
ECE 602 – Section 7
Practical Applications

Approximation and fitting
Norm minimization problems
Signal reconstruction and regularization
Statistical estimation and Maximum Likelihood
Minimal and maximal volume ellipsoids
Optimal experiment design
Support Vector Machines
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Approximation and fitting

The simplest norm approximation problem is

min
x
‖Ax− b‖

where A ∈ Rm×n and b ∈ Rm are given.

x∗ is called an approximate solution to Ax ≈ b in the norm ‖ · ‖.

The vector
r = Ax− b

is called the residual for the problem.

It is a convex optimization problem, and hence there is at least one
optimal solution.
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Various interpretations

Geometry

By expressing Ax = a1x1 + a2x2 + . . .+ anxn, we see that x∗ is the
closest point in R(A) w.r.t. b (the regression problem).

Estimation

Considering the linear measurement model b = Ax+ v, x∗ is the most
plausible guess for x, given b.

Optimal design

Considering x1, . . . , xn to be design variables, we can view Ax as a
vector of m results. So, x∗ is the best design which approximates a
desired result or target b.

We can also consider the weighted norm approximation problem

min
x
‖W (Ax− b)‖

where W ∈ Rm×m is a weighting matrix (usually, W � 0).
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Least-squares approximation

The least-squares approximation problem is defined as

min
x
‖Ax− b‖22 =

m∑
i=1

|ri|2

The problem can be solved analytically through differentiating

f(x) = ‖Ax− b‖22 = xTATAx− 2bTAx+ bT b

and setting ∇f(x) = 2ATAx−AT b = 0, which results in a system of
normal equations

ATAx = AT b

with the unique solution x∗ = (ATA)−1AT b = A†b.
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Minimax approximations

The minimax (aka Chebyshev) approximation problem is defined as

min
x
‖Ax− b‖∞ = max{|r1|, . . . , |rm|}

The Chebyshev approximation problem can be cast as an LP

min
x,t

t

s.t. − t1 � Ax− b � t1

with variables x ∈ Rn and t ∈ R.
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Robust approximation

The sum of (absolute) residuals approximation problem is defined as

min
x
‖Ax− b‖1 = |r1|+ |r2|+ . . .+ |rm|

In the context of estimation, it is also know as a robust estimator.

The `1-norm approximation problem can be cast as an LP

min
x,t

1T t

s.t. − t � Ax− b � t

with variables x ∈ Rn and t ∈ Rm.
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Penalty function approximation

The penalty function approximation problem has the form

min
x

φ(r1) + φ(r2) + . . .+ φ(rm)

s.t. r = Ax− b

where φ : R→ R is called the (residual) penalty function.

When φ is convex, the penalty function approximation problem is a
convex optimization problem.

In many cases, φ is symmetric, nonnegative, and satisfies φ(0) = 0.

Roughly speaking, φ(u) is a measure of our “dislike" of a residual.

The shape of φ(u) has profound effect on the distribution of residuals.
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Examples of penalty functions

Quadratic penalty

φ(u) = |u|2

Deadzone-linear penalty

φ(u) = max{u− a, 0}, a > 0

Log-barier penalty

φ(u) =

{
−a2 log

(
1− u2

a2

)
, |u| < a

∞, |u| ≥ a
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Example

Consider a norm/penalty minimization problem of size m = 100 and n = 30.
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Robust least-squares

The robust least-squares or Huber penalty function is defined as

φhub(u) =

{
u2, |u| ≤M
M(2|u| −M), |u| > M

Given {(ti, yi)}42i=1, consider the following two regression problems

min
α,β

42∑
i=1

(yi − α− βti)2 versus min
α,β

42∑
i=1

φhub(yi − α− βti)

We see that the robust regression (solid line) is much less sensitive to
the effect of outliers.
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Constrained approximation

Norm minimization with non-negativity constraints

min
x
‖Ax− b‖ s.t. x � 0

Norm minimization with “box" constraints

min
x
‖Ax− b‖ s.t. l � x � u

Norm minimization over probability simplex

min
x
‖Ax− b‖ s.t. x � 0, 1Tx = 1

Norm minimization with ball constraints

min
x
‖Ax− b‖ s.t. ‖x− x0‖ ≤ d
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Least-norm problems

The basic least-norm problem has the form

min
x
‖x‖

s.t. Ax = b

where b ∈ Rm and A ∈ Rm×n (n > m) are problem data.

Design interpretation: x are design variables; b are required results,
x∗ is smallest (“most efficient") design that satisfies requirements.

Estimation interpretation: b = Ax are (perfect) measurements of x;
x∗ is smallest (“most plausible") estimate consistent with b.

Geometric interpretation: x∗ is a point in the affine set {x|Ax = b}
with minimum distance to 0.

ECE 602 - Section 7 Instructor: Dr. O. Michailovich, 2022 12/54



LS solution of linear equation

The most common least-norm problem is the least `1-norm problem

min
x
‖x‖22

s.t. Ax = b

where the matrix A is “wide".
Introducing the dual variable ν ∈ Rm, the KKT conditions require

2x∗ +AT ν∗ = 0, Ax∗ = b

which can be concisely expressed as[
2I AT

A 0

] [
x∗

ν∗

]
=

[
0
b

]
Solving w.r.t. x∗ and ν∗ results in

x∗ = AT
(
AAT

)−1
b

ν∗ = −2
(
AAT

)−1
b

Note that, since rank(A) = m < n, AAT is invertible.
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Sparse solution of linear equation

The least `1-norm problem is defined as

min
x
‖x‖1

s.t. Ax = b

The least `1-norm problem tends to produce a solution x with a large
number of components equal to zero.

We say it tends to produce sparse solutions to Ax = b.

The problem can be solved as an LP of the form

min
x,t

1T t

s.t. − t � x � t, Ax = b

with variables x ∈ Rn and y ∈ Rn.
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Regularization

A common form of regularization is

min
x
‖Ax− b‖+ γ‖x‖

where γ > 0 is a regularization parameter.

In cases where A is poorly conditioned, or even singular, regularization
gives a compromise between solving Ax = b and keeping x small.

The Tikhonov regularization problem has the form of

min
x
‖Ax− b‖22 + γ‖x‖22

The problem has a closed form solution

x∗ =
(
ATA+ γI

)−1
AT b

Note that ATA+ γI � 0 for all γ > 0.
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Example: Optimal input design

Consider the following observation model

y(t) =
t∑

τ=0

h(τ)u(t− τ) = H{u}(t), t = 0, 1, . . . , T

with {y(t)}Nt=0 given and the impulse response {h(t)}Nt=0 known.
Our goal is to estimate {u(t)}Nt=0 through solving

min
u

f1(u) + δ f2(u) + η f3(u)

where
f1(u) =

T∑
t=0

|H{u}(t)− y(t)|2 (data fidelity)

f2(u) =
T∑
t=0

|u(t)|2 (smallness)

f3(u) =

T−1∑
t=0

|u(t+ 1)− u(t)|2 (smoothness)

We can trade off the objectives by solving for different δ > 0 and η > 0.
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Optimal input design (cont.)

Different values of δ and η yield solutions of various nature (leftmost
subplots), which “track" y(t) differently (rightmost subplots).

ECE 602 - Section 7 Instructor: Dr. O. Michailovich, 2022 17/54



Signal reconstruction

In reconstruction problems, we start with a signal x ∈ R (which may be
considered to be a function of time, for instance), which is assumed to
be corrupted by additive noise v, viz.

y = x+ v

The goal of signal reconstruction is to find an estimate x given y which
can be achieved through solving

min
x
‖x− y‖22 + γ φ(x)

where φ : Rn → R is a regularization function.

There are many kinds of regularization functions.

