
ECE 602 – Section 8
Network Optimization (Part 1)

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 1/29



Graphs and flows

A directed graph G = (N ,A) consists of a set of nodes N and a set of
arcs A.

In general, an arc (i, j) is viewed as an ordered pair (i.e., outgoing from
node i and incoming to node j).

A graph is said to be complete if it contains all possible arcs.

A path P is a sequence of nodes (n1, n2, . . . , nk) and a related sequence
of k − 1 arcs such that the i-th arc is either (ni, ni+1) (forward arc) or
(ni+1, ni) (backward arc).

A path is called simple if it contains neither repeated arcs nor repeated
nodes.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 2/29



Graphs and flows (cont.)

A cycle is a path for which the start and end nodes are the same.

A Hamiltonian cycle is a simple forward cycle containing all the nodes
of G.

A graph that contains no simple cycles is said to be acyclic.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 3/29



Graphs and flows (cont.)

G is connected if for each i and j, there is a path starting at i and en-
ding at j. If such a path is forward, then G is strongly connected.

G′ = (N ′,A′) is a subgraph of G = (N ,A) if N ′ ⊂ N and A′ ⊂ A.

A tree is a connected acyclic graph.

A spanning tree of G is a subgraph of G, which is a tree and includes all
the nodes of G.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 4/29



Flow and divergence

Given a graph (N ,A), a set of flows {xij | (i, j) ∈ A} is referred to as a
flow vector.

The divergence vector y associated with a flow vector x is defined as

yi =
∑

{j|(i,j)∈A}

xij −
∑

{j|(i,j)∈A}

xji, ∀i ∈ N

If yi > 0, then i is a source. If yi < 0, then i is a sink. If yi = 0 for all
i, then x is a circulation.

Every divergence vector y must satisfy∑
i∈N

yi = 0

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 5/29



Example: Minimum cost flow problem

The minimum cost flow problem can be formulated as follows:

minimize
∑

(i,j)∈A

aijxij

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(i,j)∈A}

xji = si, ∀i ∈ N

lij ≤ xij ≤ uij , ∀(i, j) ∈ A

Here aij are cost coefficients, while lij and uij are flow bounds. Also, si
(resp. −si) is referred to as the supply (resp. demand) of node i.

The constraints are known as the conservation of flow constraints and
the capacity constraints, respectively.

If there exists at least one feasible flow vector, the minimum cost flow
problem is called feasible.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 6/29



Example: Shortest path problem

Given a pair of nodes, the shortest path problem is to find a forward
path that connects these nodes and has minimum cost (path length).
The problem of finding the shortest path from node s to node t can be
defined as:

minimize
∑

(i,j)∈A

aijxij

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(i,j)∈A}

xji =


1 if i = s

−1 if i = t

0 otherwise

xij ≥ 0, ∀(i, j) ∈ A

It can be shown that if this problem has an optimal solution, then the
latter has the form of

xij =

{
1 if (i, j) belongs to P

0 otherwise

with the corresponding path P being the shortest.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 7/29



Example: Assignment problem

The assignment problem consists in assigning n objects to n persons,
with aij being a value for matching person i with object j.
Our goal is to maximize the total benefit of the assignment.
Any assignment can be associated with {xij | (i, j) ∈ A}, where xij = 1
if person i is assigned to object j and xij = 0 otherwise.
The assignment problem can then be formulated as

maximize
∑

(i,j)∈A

aijxij

subject to
∑

{j|(i,j)∈A}

xij = 1, ∀i = 1, . . . , n

∑
{i|(i,j)∈A}

xij = 1, ∀j = 1, . . . , n

0 ≤ xij ≤ 1, ∀(i, j) ∈ A

The optimal solution of the above (“relaxed") problem can be shown to
satisfy x∗ij ∈ {0, 1}.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 8/29



