
ECE458/ECE750T27: Computer Security
Access Control

Dr. Kami Vaniea
Electrical and Computer Engineering
kami.vaniea@uwaterloo.ca

First, the news…

▪ First 5 minutes we talk about something interesting and recent

▪ You will not be tested on the news part of lecture

▪ You may use news as an example on tests

▪ Why do this?

1. Some students show up late for various good reasons

2. Reward students who show up on time

3. Important to see real world examples

ECE 458 - Kami Vaniea 2

News…

ECE 458 - Kami Vaniea 3

Canada Day

NO LECTURE MONDAY

ECE 458 - Kami Vaniea 4

TUTORIALS

ECE 458 - Kami Vaniea 5

Tutorials

▪ Scheduled

o 8:30am Thursdays

▪ Options:

o Run 8:30am tutorials as help sessions 2 weeks before assignments are due

o Have TA office hours later in the day in weeks leading up to assignment deadlines

ECE 458 - Kami Vaniea 6

ACCESS AND INFORMATION FLOW

System security policies and models

▪ A security policy describes requirements for a system.

▪ A security model is a framework with which a policy can be described.

▪ There are two basic paradigms:

▪ Access control

▪ Information flow control

Access control

A guard controls whether a principal (the subject) is allowed access to a
resource (the object).

Subject
Access
request

Reference
monitor

Object

Authentication Authorization

Information flow control

A guard controls whether a principal (the subject) is allowed access to a
resource (the object).

This is the dual notion, sometimes used when confidentiality is the
primary concern.

Object
Reference
monitor

Subject

Authorization Authentication

The difference

▪ Access control

▪ Starts with the subject (user) and asks if the user has access to the object.

▪ Information flow control

▪ Starts with the object (information) and asks if that information can be known to the subject.

ACCESS CONTROL

ECE 458 - Kami Vaniea 12

Access Control

▪ Ensure that certain users can use a resource in one way (i.e. read-only), others in a
different way (i.e. write), and still others not at all.

▪ Subjects – human users who are often represented by surrogate programs

running on behalf of the users.

▪ Objects – things on which an action can be performed. Such as files, database

tables, programs, memory objects, hardware, network connections, and
processors. User accounts can also be objects since they can be added to the
system, removed, and modified.

▪ Access modes – any controllable actions of subjects on objects, including read,

write, modify, delete, execute, create, destroy, copy export, and import.

ECE 458 - Kami Vaniea 13

Example: Figma

ECE 458 - Kami Vaniea 14

▪ Subjects

o Figma

▪ Objects

o My name, email address, language
preferences, and profile picture

o Any future updates to the above

▪ Access Modes

o Read

Access Modes can have wide variety

ECE 458 - Kami Vaniea 15

▪ Read, write, execute

▪ Delete, append, create file, create
folder, see folder contents

▪ Ability to read live update feed

Principle of least privilege

▪ A subject should have access to the smallest number of objects necessary to
perform their task.

▪ Example: A program does not need access to the absolute memory addresses to which a page
number reference translates

▪ Permissions should match what is possible. Impossible actions should not be granted

▪ Permissions should be reviewed and adjusted over time

▪ New job, means new permissions and removal of old ones

▪ Analyzing logs can show what permissions are not being used and can possibly be removed

ECE 458 - Kami Vaniea 16

Example: Elevator

ECE 458 - Kami Vaniea 17

▪ Key card controls what floors the elevator
will go to based on guest room number.

▪ Weak version of principle of least

privilege.

Example: Ransomware
▪ Attacker sends lots of spam to victim

employee email

▪ Attacker calls employee claiming to be IT
Services and offering to help fix spam
problem

▪ Suggests employee download a tool that
allows attacker to interact with employee’s
computer (RMM)

▪ Employee downloads

▪ Attacker installs ransomware which then
tries to install itself everywhere

▪ After a set time, ransomware encrypts every
file it can access

ECE 458 - Kami Vaniea 18

Who sets the policy?

▪ Discretionary Access Control (DAC)

▪ The owner of a resource decides who may access that
resource. Policy set on a case-by-case basis.

▪ Mandatory Access Control (MAC)

▪ The decision of accessing resources is controlled
system-wide by a uniform policy.

▪ Role Based Access Control (RBAC)

▪ Similar to MAC, but users are assigned roles and
permissions are granted to roles, not people.

In practice a mixture of DAC and MAC may apply.

University added a MAC
setting on OneDrive on top
of my DAC sharing ability.

Ownership and identity

▪ Owners of resources may be principles in
the system: subjects themselves under

access control.

▪ The identity of subjects is also flexible: e.g.,
identity changes during operations

▪ SUID programs in Unix

▪ Sudo

I can share files on OneDrive with
other University accounts, but
restrictions exist for external accounts.

Reference Monitor

Theoretical construct that manages what objects subjects can access and what
actions they can perform on those objects.

1. Always invoked; so that it validates every access attempt

2. Immune from tampering

3. