
ECE 602 – Section 9
Network Optimization (Part 2)
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The max-flow problems

Objective: maximize the divergence out of s over all capacity-feasible
flow vectors x having zero divergence for all i ∈ N\{s, t}.

Recall that “capacity-feasible" means

lij ≤ xij ≤ uij , ∀(i, j) ∈ A

The key idea: A feasible flow x can be improved if we can find a path
from s to t that is unblocked with respect to x.

Note: pushing a positive increment of flow along such a path results in
larger divergence out of s (i.e., ys), while maintaining flow feasibility.

The reverse is correct too: if we cannot find an unblocked path from s
to t, the current flow is maximal.
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Some definitions

A cut Q in a graph (N ,A) is a partition of N into S and T := N\S,
namely Q = [S, T ]. In general, [S, T ] 6= [T ,S].

Let Q+ and Q− be the sets of forward and backward arcs of the cut Q,
respectively, defined as

Q+ = {(i, j) ∈ A | i ∈ S, j ∈ T }

Q− = {(i, j) ∈ A | i ∈ T , j ∈ S}

Q is called non-empty if Q+ ∪Q− 6= ∅ (otherwise, it is called empty).
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Some definitions (cont.)

Given x, the flux across a nonempty cut Q is defined as

F (Q) =
∑

(i,j)∈Q+

xij −
∑

(i,j)∈Q−

xij =
∑
i∈S

yi

where y is the vector of divergences.
Given lower and upper flow bounds lij and uij , the capacity of a non-
empty cut Q is

C(Q) =
∑

(i,j)∈Q+

uij −
∑

(i,j)∈Q−

lij

For any capacity-feasible x, F (Q) ≤ C(Q). If F (Q) = C(Q), then Q is
said to be a saturated cut with respect to x.
The flow of each forward (backward) arc of such a cut must be at its
upper (lower) bound.

Proposition

Let x be capacity-feasible, and let s and t be two nodes. Then, either (1) ∃
a simple path from s to t which is unblocked w.r.t. x, or (2) ∃ a saturated
cut that separates s from t.
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The max flow/min-cut theorem

Consider the max-flow problem, where we want to maximize ys over all
capacity-feasible x for which yi = 0 if i ∈ N\{s, t}.
Given any such x and any cut Q separating s from t, we have

ys = F (Q) ≤ C(Q)

Thus, if the max-flow problem is feasible, we have

Maximum Flow ≤ C(Q)

The max-flow/min-cut theorem asserts that equality is attained for
some Q.

The max flow/min-cut theorem
(a) If x∗ is an optimal solution of the max-flow problem, then ys

correspon- ding to x∗ is equal to the minimum cut capacity over all Q
separating s from t.

(b) If lij = 0, ∀(i, j), the max-flow problem has an optimal solution, and
the maximal ys is equal to the minimum cut capacity over all Q
separating s from t.
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The Ford-Fulkerson algorithm

The key idea: given a feasible x and a path P from s to t that is un-
blocked w.r.t. x, we can increase xij over P+ and decrease xij over P−.
The maximum increment of flow change is

δ = min
{
{uij − xij | (i, j) ∈ P+}, {xij − lij | (i, j) ∈ P−}

}
The resulting flow vector x̄ is given by

x̄ij =


xij + δ if (i, j) ∈ P+

xij − δ if (i, j) ∈ P−

xij otherwise

x̄ is feasible, and it has ys that is larger by δ than ys related to x.
The operation of replacing x by x̄ is called a flow augmentation along
P .
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The Ford-Fulkerson algorithm (cont.)

The Ford-Fulkerson algorithm exploits the unblocked path search algo-
rithm, which terminates with either (1) a simple path from s to t that
is unblocked w.r.t. a given x or (2) a saturated cut Q that separates s
from t.

ALGORITHM: The Ford-Fulkerson algorithm

starting with a capacity-feasible x (e.g., xij = 0, if lij = 0)
repeat

1. Use the unblocked path search method.
2. if an unblocked path P (s→ t) w.r.t. x is found, then augment P .

until a saturated cut separating s from t is found.

At each augmentation, the algorithm improves the primal cost by δ.
Thus, if δ ≥ D > 0, the algorithm can execute only a finite number of
iterations.
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Example
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Network problems with integer constraints

Let’s consider again the general nonlinear network problem

minimize f(x)

subject to x ∈ F

where F is a feasible set of the form

F =
{
x ∈ X |

∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀i ∈ N
}

and f : F → R is a given function.

We are interested in variations of the above problem which include ad-
ditional integer contraints.

Some examples of such problems are:
1 traveling salesman problem
2 fixed charge problems (e.g., the facility section problem)
3 minimum weight spanning tree problem
4 matching problems (e.g., the bipartite matching problem)
5 vehicle routing problems
6 arc routing problems (e.g., the Chinese postman problem)
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Branch-and-bound

The branch-and-bound algorithm implicitly enumerates all the feasible
solutions, using calculations where the integer constraints are relaxed.

Let’s assume that the feasible set F is finite.

The branch-and-bound tree is an acyclic graph, whose nodes are defined
by a collection F of subsets of F . Specifically,

1 F ∈ F (i.e., the set of all feasible solutions is a node).
2 If x is feasible, then {x} ∈ F .
3 If Y ∈ F is not a singleton, ∃Y1, Y2, . . . , Yn ∈ F (disjoint sets) such

that

Y =
n⋃
i=1

Yi

In this case, Y is said to be the parent of Y1, Y2, . . . , Yn, while the
latter are called the descendants (or children) of Y .

4 Each Y ∈ F\{F} has a parent.
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Example: Branch-and-bound tree

The arcs of the graph are those that connect parents Y and their children
Yi.
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Branch-and-bound (cont.)

Key assumption: There is an algorithm that calculates
1 A lower bound fY ≤ minx∈Y f(x), for any (nonterminal) Y ∈ F .
2 A feasible x̄ ∈ Y such that f(x̄) upper bounds the optimal cost of

the original problem minx∈F f(x).

Main idea: Discard the nodes/branches of F that have no chance of
containing x∗.

To organize the search, the algorithm maintains a node list OPEN, and
a scalar UPPER.

Initially, OPEN = {F} and UPPER = ∞.
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Branch-and-bound (cont.)

ALGORITHM: Branch-and-Bound Algorithm

starting with OPEN = {F} and UPPER = ∞
repeat

1. Remove a node Y from OPEN.
2. For each child Yj in Y : find fYj

and a feasible x̄ ∈ Yj
3. if fYj

< UPPER, place Yj in OPEN.
4. also if f(x̄) < UPPER, set UPPER = f(x̄) and “mark" x̄.

until OPEN is empty.

A node Yj that is not placed in OPEN in Step 3 is said to be fathomed.
Such a node cannot contain a better solution than the best solution x̄
found so far.
The algorithm is guaranteed to examine (either explicitly or implicitly)
all the terminal nodes.
Thus, it always terminates with an optimal solution.
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Branch-and-bound (cont.)

Branch-and-bound uses “continuous" (aka “relaxed") optimization
problems to obtain the lower bounds and associated feasible solutions.

A typical integer constraint is xij ∈ {0, 1}.

In this case, a subset Y may correspond to “freezing" some values of
xij , while letting the others to be either 0 or 1.

A lower bound to minx∈Y f(x) is then obtained via relaxing the 0-1
constraint on the latter xij by letting them to be 0 ≤ xij ≤ 1.

Note that the resulting problem is a convex (network) optimization
problem.

Thus, integer constraints entail the solution of many convex network
problems without integer constraints.
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Example: Facility location problem

Suppose we have m clients and n locations.
xij = 1 ⇐⇒ client i is assigned to location j at a cost aij .
yj = 1 ⇐⇒ a facility is placed at location j at a cost bj .
The problem is

min
x,y

∑
(i,j)∈A

ai,jxi,j +

n∑
j=1

bjyj

subject to
∑

{j|(i,j)∈A}

xij = 1, i = 1, . . .m

∑
{i|(i,j)∈A}

xi,j ≤ yjcj , j = 1, . . . n

xi,j ∈ {0, 1}, ∀(i, j) ∈ A
yj ∈ {0, 1}, j = 1, . . . , n

where cj is the facility capacity = the maximum number of customers
that can be served by a facility at location j.
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Example: Facility location problem (cont.)

It is convenient to select subsets of the form

F (J0, J1) = {(x, y) ∈ F | yj = 0, ∀j ∈ J0, yj = 1, ∀j ∈ J1}

where J0 ⊂ {1, . . . , n} and J1 ⊂ {1, . . . , n}, with J0 ∩ J1 = ∅.

Consequently, we have “relaxed" subproblems of the form

min
x,y

∑
(i,j)∈A

ai,jxi,j +

n∑
j=1

bjyj

subject to
∑

{j|(i,j)∈A}

xij = 1, i = 1, . . .m

∑
{i|(i,j)∈A}

xi,j ≤ yjcj , j = 1, . . . n

0 ≤ xi,j ≤ 1, ∀(i, j) ∈ A
0 ≤ yj ≤ 1, j /∈ J0 ∪ J1

yj = 0, j ∈ J0

yj = 1, j ∈ J1
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Example: Facility location problem (cont.)