Example: Max-flow problem

In the max-flow problem, the objective is to move as much flow as pos-
sible from s (source) into t (sink).
We want to find a flow vector that makes the divergence of all nodes
other than s and t equal to 0 while maximizing the divergence of s.
The problem can be formulated as follows:

maximize xts

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(i,j)∈A}

xji = 0, ∀i ∈ N\{s, t}

∑
{j|(s,j)∈A}

xsj =
∑

{i|(i,t)∈A}

xit = xts

lij ≤ xij ≤ uij , ∀(i, j) ∈ A with (i, j) 6= (t, s)

where we introduced an artificial arc (t, s) with cost −1.
At the optimum, the flow xts equals the maximum flow that can be
sent from s to t (with the artificial arc (s, t) removed).

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 9/29



Network flow problems with convex cost

A more general version of the minimum cost flow problem arises when
the cost function is convex rather than linear.

minimize
∑

(i,j)∈A

fij(xij)

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(i,j)∈A}

xji = si, ∀i ∈ N

xij ∈ Xij , ∀(i, j) ∈ A

where fij are convex functions and Xij are convex intervals.

This problem is commonly referred to as the separable convex cost net-
work flow problem.

More generally, such problems can be represented as

minimize f(x)

subject to x ∈ F

where F is a convex subset of flow vectors in a graph and f is a convex
function over F .

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 10/29



Example: Matrix balancing problem

In the matrix balancing problem, the goal is to find an m× n matrix X
that has given row and column sums, and is close to a given matrix M .
Such a problem can be formulated in terms of a graph consisting of m
sources and n sinks.
In this case, A consists of the pairs (i, j) for which xij of X is allowed
to be nonzero.

minimize
∑

(i,j)∈A

wij(xij −mij)
2

subject to
∑

{j|(i,j)∈A}

xij = ri, ∀i = 1, . . . ,m

∑
{i|(i,j)∈A}

xij = cj , ∀j = 1, . . . , n

Example: prediction of the distribution matrix X of telephone traffic
between m origins and n destinations (based on historic data given by
M).

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 11/29



Example: Traveling salesman problem

Objective: to find a minimum mileage/cost tour that visits each of N
given cities exactly once and returns to the origin.
Essentially, the problem is to find a Hamiltonian cycle with minimum
sum of arc costs.
Let xij ∈ {0, 1} be the flow of arc (i, j), indicating whether or not it is
part of the tour.
Then, the problem can be formulated as follows:

minimize
∑

(i,j)∈T

aijxij

subject to
N∑

j=1,j 6=i

xij = 1, ∀i = 1, . . . , N

N∑
i=1,i 6=j

xij = 1, ∀j = 1, . . . , N

and that the subgraph with node set N and arc set {(i, j) | xij = 1} is
connected.
The last constraint makes the problem very difficult to solve.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 12/29



The shortest path problems

The shortest path problem is a classical and important combinatorial
problem.

Given a directed graph G, the length of a forward path (i1, i2, . . . , ik) is
defined as

k−1∑
n=1

ainin+1

The path is called shortest if it has minimum length over all forward
paths with the same origin and destination nodes.

The shortest path problem appears in a large variety of contexts (e.g.,
communication, routing in data networks, scheduling and sequencing,
project management, paragraphing, etc.)

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 13/29



A generic shortest path algorithm

We focus on algorithms for a single origin/all destinations problem.
Many such algorithms maintain and adjust a vector (d1, . . . , dN ), with
dj being the label of node j.
Using the labels is motivated by the following optimality condition.

Proposition

Let d1, d2, . . . , dN be scalars satisfying dj ≤ di + aij for all (i, j) ∈ A and let
P be a path starting at a node i1 and ending at a node ik. If dj = di + aij

for all arcs (i, j) ∈ P , then P is a shortest path from i1 to ik.

The above conditions are called the complementary slackness (CS)
conditions for the shortest path problem.
In fact, one can show that the scalars di are related to dual variables.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 14/29



A generic shortest path algorithm (cont.)

