ECE 602 — Section 8

Network Optimization (Part 1)

Instructor: Dr. O. Mic



GRAPHS AND FLOWS

A directed graph G = (N, A) consists of a set of nodes N and a set of
arcs A.

o In general, an arc (1, ) is viewed as an ordered pair (i.e., outgoing from
node i and incoming to node j).

A graph is said to be complete if it contains all possible arcs.

A path P is a sequence of nodes (n1,ns2,...,nx) and a related sequence
of k — 1 arcs such that the é-th arc is either (n;,ni;+1) (forward arc) or
(nit1,mi) (backward arc).

A path is called simple if it contains neither repeated arcs nor repeated
nodes.
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GRAPHS AND FLOWS (CONT.)

@ A cycle is a path for which the start and end nodes are the same.

o A Hamiltonian cycle is a simple forward cycle containing all the nodes

of G.

e A graph that contains no simple cycles is said to be acyclic.

Start Node @ @ @ ny End Node

(a) Asimple forward path P=(nq,nz,n3,ng).

Set of backward arcs C”
Set of forward arcs C*

(b) A simple cycle C=(n4, np, ng, n ) which is neither forward nor backward.
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GRAPHS AND FLOWS (CONT.)

@ G is connected if for each i and j, there is a path starting at ¢ and en-
ding at j. If such a path is forward, then G is strongly connected.

o G'= (N, A") is a subgraph of G = (N, A) if N/ C N and A" C A.
@ A tree is a connected acyclic graph.

o A spanning tree of G is a subgraph of G, which is a tree and includes all
the nodes of G.
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FLOW AND DIVERGENCE

o Given a graph (N, A), a set of flows {z;; | (i,7) € A} is referred to as a
flow vector.

o The divergence vector y associated with a flow vector x is defined as
Yi = Z Tij — Z Tji, Vi eN
{71(i,5) €A} {7l(i,5) €A}
o If y; > 0, then 7 is a source. If y; < 0, then i is a sink. If y; = 0 for all

i, then x is a circulation.

o Every divergence vector y must satisfy

D yi=0
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ExXAMPLE: MINIMUM COST FLOW PROBLEM

@ The minimum cost flow problem can be formulated as follows:

minimize E QijTij

(i,j)€A
subject to Z Tij — Z Tji =8, VieN
{7l(i,5) €A} {7l(i,5) €A}

lij <aiy <wig, Y(,j) €A

o Here a;; are cost coefficients, while l;; and u;; are flow bounds. Also, s;
(resp. —s;) is referred to as the supply (resp. demand) of node i.

o The constraints are known as the conservation of flow constraints and
the capacity constraints, respectively.

o If there exists at least one feasible flow vector, the minimum cost flow
problem is called feasible.
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EXAMPLE: SHORTEST PATH PROBLEM

o Given a pair of nodes, the shortest path problem is to find a forward
path that connects these nodes and has minimum cost (path length).

o The problem of finding the shortest path from node s to node ¢ can be

defined as:
minimize Z Qi Tij
(i,7)€A
1 ifi=s
subject to Z Tij — Z rxji=4—-1 ifi=t¢t
{il(i,4)e A} {l(i,4)e A} 0 otherwise

r; >0, V(i,j) €A

o It can be shown that if this problem has an optimal solution, then the
latter has the form of

S 1 if (¢,4) belongs to P
Y710 otherwise

with the corresponding path P being the shortest.
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EXAMPLE: ASSIGNMENT PROBLEM

The assignment problem consists in assigning n objects to n persons,
with a;; being a value for matching person ¢ with object j.

o Our goal is to maximize the total benefit of the assignment.

o Any assignment can be associated with {z;; | (i,7) € A}, where z;; = 1
if person i is assigned to object j and z;; = 0 otherwise.

o The assignment problem can then be formulated as

maximize E Qi Tij

(i,j)€A
subject to Z iy =1, Vi=1,...,n
{7l(i,5)€A}
Z CL‘Z‘jIL Vj:l,..47n
{il(i,5)e A}

0<zy <1, V(Z,j)GA

o The optimal solution of the above (“relaxed") problem can be shown to
satisfy «7; € {0,1}.
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ExXAMPLE: MAX-FLOW PROBLEM

o In the maz-flow problem, the objective is to move as much flow as pos-
sible from s (source) into ¢ (sink).

o We want to find a flow vector that makes the divergence of all nodes
other than s and ¢ equal to 0 while maximizing the divergence of s.