In this problem: m = 3, n = 2, y∗1 = 0, y∗2 = 1, and f∗ = 5.
The algorithm is initiated with the top node at J0 = J1 = ∅.

min
x,y

(2x11 + x12) + (2x21 + x22) + (x31 + 2x32) + 3y1 + y2

subject to x11 + x12 = 1, x21 + x22 = 1, x31 + x32 = 1

subject to x11 + x21 + x31 ≤ 3y1, x12 + x22 + x32 ≤ 3y2

0 ≤ xi,j ≤ 1, ∀(i, j) ∈ A
0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1

The problem results in: fY = 4.66, y1 = 1/3, y2 = 2/3. Therefore, a
feasible solution is ȳ1 = ȳ2 = 1, and the related cost is 7 (= UPPER).
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Example: Facility location problem (cont.)

Note that the rightmost brach is fathomed, since its corresponding op-
timal cost (lower bound) is larger than UPPER = 5.
For this problem, x∗ is

x∗ij =

{
1, if (i, j) = (1, 2), (2, 2), (3, 2)

0, otherwise
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Lagrangian relaxation

Consider the following problem with integer constraints on the arc
flows:

minimize aTx

subject to x ∈ F

cTt x ≤ dt, t = 1, . . . , r

xij ∈ Xij , ∀(i, j) ∈ A

where Xij is a finite subset of contiguous integers (e.g., Xij = {0, 1} or
Xij = {1, 2, 3, 4}).

We assume that the supplies si (“hidden" in F ) are integer.

Thus, for r = 0, the problem would become a minimum cost flow prob-
lem that has integer optimal solutions.

For this, aij do not have to be integers.
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Lagrangian relaxation (cont.)

In Lagrangian relaxation, we “eliminate" the side constraints cTt x ≤ dt
by forming

L(x, λ) = aTx+
r∑
t=1

λt(c
T
t x− dt)

where λ � 0 is a vector of Lagrange multipliers.

Key idea: ∀λ � 0, the minimization of L(x, λ) over

F̃ = {x ∈ F | xi,j ∈ Xi,j}

yields a lower bound to the optimal cost of the original problem.

The lower bound minx∈F̃ L(x, λ) can be used in the branch-and-bound
procedure.

The tightest lower bound to the optimal cost of the original problem is
obtained by solving the dual problem

maximize g(λ), s.t. λ � 0

where g(λ) = minx∈F̃ L(x, λ) is the dual function.
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Example: Constrained shortest path problem

Consider a problem of the form:

minimize
∑

(i,j)∈A

aijxij

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(i,j)∈A}

xji =


1 if i = s

−1 if i = t

0 otherwise

xij ∈ {0, 1}, ∀(i, j) ∈ A∑
(i,j)∈A

cti,jxi,j ≤ dt, k = 1, . . . , r

Here, a path P from s to t is optimal iff x defined by

xij =

{
1 if (i, j) belongs to P
0 otherwise

is an optimal solution of the above problem.
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Example: Constrained shortest path problem (cont.)

Minimization of L(x, λ) becomes a shortest path problem w.r.t. cor-
rected arc lengths âij given by

âij = aij +

r∑
t=1

λtc
t
ij

We can then obtain λ∗ that solves maxλ�0 g(λ) and its corresponding
optimal cost/lower bound.

We can also use λ∗ to obtain a feasible solution (a path that satisfies
the side constraints).

Important: Lagrangian relaxation eliminates the side constraints si-
multaneously with the integer constraints (since solving minx∈F̃ L(x, λ)
is a (linear) minimum cost flow problem).

This is the main reason for the widespread use of Lagrangian relaxa-
tion in combination with branch-and-bound.
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Some drawback of Lagrangian relaxation

Even if we find an optimal λ, we still have only a lower bound to the
optimal cost of the original problem.

The minimization of L(x, λ) over F̃ may yield an x that violates some
of the side constraints cTt x− dt ≤ 0 (some heuristics might be needed).

The maximization of g(λ) over λ � 0 may be quite nontrivial.

However ...

In the case of a linear cost, the dual problem can be efficiently solved
by a number of algorithms, such as:

1 subgradient methods
2 cutting plane methods
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Local search methods

Local search methods are a broad and important class of heuristics for
discrete optimization.

Local search methods use the notion of a neighbourhood N(x) of a so-
lution x.

