

Optimal experiment design

o Support Vector Machines
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APPROXIMATION AND FITTING

o The simplest norm approrimation problem is

min ||Az — b||

where A € R™*" and b € R™ are given.
e z* is called an approzimate solution to Az =~ b in the norm || - ||.
e The vector
r=Axr—>b

is called the residual for the problem.

o It is a convex optimization problem, and hence there is at least one
optimal solution.
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VARIOUS INTERPRETATIONS

o Geometry

By expressing Ax = a121 + a2x2 + ... + anTn, we see that ™ is the
closest point in R(A) w.r.t. b (the regression problem).

o Estimation

Considering the linear measurement model b = Ax + v, z* is the most
plausible guess for x, given b.

o Optimal design

Considering z1,...,x, to be design variables, we can view Ax as a
vector of m results. So, x* is the best design which approximates a
desired result or target b.

o We can also consider the weighted norm approzrimation problem

min [[W(Az — b)| ]

where W € R™*™ is a weighting matriz (usually, W = 0).
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LEAST-SQUARES APPROXIMATION

o The least-squares approximation problem is defined as

m
min |4z — b3 = 3|

=1

o The problem can be solved analytically through differentiating
f(@) = Az —b])3 = 2" AT Az — 26" Az + b"b

and setting Vf(z) = 247 Az — ATb = 0, which results in a system of

normal equations
( AT Az = ATb )

with the unique solution z* = (AT A)™*ATb = A'b.
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MINIMAX APPROXIMATIONS

o The minimaxz (aka Chebyshev) approzimation problem is defined as

rnxin ||[Az — b||oc = max{|ril,...,|rm|}

@ The Chebyshev approximation problem can be cast as an LP
min ¢
x,t

st. —t1 <Az —b=<t1

with variables x € R™ and t € R.
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ROBUST APPROXIMATION

@ The sum of (absolute) residuals approzimation problem is defined as

min [|Az — bl = |r1] + [r2| + ... + [rm]

o In the context of estimation, it is also know as a robust estimator.

o The /1-norm approximation problem can be cast as an LP
mitn 17t

st. —t=Ax—-b=<t

with variables x € R™ and ¢t € R™.
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PENALTY FUNCTION APPROXIMATION

o The penalty function approzimation problem has the form

min o(r1) + o(r2) + ... + o(rm)
st.r=Az —b

where ¢ : R — R is called the (residual) penalty function.

o When ¢ is convex, the penalty function approximation problem is a
convex optimization problem.

o In many cases, ¢ is symmetric, nonnegative, and satisfies ¢(0) = 0.
o Roughly speaking, ¢(u) is a measure of our “dislike" of a residual.

o The shape of ¢(u) has profound effect on the distribution of residuals.
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EXAMPLES OF PENALTY FUNCTIONS

e Quadratic penalty
¢(u) = |ul*

|
|
‘\Jog barrier |

o Deadzone-linear penalty 15| | jauadratic

¢(u) = max{u — a,0}, a >0

dzone-linear

o Log-barier penalty

o) = {—a210g (1— Z—z), lul < a

o, lul > a
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EXAMPLE

Consider a norm/penalty minimization problem of size m = 100 and n = 30.
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ROBUST LEAST-SQUARES

o The robust least-squares or Huber penalty function is defined as

u?, u| < M
Prub(u) = ful <
M(2|u| — M), lu| > M

o Given {(t;,y:)}#2,, consider the following two regression problems
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o We see that the robust regression (solid line) is much less sensitive to
the effect of outliers.
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CONSTRAINED APPROXIMATION

o Norm minimization with non-negativity constraints

min ||Az —b|| st.z>=0
x

o Norm minimization with “box" constraints
4 )
min ||Az —b|] st.l<Xz=<u

xT

. J

o Norm minimization over probability simplex
r “

min ||Az —b|| st.z>0, 1Tz=1
x
. J

o Norm minimization with ball constraints

min ||[Az — b|| s.t. ||z —xo|| < d
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LEAST-NORM PROBLEMS

o The basic least-norm problem has the form

min ||z||
x

st. Az = b

where b € R™ and A € R™*" (n > m) are problem data.

o Design interpretation: x are design variables; b are required results,

z* is smallest (“most efficient") design that satisfies requirements.

o Estimation interpretation: b = Ax are (perfect) measurements of x;

x* is smallest (“most plausible") estimate consistent with b.