@ The problem can be formulated as follows:

maximize s

subject to Z Tij — Z zji =0, VieN\{s t}

{ilG,5)eA} {ilG,5)eA}
Z Tsj = Z Tit = Tts
{3l(s,5)eA} {il(i,t)eA}

lij < zi; < uij, V(Z,]) € A with (Z,j) #* (t, S)

where we introduced an artificial arc (¢, s) with cost —1.

o At the optimum, the flow x:s equals the maximum flow that can be
sent from s to ¢t (with the artificial arc (s,t) removed).
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NETWORK FLOW PROBLEMS WITH CONVEX COST

@ A more general version of the minimum cost flow problem arises when
the cost function is convez rather than linear.

minimize Z fij(zi5)

(i,j)€A
subject to Z Tij — Z Tji =8, VieN
{ilGi,5)eA} {71(.5)e A}

Tij € Xij, V(Z,]) cA
where f;; are convex functions and X;; are convex intervals.

@ This problem is commonly referred to as the separable convex cost net-
work flow problem.

o More generally, such problems can be represented as

minimize f(z)

subject to x € F

where F' is a convex subset of flow vectors in a graph and f is a convex
function over F'.
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ExXAMPLE: MATRIX BALANCING PROBLEM

o In the matriz balancing problem, the goal is to find an m X n matrix X
that has given row and column sums, and is close to a given matrix M.

@ Such a problem can be formulated in terms of a graph consisting of m
sources and n sinks.

o In this case, A consists of the pairs (, j) for which x;; of X is allowed
to be nonzero.

R 2
minimize E wij(xij — mij)

(i,5)€A
subject to Z Tij =1, Vi=1,...,m
{3l(i,5)€A}
Z Tij = Cj, Vj:l,...,n
{il(i,)e A}

o Example: prediction of the distribution matrix X of telephone traffic
between m origins and n destinations (based on historic data given by

M).
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EXAMPLE: TRAVELING SALESMAN PROBLEM

@ Objective: to find a minimum mileage/cost tour that visits each of N
given cities exactly once and returns to the origin.

o Essentially, the problem is to find a Hamiltonian cycle with minimum
sum of arc costs.

o Let z;; € {0,1} be the flow of arc (i, j), indicating whether or not it is
part of the tour.

@ Then, the problem can be formulated as follows:

minimize g Qi Tij
(4,5)€T

N
subject to Z zi; =1, Vi=1,...,N
J=1,j#i

N
> owy=1, Vj=1,...,N
i=1,i#]

and that the subgraph with node set N and arc set {(z,7) | zi; = 1} is
connected.

@ The last constraint makes the problem very difficult to solve.
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THE SHORTEST PATH PROBLEMS

o The shortest path problem is a classical and important combinatorial
problem.

o Given a directed graph G, the length of a forward path (i1,2,...,ix) is
defined as
k—1
Z Qi1
n=1

o The path is called shortest if it has minimum length over all forward
paths with the same origin and destination nodes.

o The shortest path problem appears in a large variety of contexts (e.g.,
communication, routing in data networks, scheduling and sequencing,
project management, paragraphing, etc.)

ECE 602 - 8 Instructor: Dr. O. Michailovich, 2024



A GENERIC SHORTEST PATH ALGORITHM

o We focus on algorithms for a single origin/all destinations problem.

e Many such algorithms maintain and adjust a vector (di,...,dn), with
d; being the label of node j.

o Using the labels is motivated by the following optimality condition.

Proposition

Let d1,ds, . ..,dn be scalars satisfying d; < d; + a;; for all (4, j) € A and let
P be a path starting at a node i1 and ending at a node ix. If dj = d; + a;;
for all arcs (i,7) € P, then P is a shortest path from i1 to ix.

o The above conditions are called the complementary slackness (CS)
conditions for the shortest path problem.

o In fact, one can show that the scalars d; are related to dual variables.
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A GENERIC SHORTEST PATH ALGORITHM (CONT.)

@ A generic shortest path method consists in successively selecting (4, 7)
such that d; > d; + as;, and then setting d; := d; + ai;.

o The iterations are continued until the CS condition d; < d; + a;; is sa-
tisfied for all arcs (3, j).