Quadratic regularization Total variation regularization

φquad(x) =
∑n−1
i=1 (xi+1 − xi)2 φtv(x) =

∑n−1
i=1 |xi+1 − xi|
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Example: Quadratic smoothing

ORIGINAL AND NOISY SIGNALS THREE DIFFERENT RECONSTRUCTIONS

(Left) Original signal and its noisy measurements; (Right) Signal recon-
structions obtained at increasing values of γ.
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Example: Quadratic smoothing (cont.)

ORIGINAL AND NOISY SIGNALS THREE DIFFERENT RECONSTRUCTIONS

(Left) Original signal and its noisy measurements; (Right) Signal recon-
structions obtained at increasing values of γ. Note how the “signal edges"
get blurred.
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Example: Total variation reconstruction

ORIGINAL AND NOISY SIGNALS THREE DIFFERENT RECONSTRUCTIONS

(Left) Original signal and its noisy measurements; (Right) Signal recon-
structions obtained at increasing values of γ. Note how the “signal edges"
are preserved.
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Robust approximation

Let A ∈ Rm×n be a random matrix, with mean Ā (in which case A is
referred to as uncertain).

In general, robust approximation problems are concerned with solving

min
x
‖Ax− b‖

under the conditions of uncertainty.

In particular, the stochastic robust approximation problem is defined as

min
x

E
{
‖Ax− b‖

}
where E is the operator of statistical expectation.

It is always a convex optimization problem, but usually intractable, ex-
cept for a number of special cases.
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Stochastic robust approximation

Consider the statistical robust least-squares problem

min
x

E
{
‖Ax− b‖22

}
The objective function can be expressed as

E
{
‖Ax− b‖22

}
= E

{
‖(Ā+ U)x− b‖22

}
=

= E
{(

(Ā+ U)x− b
)T (

(Ā+ U)x− b
)}

=
(
Āx− b

)T (
Āx− b

)
+

+E
{
xTUTUx

}
= ‖Āx− b‖22 + xTΣx

Thus, the original problem is equivalent to

min
x
‖Āx− b‖22 + ‖Σ1/2x‖22

with solution
x∗ =

(
ĀT Ā+ Σ

)−1
ĀT b

Note that, when Σ = γI, we obtain a Tikhonov regularized problem.
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Worst-case robust approximation

The uncertainly in A can be described deterministically by assuming A
to be an arbitrary element of set A, viz.

A ∈ A ⊆ Rm×n

Then, the worst-case robust approximation problem is then defined as

min
x

sup
A∈A
‖Ax− b‖

In this case, the objective function

ewc(x) = sup
A∈A
‖Ax− b‖

is referred to as the worst-case error.

The tractability of the problem depends on the norm and the structure
of A.
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Experimental comparison

Consider the following uncertainty model

A = A0 + uA1

where the matrices A0 and A1 are fixed and u ∈ [−1, 1].

Under this model we explore solutions to

min
x

∥∥Ax− b∥∥2
2

=
∥∥(A0 +A1u)x− b

∥∥2
2

obtained using different approaches.
– Nominal optimal approach: The optimal solution xnom is
found under assumption u = 0 (i.e., A = A0).

– Stochastic robust approximation: The optimal solution xstoch
is found assuming u is uniformly distributed in [−1, 1].

– Worst-case robust approximation: The optimal solution xwc

is found by solving

sup
−1≤u≤1

∥∥(A0 +A1u)x− b
∥∥2
2
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Example: Comparison of the two approaches (cont.)

For A0 = 10 and A1 = 1, we analyze r(u) =
∥∥(A0 +A1u)x− b

∥∥2
2
as a

function of u.

xnom achieves the smallest residual when u = 0, but yields much larger
residuals as u approaches either −1 or 1.

xwc has the largest residual at u = 0, but its residuals stays nearly con-
stant, when u varies over [−1, 1].
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Statistical estimation

Consider a family of probability distributions on Rm, represented by a
probability density function (pdf) px that is parameterized x.

Given a set of observed values from px(·), our goal is to estimate x.