o Geometric interpretation: z* is a point in the affine set {z|Az = b}
with minimum distance to 0.
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LS SOLUTION OF LINEAR EQUATION

o The most common least-norm problem is the least {1-norm problem

. 2
min ||z||3
x

st. Az = b

where the matrix A is “wide".
o Introducing the dual variable v € R™, the KKT conditions require

20" + ATy =0, Az" =0
which can be concisely expressed as
FaSiEh
A 0 v* b
o Solving w.r.t. " and v* results in
zt = AT (AAT)
v =—2(AAT)

-1

b
b

-1

o Note that, since rank(A) = m < n, AAT is invertible.
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SPARSE SOLUTION OF LINEAR EQUATION

@ The least £1-norm problem is defined as

min [/
xT

st. Az =b

o The least /1-norm problem tends to produce a solution x with a large
number of components equal to zero.

o We say it tends to produce sparse solutions to Ax = b.
@ The problem can be solved as an LP of the form

min 17¢

x,t

st. —t=x=t, Az=0»

with variables x € R™ and y € R".
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REGULARIZATION

o A common form of regqularization is

{ min ||z — bl + =] )

where v > 0 is a regularization parameter.

@ In cases where A is poorly conditioned, or even singular, regularization
gives a compromise between solving Ax = b and keeping x small.

The Tikhonov regularization problem has the form of

{ min || Az — bl + /o] J

The problem has a closed form solution

e = (ATA 1) AT

Note that AT A +~I = 0 for all v > 0.
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EXAMPLE: OPTIMAL INPUT DESIGN

o Consider the following observation model
Zh u(t —7) = H{u}(t), t=0,1,...,T

with {y(t)}Heo given and the impulse response {h(t)}io known.
o Our goal is to estimate {u(t)}iL, through solving
min fi(u) +6 fa(u) +n fs(u)
where T
filu) = |H{u}t) —y(®)* (data fidelity)

t=0

u(t)|®  (smallness)

o
=

Il
NE

fa(u) = lu(t +1) —u(t)]> (smoothness)
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OPTIMAL INPUT DESIGN (CONT.)
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o Different values of § and 7 yield solutions of various nature (leftmost
subplots), which “track" y(¢) differently (rightmost subplots).




SIGNAL RECONSTRUCTION

o In reconstruction problems, we start with a signal z € R (which may be
considered to be a function of time, for instance), which is assumed to
be corrupted by additive noise v, viz.

y=x+v

@ The goal of signal reconstruction is to find an estimate x given y which
can be achieved through solving

min ||z — y} + 7 ()

where ¢ : R" — R is a regularization function.

@ There are many kinds of regularization functions.

Quadratic reqularization Total variation regularization

Pquad (T) = Z?;ll (Tig1 — x:)? Pev(x) = Z;:ll |Tip1 — @]

ction 7 Instructor: Dr. O. Michailovich, 2022



EXAMPLE: QUADRATIC SMOOTHING

ORIGINAL AND NOISY SIGNALS THREE DIFFERENT RECONSTRUCTIONS
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(Left) Original signal and its noisy measurements; (Right) Signal recon-
structions obtained at increasing values of ~.




EXAMPLE: QUADRATIC SMOOTHING (CON

ORIGINAL AND NOISY SIGNALS THREE DIFFERENT RECONSTRUCTIONS
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(Left) Original signal and its noisy measurements; (Right) Signal recon-
structions obtained at increasing values of . Note how the “signal edges"
get blurred.




EXAMPLE: TOTAL VARIATION RECONSTRU

ION

ORIGINAL AND NOISY SIGNALS THREE DIFFERENT RECONSTRUCTIONS
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(Left) Original signal and its noisy measurements; (Right) Signal recon-
structions obtained at increasing values of . Note how the “signal edges"
are preserved.




ROBUST APPROXIMATION

o Let A € R™*™ be a random matriz, with mean A (in which case A is
referred to as uncertain).

o In general, robust approximation problems are concerned with solving

( min ||Az — b| )

under the conditions of uncertainty.