ALGORITHM: Generic shortest path algorithm

starting with V ={1},di1 =0,do = ... =dy =0

repeat
1. Remove a node i from the candidate list V.
2. For each outgoing arc (i, ) € A: if d;j > d; + aij, set d;j := d; + ai;.
3. Add j to V if it does not already belong to V.

until V' is empty.

o Essentially, the method finds successively better paths from the origin
to various destinations.
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EXAMPLE

Iteration # | Candidate List V | Node Labels | Node out of V
1 {1} (0, 00, 00, 00) 1
2 {2,3} (0,3,1,00) 2
3 {3,4} (0,3,1,5) 3
4 {4,2} (0,2,1,4) 4
5 {2} (0,2,1,4) 2
a (0,2,1,4)
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BELLMAN’S EQUATION

o The algorithm terminates if and only if there is no path that starts at
1 and contains a cycle with negative length.

o The generic algorithm is guaranteed to terminate if: 1) all cycles have
nonnegative lengths and 2) 3 a path from node 1 to every node j.

o Upon termination, all labels d; are equal to the corresponding shortest
distances, and satisfy di = 0 and

dj = min {di +ai;}, Vj#1
(i,7)€A
o This is known as Bellman’s equation.

o It means that if P; is a shortest path from 1 to j, and ¢ € P;, then the
portion of P; from 1 to ¢, is a shortest path from 1 to 4.
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SHORTEST PATH CONSTRUCTION

ALGORITHM: Reconstructing the shortest path

starting with optimal labels (d1,ds,...,dN)
repeat
1. Vj # 1, select (4, j) that attains minimum in d; = min(; jye a{d: + as;}.
2. Consider the subgraph consisting of the resulting N — 1 arcs.
3. For any j, start from j and follow the corresponding arcs of the sub-
graph backward until node 1 is reached.

0,=2

Origin
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IMPLEMENTATIONS OF THE GENERIC ALGORITHM

@ There are many implementations of the generic algorithm.
o They differ in how they select i to be removed from V.

o Broadly speaking, we have label setting methods and label correcting
methods.

o There are several worst-case complexity bounds for both groups of
methods.

o In practice, when the arc lengths are nonnegative, the best label set-
ting methods and the best label correcting methods are competitive.

o As a general rule, a sparse graph favours the use of a label correcting
over a label setting method

o Label correcting methods are more general, since they do not require
nonnegativity of the arc lengths.
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LABEL SETTING (DIJKSTRA) METHODS

ALGORITHM: Dijkstra algorithm

starting with V = {1}, d; =0,d2 = ... =dy =0

repeat
1. Remove from V a node ¢ such that d; = minjev d; .
2. For each outgoing arc (i,7) € A: if dj > d; + aij, set dj := d; + aq;.
3. Add j to V if it does not already belong to V.

until V' is empty.

For any iteration of the algorithm and W = {i | i < 00,7 ¢ V'}, we have:
@ No node belonging to W at the start of the iteration will enter V' du-
ring the iteration.
@ At the end of the iteration, we have d; < d; for all i € W and j ¢ W.
@ Assuming a;; > 0, once a node enters W, it stays in W and its label

does not change further (hence W is called a set of permanently labeled
nodes).

@ The best estimates of the worst-case running time are O(A 4+ N log N)
and O(A + N+/log C), where C is the range of a;.
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EXAMPLE

Origin

Iteration # |Candidate List V | Node Labels |Node out of V'
1 {1} (0, co, 00, 00, 00) 1
2 {2,3} (0,2, 1, 00, 00) 3
3 {2,4} (0,2,1,4,00) 2
4 {4,5} 0,2,1,3,2) 5
5 {4} 0,2,1,3,2) 4
7] (0,2,1,3,2)
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LABEL CORRECTING METHODS

@ Such methods use simpler rules for removal of the nodes from the can-
didate list V' (hence less overhead).

@ Yet, this is done at the expense of multiple entrances of nodes in V.

o All of these methods use some type of a queue to maintain V' (in fact,
the methods differ in the way the queue is structured).

o The simplest (Bellman-Ford) label correcting method uses a first-in
first-out rule to update the queue.

o The running time of the Bellman-Ford method is O(NA).

o Alternative methods include the D’Esopo-Pape algorithm, the SLF and
LLL algorithms, the threshold algorithm, and their variations.
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SINGLE ORIGIN/SINGLE DESTINATION METHODS

@ When using the label setting method, we can stop it when the desti-
nation ¢t becomes permanently labeled.

o If t is closer to the origin than many other nodes, the saving in com-
putation time will be significant.

o Another possibility is to use a two-sided label setting method.

o In this case, when a node gets permanently labeled from both sides,
the labeling can stop.