Maximum likelihood (ML) estimation searches x̂ML based on

x̂ML = arg max
x

log px(y)

s.t. x ∈ C

where y is the problem data and C describes the domain of l = log px
that is called the log-likelihood function.

Alternatively, instead of x ∈ C, we can use px(y) = 0, for all x /∈ C.

ML estimation is a convex optimization problem if log px(y) is concave
in x for fixed y.
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Linear measurements with IID noise

We consider a linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m

where vi ∼ p are independent and identically distributed (i.i.d.).

The probability density is then equal to

px(y) =

m∏
i=1

p(yi − aTi x)

and, hence, the log-likelihood function is given by

l(x) = log px(y) =

m∑
i=1

log p(yi − aTi x)

Consequently, the ML estimate x̂ML is any optimal solution to the
problem

max
x

m∑
i=1

log p(yi − aTi x)
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Special cases

Gaussian noise with p(z) = (2πσ2)−1/2 exp(−z2/2σ2)

l(x) = −m
2

log(2πσ2)− 1

2σ2

m∑
i=1

(aTi x− yi)2 ∝ −‖Ax− y‖22

Thus, the ML estimation is the solution of an LS problem.

Laplacian noise with p(z) = (1/2a) exp(−|z|/a)

l(x) = −m log(2a)− 1

a

m∑
i=1

|aTi x− yi| ∝ −‖Ax− y‖1

In this case, the ML estimation is an `1-norm approximation.

Uniform noise with p(z) = 1/2a, for z ∈ [−a, a]

l(x) =

{
−m log(2a), |aTi x− yi|, i = 1, . . . ,m

−∞, otherwise

Thus, the ML solution is any x satisfying ‖Ax− y‖∞ ≤ a.
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ML and penalty function approximation

We can interpret any penalty function approximation problem

min
x

m∑
i=1

φ(bi − aTi x)

as an ML estimation problem, with the noise probability density defi-
ned as

p(z) =
exp(−φ(z))∫
exp(−φ(u))du

and measurements b.

If φ(x) grows very rapidly as |x| → ∞, the corresponding pdf will have
relatively “light" tails.

This allows us to understand the robustness of `1-norm approximation
to large errors.
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Example: Logistic regression

Consider a random variable y ∈ {0, 1}, with

prob (y = 1) = ρ

prob (y = 0) = 1− ρ

where ρ ∈ [0, 1] is assumed to depend on some explanatory variables
u ∈ Rn (e.g., weight, age, height, blood pressure, etc.)

In the logistic model, the probability ρ is defined as

p =
exp(aTu+ b)

1 + exp(aTu+ b)

where a ∈ Rn and b ∈ R are model parameters.

The problem of finding the ML estimates of a and b is called logistic
regression.
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Example: Logistic regression (cont.)

Suppose we are given of a set of m training samples {ui, yi}mi=1, where
for each explanatory variable ui ∈ R, its associated label yi ∈ {0, 1} is
provided as well.

Without loss of generality, let us assume that yi = 1, for i = 1, 2, ..., k,
and yi = 0, for i = k + 1, k + 2, . . . ,m.

In this case, the log-likelihood function is defined as

l(a, b) = log

(
k∏
i=1

pi

m∏
i=k+1

(1− pi)

)
=

= log

(
k∏
i=1

exp(aTui + b)

1 + exp(aTui + b)

m∏
i=k+1

1

1 + exp(aTui + b)

)
=

=

k∑
i=1

log(aTui + b)−
m∑

i=k+1

log(1 + exp(aTui + b))

Note that l(a, b) is concave in a and b concurrently.
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Example: Logistic regression (cont.)

The following example is based on m = 50 training samples.

The circled points depict the training data (ui, yi).
The solid curve is p(u) = exp(âMLu+ b̂ML)/(1 + exp(âMLu+ b̂ML)).
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Experiment design

Consider the problem of estimating x ∈ Rn from its measurements

yi = aTi x+ vi, i = 1, . . . ,m

where vi are the samples of measurement noise, which is assumed to be
i.i.d. with N (0, 1).

