
ECE458/750: Computer Security

Assignment 3

Prepared by Kami Vaniea and Vinayak Sharma∗

July 10, 2025

Due Date: 29th July, 2025 at 11:30 pm.

Lab VM Setup Requirements: This assignment is closely related to the SEED Labs. Please ensure
that you run the commands specified in this assignment within the VM, not on your local computer. You
can run the VM either on your local computer or in the cloud.
SEED Lab VM Setup: https://seedsecuritylabs.org/labsetup.html
Creating a SEED VM on the Cloud: https://github.com/seed-labs/seed-labs/blob/master/manuals/
cloud/seedvm-cloud.md

Setup Files Requirements: For this assignment, you will need the setup files for the Buffer-Overflow At-
tack Lab (Set-UID Version), available at: https://seedsecuritylabs.org/Labs_20.04/Software/Buffer_
Overflow_Setuid/

Additional Reference: It is highly recommended to read the Buffer-Overflow Attack chapter up to section
4.5 in the SEED Labs reference book. This chapter is available at: https://www.handsonsecurity.net/

files/chapters/edition3/sample-buffer-overflow.pdf

Working in Groups: You may complete this assignment either individually or in a group of two stu-
dents. We recommend that at least one group member is comfortable with configuring and working with
the SEED Lab Virtual Machine (VM), as it is essential for completing this assignment.

Questions: Use Piazza for questions and concerns.

Submission: Use Crowdmark for submission.

∗Originally developed in part by Mohammadtaghi Badakhshan.

1

https://seedsecuritylabs.org/labsetup.html
https://github.com/seed-labs/seed-labs/blob/master/manuals/cloud/seedvm-cloud.md
https://github.com/seed-labs/seed-labs/blob/master/manuals/cloud/seedvm-cloud.md
https://seedsecuritylabs.org/Labs_20.04/Software/Buffer_Overflow_Setuid/
https://seedsecuritylabs.org/Labs_20.04/Software/Buffer_Overflow_Setuid/
https://www.handsonsecurity.net/files/chapters/edition3/sample-buffer-overflow.pdf
https://www.handsonsecurity.net/files/chapters/edition3/sample-buffer-overflow.pdf

ECE 458/750 July 10, 2025

Question 1. User ID [3 marks] Please answer the following questions regarding the Linux User ID
Model.

(a) Briefly explain why having a User ID Model in operating systems, such as Linux, is important for
securing the operating system. You may look up information on the Internet to find your answer.

(b) Enter the following command in the VM’s terminal: seed@seed-labs:~$ cat /etc/passwd. Briefly
explain the output. What does it show? How is it formatted? You may look it up on the Internet.

(c) According to the previous question find and write down the rows corresponding to the users seed and
root. Specifiy each user’s UID. (You may use grep command. For example: cat /etc/passwd |

grep seed)

Question 2. Process User ID [6 marks] Please answer the following questions about how UIDs are
assigned to a process.

(a) Briefly explain what a Process User ID (UID) is and how User IDs are assigned to a process.

(b) Research Set-UID programs and briefly explain what they are. What are the differences between
normal programs and Set-UID programs?

(c) What are the security considerations associated with Set-UID programs?

Question 3. Privilege Escalation [8 marks] In this question, we aim to escalate privileges from the
user seed to root by running a Set-UID program. Follow these steps and report your observations:

(a) Make sure that you run all of the commands under the user seed. Run the following commands and
turn in the output by copy pasting it.

i. $ id -u

ii. $ ls /root

(b) Run the following command to link /bin/sh to /bin/zsh, as zsh lacks security mechanisms that could
prevent its execution in a Set-UID process.
$ sudo ln -sf /bin/zsh /bin/sh

(Note: Ensure that zsh is installed on your VM.)

(c) Change your directory to Labsetup/shellcode/ and execute make setuid to compile call shellcode.c

as a Set-UID program. Then, run ls -al and copy paste the output.

(d) Execute either ./a32.out or ./a64.out. In the opened shell, enter the two commands in step (a)
again and copy paste the output and explain why you are getting different outputs.

2

~

ECE 458/750 July 10, 2025

Question 4. Vulnerable Program [10 marks] Examine the code snippet below and respond to each
question 1.