@ In particular, the stochastic robust approrimation problem is defined as

[ mxin E{||Az — b||} )

where E is the operator of statistical expectation.

o It is always a convex optimization problem, but usually intractable, ex-
cept for a number of special cases.
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STOCHASTIC ROBUST APPROXIMATION

o Consider the statistical robust least-squares problem

min E{[|Az — b||§}

The objective function can be expressed as
E{||Az —bl3} = E{|(A+ U)x — b3} =
=E{(A+ )z =) (A+ U)o ) } = (Ax - 1) (Ao - 1)+
+E{xTUTUx} = || Az —b|3 +2" Sz
@ Thus, the original problem is equivalent to
min || Az — b]3 + ||/ %23

with solution o -
e = (ATA+x) AT

Note that, when ¥ = I, we obtain a Tikhonov regularized problem.

Instructor: Dr. O. Michailovich, 2022



WORST-CASE ROBUST APPROXIMATION

o The uncertainly in A can be described deterministically by assuming A
to be an arbitrary element of set A, viz.

Ac ACR™"

@ Then, the worst-case robust approximation problem is then defined as

min sup ||[Az — ||
T AcA

@ In this case, the objective function
ewe(w) = sup || Az — b|
AcA
is referred to as the worst-case error.

o The tractability of the problem depends on the norm and the structure

of A.
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EXPERIMENTAL COMPARISON

o Consider the following uncertainty model
A=A+ uA
where the matrices Ag and A; are fized and u € [—1, 1].
@ Under this model we explore solutions to

i |42 — b = (Ao + v — b

obtained using different approaches.

— Nominal optimal approach: The optimal solution znom is
found under assumption u = 0 (i.e., A = Ap).

Stochastic robust approximation: The optimal solution Zstoch
is found assuming w is uniformly distributed in [—1, 1].

— Worst-case robust approximation: The optimal solution Ty
is found by solving

sup H(Ao + Aju)r — b”z

—1<u<1
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EXAMPLE: COMPARISON OF THE TWO APPROACHES (CONT.)

o For Ap =10 and A; = 1, we analyze r(u) = H(Ao + Aru)x — ij as a
function of w.
12

10

r(w)

® Tnom achieves the smallest residual when uw = 0, but yields much larger
residuals as u approaches either —1 or 1.

@ Zwc has the largest residual at u = 0, but its residuals stays nearly con-
stant, when u varies over [—1,1].
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STATISTICAL ESTIMATION

o Consider a family of probability distributions on R™, represented by a
probability density function (pdf) p, that is parameterized .

e Given a set of observed values from p.(-), our goal is to estimate x.

o Mazimum likelihood (ML) estimation searches Zmr based on

&mr = argmax log px (y)
xT

st.x el

where y is the problem data and C describes the domain of | = log p,
that is called the log-likelihood function.

o Alternatively, instead of x € C, we can use p.(y) =0, for all z ¢ C.

e ML estimation is a convex optimization problem if log ps(y) is concave
in x for fixed y.

ECE 602 - 7 Instructor: Dr. O. Michailovich, 2022



LINEAR MEASUREMENTS WITH IID NOISE

e We consider a linear measurement model
Yi :azfrx—i—vi, 1=1,...,m
where v; ~ p are independent and identically distributed (i.i.d.).

o The probability density is then equal to

y) = Hp(yz

and, hence, the log-likelihood function is given by
U(z) = log pa(y ZIng —ajx)

o Consequently, the ML estimate Zmr is any optimal solution to the
problem

max Zlogp yi —ar z)
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SPECIAL CASES

o Gaussian noise with p(z) = (2r62) ™2 exp(—22/20?)
le) = - log(2r0®) — 5y > alx — ) o —llAz
=73 g ro® % 2 (ai x yz T = Yll2

Thus, the ML estimation is the solution of an LS problem.

e Laplacian noise with p(z) = (1/2a) exp(—|z|/a)
l(z) = —mlog(2a) 772|a1 x —||Az — y||1

In this case, the ML estimation is an £;-norm approximation.
e Uniform noise with p(z) = 1/2a, for z € [—a, a]

() —mlog(2a), l|alz—wyil, i=1,...,m
) =
—00, otherwise

Thus, the ML solution is any z satisfying ||Az — y||e < a.
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ML AND PENALTY FUNCTION APPROXIMATION

e We can interpret any penalty function approximation problem
m
min Z b(bi — aj x)
xr
i=1

as an ML estimation problem, with the noise probability density defi-

ned as
exp(—¢(2))

P() = Toxp(—o(w)du

and measurements b.