The ML estimate of x is given by

x̂ =
( m∑
i=1

aia
T
i

)−1
m∑
i=1

yiai

which is a linear function of the measurements.

The covariance of the estimation error e = x̂− x is given by

E = E{eeT } =
( m∑
i=1

aia
T
i

)−1

that characterizes the experiment’s informativeness.

The problem of experimental design consists in finding such test vectors
ai that minimize the size of E.
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Experiment design (cont.)

The test vectors {ai}mi=1 are assumed to be selected from a smaller set
of prototype vectors {vj}pj=1, in which case each vj can be picked more
than one time (usually, m� p).

Let mj be the number of vectors ai equal to vj (or, by the same token,
the number of times the vector vj has been selected), with

m1 +m2 + . . .+mp = M

The error covariance matrix can then be expressed as

E =
( m∑
i=1

aia
T
i

)−1

=
( p∑
j=1

mjvjv
T
j

)−1

which now becomes a function of (m1, . . . ,mp), thereby allowing us to
consider

min
m1,...,mp

( p∑
j=1

mjvjv
T
j

)−1

s.t.
p∑
i=1

mi = M, mi ≥ 0, i = 1, 2, . . . , p

Unfortunately, this is a difficult integer problem.
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Relaxation

Define λ ∈ Rp with λi = mi/M be the relative frequency of the ith ex-
periment. The error covariance can then be expressed in terms of λ as

E =
1

M

( p∑
j=1

λjvjv
T
j

)−1

where all λi are positive and sum up to one (i.e., λ � 0 and 1Tλ = 1).

Consequently, the relaxed experiment design problem is defined as

min
λ

(w.r.t.Sn+) E =
1

M

( p∑
j=1

λjvjv
T
j

)−1

s.t. λ � 0, 1Tλ = 1

which is a convex optimization problem.

Given an optimal λ∗, the related m∗i can be recovered as

m∗i = round (λ∗i M), i = 1, . . . , p
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Covariance scalarization

Given an estimate x̂ of x, the error covariance E can be used to define
the α-confidence level ellipsoid as

E =
{
x | (x− x̂)TE−1(x− x̂) ≤ T

}
where T is a function of both α and n.
There are different ways of scalarization of E which lead to optimiza-
tion of various geometric properties of E .

Design Optimization Geometric
type problem meaning

D-optimal min
λ

log det
(∑p

j=1 λjvjv
T
j

)−1

minimizes the volume

design s.t. λ � 0, 1Tλ = 1 of E

E-optimal min
λ

∥∥∥(∑p
j=1 λjvjv

T
j

)−1∥∥∥
2

minimizes the diameter

design s.t. λ � 0, 1Tλ = 1 of E

A-optimal min
λ

tr
(∑p

j=1 λjvjv
T
j

)−1

minimizes the error

design s.t. λ � 0, 1Tλ = 1 variance
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Optimal design and duality

The dual of the D-optimal experiment design problem can be expressed
as

max
W∈Sn

++

log detW

s.t. vTi Wvi ≤ 1, i = 1, . . . , p

The optimal W ∗ defines the minimum volume ellipsoid {x |xTWx ≤ 1}
that is centred at zero and contains all the points v1, . . . , vp.

The optimal design only uses experi-
ments vi that lie on the surface of the
ellipsoid defined by W ∗.
In the figure, only the experiments v1,
..., v4 (red points) define the optimal
D-design.
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Example: Comparison of different designs

Consider a problem with x ∈ R2 and p = 20.
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Orthogonal projections

In a normed (linear) space with ‖ · ‖, the distance of x0 ∈ Rn to a
closed set C ⊆ Rn, is defined as

dist(x0, C) = inf {‖x− x0‖ | x ∈ C}

If for some z ∈ C, ‖z − x0‖ = dist(x0, C), then z is called a projection
of x0 onto C.