A generic shortest path method consists in successively selecting (i, j)
such that dj > di + aij , and then setting dj := di + aij .
The iterations are continued until the CS condition dj ≤ di + aij is sa-
tisfied for all arcs (i, j).

ALGORITHM: Generic shortest path algorithm

starting with V = {1}, d1 = 0, d2 = . . . = dN =∞
repeat

1. Remove a node i from the candidate list V .
2. For each outgoing arc (i, j) ∈ A: if dj > di + aij , set dj := di + aij .
3. Add j to V if it does not already belong to V .

until V is empty.

Essentially, the method finds successively better paths from the origin
to various destinations.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 15/29



Example

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 16/29



Bellman’s equation

The algorithm terminates if and only if there is no path that starts at
1 and contains a cycle with negative length.
The generic algorithm is guaranteed to terminate if: 1) all cycles have
nonnegative lengths and 2) ∃ a path from node 1 to every node j.
Upon termination, all labels dj are equal to the corresponding shortest
distances, and satisfy d1 = 0 and

dj = min
(i,j)∈A

{di + ai,j}, ∀j 6= 1

This is known as Bellman’s equation.
It means that if Pj is a shortest path from 1 to j, and i ∈ Pj , then the
portion of Pj from 1 to i, is a shortest path from 1 to i.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 17/29



Shortest path construction

ALGORITHM: Reconstructing the shortest path

starting with optimal labels (d1, d2, . . . , dN )
repeat

1. ∀j 6= 1, select (i, j) that attains minimum in dj = min(i,j)∈A{di + aij}.
2. Consider the subgraph consisting of the resulting N − 1 arcs.
3. For any j, start from j and follow the corresponding arcs of the sub-
graph backward until node 1 is reached.

The above subgraph is known as a shortest path spanning tree.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 18/29



Implementations of the generic algorithm

There are many implementations of the generic algorithm.
They differ in how they select i to be removed from V .
Broadly speaking, we have label setting methods and label correcting
methods.
There are several worst-case complexity bounds for both groups of
methods.
In practice, when the arc lengths are nonnegative, the best label set-
ting methods and the best label correcting methods are competitive.
As a general rule, a sparse graph favours the use of a label correcting
over a label setting method
Label correcting methods are more general, since they do not require
nonnegativity of the arc lengths.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 19/29



Label setting (Dijkstra) methods

ALGORITHM: Dijkstra algorithm

starting with V = {1}, d1 = 0, d2 = . . . = dN =∞
repeat

1. Remove from V a node i such that di = minj∈V dj .
2. For each outgoing arc (i, j) ∈ A: if dj > di + aij , set dj := di + aij .
3. Add j to V if it does not already belong to V .

until V is empty.

For any iteration of the algorithm and W = {i | i <∞, i /∈ V }, we have:
1 No node belonging to W at the start of the iteration will enter V du-

ring the iteration.
2 At the end of the iteration, we have di ≤ dj for all i ∈W and j /∈W .
3 Assuming aij ≥ 0, once a node enters W , it stays in W and its label

does not change further (hence W is called a set of permanently labeled
nodes).

4 The best estimates of the worst-case running time are O(A+N logN)
and O(A+N

√
logC), where C is the range of aij .

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 20/29



Example

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 21/29



Label correcting methods

Such methods use simpler rules for removal of the nodes from the can-
didate list V (hence less overhead).
Yet, this is done at the expense of multiple entrances of nodes in V .
All of these methods use some type of a queue to maintain V (in fact,
the methods differ in the way the queue is structured).
The simplest (Bellman-Ford) label correcting method uses a first-in
first-out rule to update the queue.
The running time of the Bellman-Ford method is O(NA).
Alternative methods include the D’Esopo-Pape algorithm, the SLF and
LLL algorithms, the threshold algorithm, and their variations.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 22/29