o If ¢(z) grows very rapidly as |z| — oo, the corresponding pdf will have
relatively “light" tails.

o This allows us to understand the robustness of ¢;-norm approximation
to large errors.
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EXAMPLE: LOGISTIC REGRESSION

o Consider a random variable y € {0, 1}, with

prob(y=1)=p
prob(y=0)=1-p

where p € [0, 1] is assumed to depend on some ezplanatory variables
u € R™ (e.g., weight, age, height, blood pressure, etc.)

o In the logistic model, the probability p is defined as

_ exp(a’u+0)
P=17 exp(a®u + b)

where a € R" and b € R are model parameters.

@ The problem of finding the ML estimates of a and b is called logistic
TEGTession.
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EXAMPLE: LOGISTIC REGRESSION (CONT.)

@ Suppose we are given of a set of m training samples {u;,y; }i~1, where
for each explanatory variable u; € R, its associated label y; € {0,1} is
provided as well.

e Without loss of generality, let us assume that y; = 1, for i = 1,2, ..., k,
andy, =0, fori=k+1,k+2,....m

o In this case, the log-likelihood function is defined as

I(a,b) = log <sz I ¢ 1pi)> =

=1 i=k+1
k T m
exp(a” u; + b) 1
= 1 =
8 <H 1+ exp(aTu; +b) HH 1+ exp(aTu; + b)
k
—Zloga u; +b) — Z log(1 + exp(a” u; + b))
1=1 i=k+1

o Note that l(a,b) is concave in a and b concurrently.
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EXAMPLE: LOGISTIC REGRESSION (CONT.)

o The following example is based on m = 50 training samples.
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o The circled points depict the training data (u:,y;).
o The solid curve is p(u) = exp(amru + BML)/(l + exp(amru + I;ML))
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EXPERIMENT DESIGN

o Consider the problem of estimating x € R" from its measurements
yi=aix4v, i=1,...,m

where v; are the samples of measurement noise, which is assumed to be
i.i.d. with A(0,1).

o The ML estimate of z is given by

m 1 m

A T

xr = a;a; Yias
=1 =1

which is a linear function of the measurements.

o The covariance of the estimation error e = & — x is given by

E =E{ee’} = (iam?)_l

that characterizes the experiment’s informativeness.

@ The problem of ezperimental design consists in finding such test vectors
a; that minimize the size of E.
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EXPERIMENT DESIGN (CONT.)

o The test vectors {a;}ij~, are assumed to be selected from a smaller set
of prototype vectors {v;};_,, in which case each v; can be picked more
than one time (usually, m > p).

o Let m; be the number of vectors a; equal to v; (or, by the same token,
the number of times the vector v; has been selected), with

mi+me+...+mp =M

@ The error covariance matrix can then be expressed as

m _1 P 1
E = T _ o T
= a;a; = m;v;v;
i=1 j=1

which now becomes a function of (ma,...,mp), thereby allowing us to
consider
P . P
. T .
mlrg%flmp(zlmjvjvj> s.t. Zlmi:M, m; >0, 1=1,2,...,p
i= i=

o Unfortunately, this is a difficult integer problem.
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RELAXATION

e Define A € R? with \; = m;/M be the relative frequency of the ith ex-
periment. The error covariance can then be expressed in terms of A\ as

1 P T -1
E = M(;)\ﬂ}ﬂ}j)

where all \; are positive and sum up to one (i.e., A = 0 and 17X\ = 1).

o Consequently, the relazed experiment design problem is defined as

. n 1 L T =il
min (wrt.SY) E= M(E:IA]"U]"UJ' )
i=

st.A=0, 17A=1

which is a convex optimization problem.

o Given an optimal A", the related m; can be recovered as

m; =round (A\; M), i=1,...,p
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COVARIANCE SCALARIZATION

e Given an estimate T of x, the error covariance E can be used to define
the a-confidence level ellipsoid as

E={z|(z-2)"E ' (x—2)<T}

where T is a function of both « and n.

@ There are different ways of scalarization of E which lead to optimiza-
tion of various geometric properties of £.