In general, there could be more than one projection, unless C is both
closed and convex.

Let PC : Rn → Rn be such that

PC(x0) ∈ C and ‖PC(x0)− x0‖ = dist(x0, C)

which implies that

PC(x0) = arg min
x∈C

{
‖x− x0‖

}
We refer to PC as the operator of projection on C.
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Examples

Projection on the unit `2-norm ball in Rn

PC(x) =

{
x, ‖x‖2 ≤ 1

x/‖x‖2, ‖x‖2 > 1

Projection on Rn
+

PC(x) = (x)+

Projection on C = {x | Ax = b} (A ∈ Rm×n, rank(A) = m > n )

PC(x) = x+AT (AAT )−1(b−Ax)

Projection on Sn+:

PC(X) =
n∑
i=1

max{λi, 0}qiqTi

where X =
∑n
i=1 λiqiq

T
i is the eigenvalue decomposition of X.
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Extremal volume ellipsoids

Suppose C ⊆ Rn is bounded, with int C 6= ∅.

The Löwner-John ellipsoid ELJ of the set C is the minimum volume
ellipsoid that contains C.

Recall that a general ellipsoid can be implicitly represented as

E = {v | ‖Av + b‖2 ≤ 1}

for some A ∈ Sn++ and b ∈ Rn.

Since the volume of E is proportional to detA−1, ELJ can be found by
solving

min
A,b

log detA−1

s.t. sup
v∈C
‖Av + b‖2 ≤ 1

Unfortunately, this (convex optimization) problem is tractable only in
certain special cases.
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Extremal volume ellipsoids (cont.)

As a special case, suppose C = {x1, . . . , xm} ∈ Rn. Then, ELJ can be
found by solving:

min
A,x

log detA−1

s.t. ‖Axi + b‖2 ≤ 1, i = 1, . . . ,m

which is a convex optimization problem with quadratic constraints.

The solution also gives the Löwner-John
ellipsoid for conv {x1, . . . , xm}.

When shrunk by a factor n, the Löwner-John ellipsoid is guaranteed to
lie inside of conv C. Moreover, if C is symmetric, then the factor 1/n
can be tightened to 1/

√
n.
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Maximum volume inscribed ellipsoid

Consider the problem of finding the ellipsoid of maximum volume that
lies inside a convex set C.

The ellipsoid can be explicitly parametrized as

E = {Bu+ d | ‖u‖2 ≤ 1}

for some B ∈ Sn++ and d ∈ Rn.

Hence, the maximum-volume ellipsoid inscribed in C can be found via
solving

max
B�0,d

log detB

s.t. sup
‖u‖2≤1

IC(Bu+ d) ≤ 0

where IC stands for the indicator function of C.

Again, this (convex optimization) problem is tractable only in certain
special cases.
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Maximum volume inscribed ellipsoid (cont.)

As a special case, consider C = {x | aTi x ≤ bi, i = 1, . . . ,m}.

In this case, the constraint is reduced to

sup
‖u‖2≤1

aTi (Bu+ d) ≤ bi ⇐⇒ ‖Bai‖2 + aTi d ≤ bi, i = 1, . . . ,m

The maximum volume ellipsoid can now
be found by solving

min
B�0,d

log detB−1

s.t. ‖Bai‖2 + aTi d ≤ bi, i = 1, . . . ,m

The maximum volume inscribed ellipsoid, expanded by a factor of n,
covers C. Again, this factor can be tightened to

√
n, if C is symmetric.
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Classification

In pattern recognition and classification problems we are given a set of
training samples

{x1, . . . , xN} ⊂ Rn and {y1, . . . , yM} ⊂ Rn

and wish to find a function f : Rn → R such that

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M

If found, {x | f(x) = 0} is said to separate or classify the two sets.
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Linear discrimination

In linear discrimination, we set f(x) = aTx− b so that{
aTxi − b > 0, i = 1, . . . , N

aT yi − b < 0, i = 1, . . . ,M

Geometrically, we seek a hyperplane that separates the two sets.