1 void function(char *str) {

2 char buffer [16];

3

4 strcpy(buffer ,str);

5 }

6

7 void main() {

8 char large_string [256];

9 int i;

10

11 for(i = 0; i < 255; i++)

12 large_string[i] = ’A’;

13

14 function(large_string);

15 }

(a) Explain the functionality of the function and main functions.

(b) The code has a vulnerability. Can you identify it and draw the memory stack to illustrate the issue?

(c) Why does the vulnerability occur in this code? In other words, what was the programmer’s mistake?

(d) Suggest a solution to fix the vulnerability in the code.

(e) What can be the consequences of this vulnerability in a real-world application?

Question 5. Exploit [18 marks] In this question, we are going to exploit the buffer-overflow vulnera-
bility in the stack.c program. The program will be executed as a root-owned Set-UID program. We aim
to inject the shellcode from Question 3 into the vulnerable program execution.

(a) What is the vulnerability in stack.c?

(b) Compile stack.c using the Makefile with the make command. Explain how different values of L can
change the output file.

(c) (In Makefile) Which security protections do these flags -z execstack -fno-stack-protector dis-
able? How can disabling them make the code vulnerable? Why do we need to disable them to exploit
the vulnerability in stack.c?

(d) Before starting the attack steps, we need to turn off the VM operating system security mechanisms:

• Address Space Randomization: To disable address space randomization, enter the following
command:
$ sudo sysctl -w kernel.randomize va space=0

• Configuring /bin/sh: Link /bin/sh to /bin/zsh.
$ sudo ln -sf /bin/zsh /bin/sh

(Note: Ensure that zsh is installed on your VM.)

Make sure you have successfully disabled the security countermeasures. Then, briefly explain the
Address Space Randomization mechanism.

(e) To complete our attack, we need to overwrite the memory location on the stack that contains the
return address from bof to dummy function. Can you explain why?

1Source: https://insecure.org/stf/smashstack.html

3

https://insecure.org/stf/smashstack.html

ECE 458/750 July 10, 2025

(f) Use gdb to determine the address of the memory location on the stack that contains the return address
from bof to dummy function. Use gdb-peda$ p $ebp to print the current value of the base pointer
($ebp).
(Hint: Follow the instructions in Section 5.1 of “Buffer Overflow Setuid.pdf” and explain each step you
took to determine the memory address. Also see Section 4.5.3 in the Buffer-Overflow Attack chapter
in the SEED Labs reference book.)

(g) Use gdb to determine where the buffer starts in the memory, and what the distance is between
the buffer’s starting point and the return address field? Do this for all four buffer size levels (i.e.,
stack-L1-dbg, stack-L2-dbg, stack-L3-dbg, and stack-L4-dbg). Report your observation.

(h) In this step, you should generate the content of the badfile to inject the malicious assembly shellcode
into memory and execute it by exploiting the vulnerability. You should complete and use exploit.py.
Report how you completed exploit.py for L1, L2, L3, L4.

(i) Exploit the vulnerability for all four buffer size levels (i.e., ./stack-L1, ./stack-L2, ./stack-L3, and
./stack-L4) and report your observations.

Note: (In Makefile), -g is employed to embed debugging information into the executable file produced by
the compiler. This debugging data enables tools like the GNU Debugger (GDB) to effectively analyze and
debug the program2.

Question 6. Self-Reflection [5 marks] The three questions below must be answered individually by
each group member. If you are working alone, you should still complete this section.

(a) What did you learn from this assignment?

(b) Which part was the most challenging or interesting for you, and why?

(c) If you worked in a group, how did you divide the work?

Include all self-reflection answers in your final report. Clearly label each reflection with the contributor’s full
name and Waterloo ID.

Submission Instructions:

Submit a single PDF with answers to all the above questions on Crowdmark.

2For more information: https://dmalcolm.fedorapeople.org/gcc/2015-08-31/rst-experiment/

options-for-debugging-your-program-or-gcc.html

4

https://dmalcolm.fedorapeople.org/gcc/2015-08-31/rst-experiment/options-for-debugging-your-program-or-gcc.html
https://dmalcolm.fedorapeople.org/gcc/2015-08-31/rst-experiment/options-for-debugging-your-program-or-gcc.html

	User ID [3 marks]
	Process User ID [6 marks]
	Privilege Escalation [8 marks]
	Vulnerable Program [10 marks]
	Exploit [18 marks]
	Self-Reflection [5 marks]