DESIGN OPTIMIZATION GEOMETRIC
TYPE PROBLEM MEANING
D-optimal mAin log det (Z?Zl Ajvjvf) - minimizes the volume
design st. A=0,1Tx=1 of £
—T
FE-optimal m/\in H ( Z§=1 )\j'l}j'UJT) H minimizes the diameter
2
design st. A>=0,1Tx=1 of £
=TI
A-optimal mgn tr (Z§:1 )\jvjva) minimizes the error
design st. A=0,1Tx=1 variance
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OPTIMAL DESIGN AND DUALITY

@ The dual of the D-optimal experiment design problem can be expressed
as

max logdet W
wesn

s.t. viTW'uigl, i1=1,...,p

o The optimal W* defines the minimum volume ellipsoid {x|z* Wz < 1}
that is centred at zero and contains all the points v1, ..., vp.

o The optimal design only uses experi- v
ments v; that lie on the surface of the
ellipsoid defined by W*. o

o In the figure, only the experiments v, =
..., V4 (red points) define the optimal
D-design.
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EXAMPLE: COMPARISON OF DIFFERENT DESIGNS

Consider a problem with = € R? and p = 20.

E-Optimal Design .~

~__  A-Optimal Design

Dr. O. Michailovich,



ORTHOGONAL PROJECTIONS

e In a normed (linear) space with || - ||, the distance of zo € R™ to a
closed set C C R", is defined as

dist(zo,C) = inf {||jx — zo|| | z € C}

o If for some z € C, ||z — zo|| = dist(xo, C), then z is called a projection
of o onto C.

o In general, there could be more than one projection, unless C' is both
closed and convex.

o Let Po: R" — R" be such that
Pc(xzo) € C and  ||Pc(zo) — zo|| = dist(zo,C)
which implies that

Pe(wo) = argmin{|le — o/}

o We refer to Pc as the operator of projection on C.
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EXAMPLES

o Projection on the unit /;-norm ball in R"

<1
PC(I) _ {x7 HmHQ =

z/|zll2; lzll2 > 1
e Projection on R}
e Projection on C = {z | Az =b} (A€ R™ ", rank(4A) =m >n)
Po(z) =z + AT(AAT) "1 (b — Az)
o Projection on S’ :
Pe(X) = 3 max{As, Oua”
i=1

where X =37 | Xiqig? is the eigenvalue decomposition of X.
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EXTREMAL VOLUME ELLIPSOIDS

o Suppose C C R” is bounded, with int C # (.

o The Léwner-John ellipsoid Eny of the set C' is the minimum volume
ellipsoid that contains C.

o Recall that a general ellipsoid can be implicitly represented as
€=A{v][|Av+b]> <1}
for some A € S and b e R"™.

@ Since the volume of £ is proportional to det A™*, £y can be found by
solving

min logdet A~

Ab

s.t. sup |[Av+ b2 <1
vel

e Unfortunately, this (convex optimization) problem is ¢ractable only in
certain special cases.
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EXTREMAL VOLUME ELLIPSOIDS (CONT.)

o As a special case, suppose C = {z1,...,Zm} € R". Then, &5 can be
found by solving:

min logdet A™*
A,z
s.t. ||A$L+b‘|2 < 1, 1= 17...,m

which is a convex optimization problem with quadratic constraints.

conv (v}l
o The solution also gives the Léwner-John
ellipsoid for conv {z1,...,Zm}.

o When shrunk by a factor n, the Léwner-John ellipsoid is guaranteed to
lie inside of conv C. Moreover, if C is symmetric, then the factor 1/n
can be tightened to 1//n.
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MAXIMUM VOLUME INSCRIBED ELLIPSOID

o Consider the problem of finding the ellipsoid of maximum volume that
lies inside a convex set C.

@ The ellipsoid can be explicitly parametrized as
& ={Bu+d||ul2 <1}
for some B € ST, and d € R".

o Hence, the mazimum-volume ellipsoid inscribed in C can be found via
solving

max logdet B
B>0,d
st. sup Ic(Bu+d)<0

[lull2<1

where I¢ stands for the indicator function of C.

e Again, this (convex optimization) problem is tractable only in certain
special cases.
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MAXIMUM VOLUME INSCRIBED ELLIPSOID (CONT.)

o As a special case, consider C = {z | alz < b;, i=1,...,m}.

o In this case, the constraint is reduced to
sup a; (Bu+d)<b; <= ||Baillz4+aid<b;, i=1,...,m