Alternatively, the above strict inequalities are feasible if and only if{
aTxi − b ≥ 1, i = 1, . . . , N

aT yi − b ≤ −1, i = 1, . . . ,M

are feasible.

In general, the two sets of points can be linearly discriminated if and
only if their convex hulls do not intersect.
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Robust linear discrimination

In robust liner discrimination, we seek f(x) = aTx− b that gives the
maximum possible “gap" between the two sets, viz.

max
a,b,t

t

s.t. aTxi − b ≥ t, i = 1, . . . , N

aTxi − b ≤ −t, i = 1, . . . ,M

‖a‖2 ≤ 1

If the sets are linearly separable, then t∗ > 0 and ‖a∗‖2 = 1.

t∗ is equal to 1/2 of the “slab" thickness.
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Support vector classifier

Suppose {x1, . . . , xN} and {y1, . . . , yM} cannot be linearly separated.

In this case we introduce u ∈ Rn
+ and v ∈ Rm

+ such that{
aTxi − b ≥ 1− ui, i = 1, . . . , N

aT yi − b ≤ −(1− vi), i = 1, . . . ,M

By making u and v large enough, the inequalities can always be made
feasible.

One can maximize the sparsity of u and v through

min
a,b,u,v

1Tu+ 1T v

s.t. aTxi − b ≥ 1− ui, i = 1, . . . , N

aTxi − b ≤ −(1− vi), i = 1, . . . ,M

u � 0, v � 0

In fact, this problem minimizes the number of points that violate either
aTi − b ≥ 1 or aTi − b ≤ −1.

ECE 602 - Section 7 Instructor: Dr. O. Michailovich, 2022 49/54



Example

In this example, aT z − b misclassifies 1 out of 100 points.
The dashed lines are the hyperplanes aT z − b = ±1.
Four points are correctly classified, but lie within the slab.
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Standard support vector classifier

The width of the slab {z | −1 ≤ aT z − b ≤ 1} is equal to 2/‖a‖2.

The standard support vector classifier is defined as the solution of

min
a,b,u,v

‖a‖2 + γ
(
1Tu+ 1T v

)
s.t. aTxi − b ≥ 1− ui, i = 1, . . . , N

aTxi − b ≤ −(1− vi), i = 1, . . . ,M

u � 0, v � 0

Here γ > 0 gives the relative weight of
the number of misclassified points com-
pared to the width of the slab.
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Nonlinear discrimination

In non-linear discrimination, we seek a nonlinear function f : Rn → R
such that

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M

In particular, in the case of quadratic discrimination, the feasibility
constraints are

xTi Pxi + qTxi + r > 0, i = 1, . . . , N

yTi Pyi + qT yi + r < 0, i = 1, . . . ,M

for some (variables) P ∈ Sn, q ∈ Rn, and r ∈ R.

Alternatively, one can solve a nonstrict feasibility problem of the form

xTi Pxi + qTxi + r ≥ 1, i = 1, . . . , N

yTi Pyi + qT yi + r ≤ −1, i = 1, . . . ,M

The separating surface {z | zTPz + qT z + r = 0} defines two classifica-
tion regions, viz.

{z | zTPz + qT z + r ≥ 0} and {z | zTPz + qT z + r ≤ 0}
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Nonlinear discrimination (cont.)

We can impose conditions on the shape of the separating surface. For
example, requiring P ≺ 0 will make the separating surface ellipsoidal.

The resulting problem can be solved as an SDP feasibility problem

find P, q, r

xTi Pxi + qTxi + r ≥ 1, i = 1, . . . , N

yTi Pyi + qT yi + r ≤ −1, i = 1, . . . ,M

P � −I

Another example of nonlinear discrimination corresponds to f defined
as a polynomial of the form

f(x) =
∑

i1+...+in≤d

ai1,...,inx
i1
1 · · ·x

in
n

where d is the degree of f .
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Example
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