Key idea: Given a solution x, select a successor solution x̄ ∈ N(x) ac-
cording to some rule. Repeat the process with x̄ replacing x.

Thus a local search method is characterized by:
1 The method for choosing a starting solution.
2 The definition of N(x).
3 The rule for selecting a successor solution.
4 The termination criterion.

Many local search methods are cost improving, which means that they
stop at a local minimum.

There is also a basic tradeoff between using a large N(x) to diminish
the difficulty with local minima, and computational burden.
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Genetic algorithms

Key idea: Modify the current solution by “splicing" and “mutation"
to obtain neighbouring solutions.

Example: In the traveling salesman problem, N(T ) of a tour T may be
a collection of other tours obtained by modifying a contiguous portion
of T , while keeping the remainder of T intact.

It is common to maintain a pool of solutions, which “evolve" in a Dar-
winian way through a “survival of the fittest" process.

Mutation allows speculative variations of the local minima at hand.

Recombination (aka crossover) aims to combine attributes of a pair of
local minima.

There is a very large number of variants of genetic algorithms, which
are typically problem-dependent.
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Genetic algorithms (cont.)

We start with a population X consisting of n feasible solutions x1, . . . , xn.

ALGORITHM: Genetic Algorithm

starting with X = {x1, . . . , xn}
repeat

1. Local Search: for each xi ∈ X find a local minimum x̄i by using a
local search procedure. Let X̄ = {x̄1, . . . , x̄n}.

2. Mutation: Modify a random subset of X̄ based on some mechanism.
3. Crossover: Produce a feasible solution for each pair in a random

subset of pairs in X̄ based on some mechanism.
4. Survival: Out of all the resulting solutions, select a subset of n ele-

ments according to some criterion.
5. Use the resulting population to start the next phase.

until a stopping criterion is met.
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Tabu search

Tabu search allows avoiding poor local minima, by occasionally accep-
ting a worse or even infeasible x̄ ∈ N(x).

Since cost improvement is not enforced, tabu search runs the danger of
cycling.

To alleviate this problem, tabu search keeps track of recently obtained
solutions in a “tabu" list.

The tabu list may contain the attributes of recently obtained solutions
rather than the solutions themselves.

Solutions with attributes in the tabu list are forbidden from being ge-
nerated (unless overridden).

Successful implementation usually depend on problem-dependent heu-
ristics.
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Simulated annealing

Simulated annealing randomizes the choice of x̄ ∈ N(x) in a way that
gives preference to solutions of smaller cost.
In this way, it aims to find a global minimum faster than “brutal" ran-
dom search methods.

ALGORITHM: Genetic Algorithm

starting with a feasible solution x, T > 0
repeat

1. Select by random sampling x̄ ∈ N(x)
2. if f(x̄) < f(x), accept x̄, i.e., x⇐ x̄.
3. otherwise accept x̄ with probability e−(f(x̄)−f(x))/T (or reject).

until a stopping criterion is met.

T is called the temperature of the annealing process.
When T is large, the probability of accepting a worse solution is . 1.
It is standard to start with a large T and then reduce it gradually.
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Rollout algorithm

We still consider the problem minx∈F f(x), where F is finite.

A partial solution is {xij | (i, j) ∈ S}, where S ⊂ A.

The rollout algorithm generates a sequence of partial solutions, culmi-
nating with a complete solution (i.e., S = A).

The algorithm exploits the base heuristic which, given a partial soluti-
on P produces a complementary solution P̄ and a corresponding (com-
plete) flow vector x = P ∪ P̄ .

The heuristic cost of the partial solution P is defined as

H(P ) =

{
f(x), if x ∈ F
∞, otherwise

If P is a complete and feasible, then H(P ) = f(x).

There are no restrictions on the nature of the base heuristic (e.g., an
integer rounding heuristic).
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Rollout algorithm (cont.)

The rollout algorithm enlarges a partial solution iteratively, with a few arc
flows at a time.

ALGORITHM: Rollout Algorithm

starting with a partial solution P with some S ∈ A (e.g., S = ∅)
repeat

1. Select T = {(i, j) | (i, j) ∈ A & (i, j) /∈ S} based on some criterion.
2. Consider the set FT of all possible y = {yij | (i, j) ∈ T}.
3. Apply the base heuristic to compute H(P ∪ y) for each y ∈ FT .
4. Choose ȳ = arg miny∈FT H(P ∪ y).
5. Augment P with ȳ, i.e., P ⇐ P ∪ ȳ.

until a complete solution is obtained.

The cost of the solutions produced by the algorithm can be shown to
be monotonically nonincreasing.
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Example: One-Dimensional Walk
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