[lull2<1

a3z < by, alz<by
@ The maximum volume ellipsoid can now
be found by solving

min logdet B~!
B»0,d

s.t. \|Bal||2+az‘rd§b“ i=1,...,m

@ The maximum volume inscribed ellipsoid, expanded by a factor of n,
covers C. Again, this factor can be tightened to /n, if C is symmetric.
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CLASSIFICATION

o In pattern recognition and classification problems we are given a set of
training samples

{z1,...,2v} CR" and {y1,...,ym} CR"
and wish to find a function f : R"™ — R such that
f(l’i)>0,i=1,...,N, f(yi)<0, i=1,....,.M

o If found, {z | f(z) = 0} is said to separate or classify the two sets.
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LINEAR DISCRIMINATION

o In linear discrimination, we set f(z) = a”a — b so that

atz;—b>0, i=1,...,N
aty;—b<0, i=1,.... M

Geometrically, we seek a hyperplane that separates the two sets.

Alternatively, the above strict inequalities are feasible if and only if

atz;—b>1, i=1,...,N
aTy;—b< -1, i=1,...,M

are feasible.

o In general, the two sets of points can be linearly discriminated if and
only if their convex hulls do not intersect.
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ROBUST LINEAR DISCRIMINATION

o In robust liner discrimination, we seek f(x) = a”z — b that gives the
maximum possible “gap " between the two sets, viz.

max t
a,b,t

s.t. aTmi—bZt, i=1,...,N
etz —b<—t, i=1,....M
lall2 <1

o If the sets are linearly separable, then t* > 0 and |[a™||2 = 1.

e t* is equal to 1/2 of the “slab" thickness.
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SUPPORT VECTOR CLASSIFIER

e Suppose {z1,...,zn} and {y1,...,ym} cannot be linearly separated.
o In this case we introduce v € RY} and v € RY" such that

aTei—b>1—w;, i=1,...,N
aty —b< —(1—-w), i=1,....M

o By making v and v large enough, the inequalities can always be made
feasible.

o One can mazimize the sparsity of u and v through

afil,g}v lTqulTv
s.t.aTxiszlfui, i=1,...,N
a"zi—b< —(1—w), i=1,....,.M
u=0,v>=0

o In fact, this problem minimizes the number of points that violate either
al —b>1loral —b< —1.
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EXAMPLE

o In this example, a” z — b misclassifies 1 out of 100 points.
o The dashed lines are the hyperplanes a2z — b = +1.

o Four points are correctly classified, but lie within the slab.

Dr. O. Mich



STANDARD SUPPORT VECTOR CLASSIFIER

o The width of the slab {z | =1 < aTz — b < 1} is equal to 2/|a||z.

o The standard support vector classifier is defined as the solution of

r 2
nl?in lall2 +’y(1Tu+1Tv)
s.t.aTxi—bZI—ui, i=1,...,N
"z —b<—-(1-w), i=1,...,.M
u=0,v>=0
. J

@ Here v > 0 gives the relative weight of
the number of misclassified points com-
pared to the width of the slab.
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NONLINEAR DISCRIMINATION

o In non-linear discrimination, we seek a nonlinear function f: R" - R
such that

fl@:)>0, i=1,....N, f(y:)<0, i=1,...,M

@ In particular, in the case of quadratic discrimination, the feasibility
constraints are

el Pri+q zi+r>0, i=1,...,N
v Py +q yi+r <0, i=1,....M
for some (variables) P € S™, g € R", and r € R.
o Alternatively, one can solve a nonstrict feasibility problem of the form
eI Pri+qTzi+r>1, i=1,...,N
Y Pyi+q yi+r<-1, i=1,....M

o The separating surface {z | 2T Pz + ¢z 4+ r = 0} defines two classifica-
tion regions, viz.

{z]|2"Pz4+q¢"2+7r>0} and {z|2"Pz+q¢" z+r <0}
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NONLINEAR DISCRIMINATION (CONT.)

o We can impose conditions on the shape of the separating surface. For
example, requiring P < 0 will make the separating surface ellipsoidal.

o The resulting problem can be solved as an SDP feasibility problem

find P, g, r
e Pri+ ¢ wi+r>1, i=1,...,N
Y Pyi+q yi+r<—-1, i=1,....M
P<—I

o Another example of nonlinear discrimination corresponds to f defined
as a polynomial of the form
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XAMPLE

Quadratic discrimination

Polynomial discrimination
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