@ A shortest path can then be obtained by combining the forward and
backward paths of each labeled node and by comparing the resulting
origin-to-destination paths.

o Unfortunately, the approach does not work when there are multiple
destinations.

@ Some adaptations of label correcting methods are available as well.
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AUCTION ALGORITHMS

o The algorithm maintains a path P = ((s,41), (i1,%2), ..., ({k—1, %)) with
no cycles, and modifies P using two operations, extension and contrac-
tion.

@ If 4441 is not on P and (ik,ix+1) is an arc, an extension of P by k41
replaces P by ((s,i1), (i1,%2), -, (tk—1,%k), (P&, tkt1))-

o If P does not consist of just the origin node s, a contraction of P repla-
ces P by ((S, 1.1)7 (il, ig), ey (ik_z, ik_1)).

o For each 4, we introduce the price p; of node i.

@ The algorithm maintains a price vector p satisfying

pi < aij + pj, for all arcs (1, j)
pi = a5 + pj, for all arcs of P

o It is equivalent to the CS condition, if p; is viewed as the negative of d;.
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AUCTION ALGORITHMS (CONT.)

o We assume that a;; > 0 and the initial pair (P, p) satisfies CS (e.g.,
P = (s) and p; = 0 for all 7).

@ We also assume that all cycles have positive length (can be relaxed).

o The algorithm iteratively transforms a pair (P, p) satisfying CS into
another pair satisfying CS.

ALGORITHM: Auction algorithm

starting with (P, p) satisfying CS
repeat
1. Let @ be the terminal node of P.
2. if pi < ming((i jea{ai; +ps}
set p; := ming;|; jyeay{ai; + p;} and contract P (if i # s).
else
extend P by j; where j; := argming;|; jyeay{ai + pj}-
end
until j; is the destination ¢.
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XAMPLE

Iteration # |Path P prior | Price vector p prior | Type of action
to iteration to iteration during iteration
1 (1) (0,0,0,0) contraction at 1
2 (1) (1,0,0,0) extension to 2
3 (1,2) (1,0,0,0) contraction at 2
SIS g 4 (1) (1,1.5,0,0) contraction at 1
5 (1) (2,1.5,0,0) extension to 3
6 (1,3) (2,1.5,0,0) contraction at 3
Shortest path problem with arc Trajectory of terminal node 7 (O (2,1.5,3,0) contraction at 1
lengths as shown and final prices generated by 8 (1) (2.5,1.5,3,0) extension to 2
the algorithm
9 (1,2) (2.5,1.5,3,0) extension to 4
10 (1,2,4) (2.5,1.5,3,0) stop

One can see that the terminal node traces the tree of shortest paths from s
to the nodes that are closer to s than the given destination t.




THE AUCTION ALGORITHM: PROS AND CONS

Proposition

If there is at least one path from s to ¢, the auction algorithm terminates
with a shortest path s to t. Otherwise the algorithm never terminates and
Ds — 00.

e A drawback of the auction algorithm is that its running time depends
on the arc lengths (particularly bad performance for graphs involving a
cycle with relatively small length).

o It is possible to turn the algorithm into one that is polynomial by using
an additional reduction operation.

@ The reduction allows deleting some unnecessary arcs without affecting
the shortest distance from s to ¢.

@ Running the algorithm until every destination becomes the terminal
node of the path allows dealing with the case of multiple destinations
(single origin).
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THE AUCTION ALGORITHM: GRAPHICAL INTERPRETATION

Shortest path problem with

arc lengths shown next to the arcs.
Node 1 is the origin.

Node 4 is the destination.

p; =25

p, =15

p3 =05

Py =0

o In (b): The CS condition p; — p; < a;; clearly holds for all (3, j).
o In (c): We have p; — p; = a,; for all the “tight strings".
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THE FLOYD-WARSHALL ALGORITHM

o Consider the all-pairs shortest path problem.
o Starting with

oo  otherwise

a;; if (7,7]) cA

for each 7 and j and each £ =0,1,..., N — 1, generate sequentially

pFL min{ D{j, Df(k+1) + Déck+1)j} ifis#j
” o0 otherwise

° ij gives the shortest distance from i to j using only nodes from 1 to k
as intermediate nodes.

o Thus, Dﬁ gives the shortest distance from 4 to j (total running time is
O(N?)).

o Unfortunately, the Floyd-Warshall algorithm cannot take advantage of
sparsity of the graph.

o In such a case, it is typically better to apply a single origin/all destina-
tions algorithm separately for each origin.
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