Single origin/single destination methods

When using the label setting method, we can stop it when the desti-
nation t becomes permanently labeled.
If t is closer to the origin than many other nodes, the saving in com-
putation time will be significant.
Another possibility is to use a two-sided label setting method.
In this case, when a node gets permanently labeled from both sides,
the labeling can stop.
A shortest path can then be obtained by combining the forward and
backward paths of each labeled node and by comparing the resulting
origin-to-destination paths.
Unfortunately, the approach does not work when there are multiple
destinations.
Some adaptations of label correcting methods are available as well.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 23/29



Auction algorithms

The algorithm maintains a path P = ((s, i1), (i1, i2), ..., (ik−1, ik)) with
no cycles, and modifies P using two operations, extension and contrac-
tion.
If ik+1 is not on P and (ik, ik+1) is an arc, an extension of P by ik+1

replaces P by ((s, i1), (i1, i2), . . . , (ik−1, ik), (ik, ik+1)).
If P does not consist of just the origin node s, a contraction of P repla-
ces P by ((s, i1), (i1, i2), . . . , (ik−2, ik−1)).
For each i, we introduce the price pi of node i.
The algorithm maintains a price vector p satisfying

pi ≤ aij + pj , for all arcs (i, j)
pi = aij + pj , for all arcs of P

It is equivalent to the CS condition, if pi is viewed as the negative of di.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 24/29



Auction algorithms (cont.)

We assume that aij > 0 and the initial pair (P, p) satisfies CS (e.g.,
P = (s) and pi = 0 for all i).
We also assume that all cycles have positive length (can be relaxed).
The algorithm iteratively transforms a pair (P, p) satisfying CS into
another pair satisfying CS.

ALGORITHM: Auction algorithm

starting with (P, p) satisfying CS
repeat

1. Let i be the terminal node of P .
2. if pi < minj|(i,j)∈A{aij + pj}

set pi := min{j|(i,j)∈A}{aij + pj} and contract P (if i 6= s).
else

extend P by ji where ji := argmin{j|(i,j)∈A}{aij + pj}.
end

until ji is the destination t.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 25/29



Example

One can see that the terminal node traces the tree of shortest paths from s
to the nodes that are closer to s than the given destination t.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 26/29



The auction algorithm: pros and cons

Proposition

If there is at least one path from s to t, the auction algorithm terminates
with a shortest path s to t. Otherwise the algorithm never terminates and
ps →∞.

A drawback of the auction algorithm is that its running time depends
on the arc lengths (particularly bad performance for graphs involving a
cycle with relatively small length).
It is possible to turn the algorithm into one that is polynomial by using
an additional reduction operation.
The reduction allows deleting some unnecessary arcs without affecting
the shortest distance from s to t.
Running the algorithm until every destination becomes the terminal
node of the path allows dealing with the case of multiple destinations
(single origin).

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 27/29



The auction algorithm: graphical interpretation

In (b): The CS condition pi − pj ≤ aij clearly holds for all (i, j).
In (c): We have pi − pj = aij for all the “tight strings".

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 28/29



The Floyd-Warshall algorithm

Consider the all-pairs shortest path problem.
Starting with

D0
ij =

{
ai,j if (i, j) ∈ A
∞ otherwise

for each i and j and each k = 0, 1, . . . , N − 1, generate sequentially

Dk+1
ij =

{
min{Dk

ij , D
k
i(k+1) +Dk

(k+1)j} if i 6= j

∞ otherwise

Dk
ij gives the shortest distance from i to j using only nodes from 1 to k

as intermediate nodes.
Thus, DN

ij gives the shortest distance from i to j (total running time is
O(N3)).
Unfortunately, the Floyd-Warshall algorithm cannot take advantage of
sparsity of the graph.
In such a case, it is typically better to apply a single origin/all destina-
tions algorithm separately for each origin.

ECE 602 - Section 8 Instructor: Dr. O. Michailovich, 2024 29/29


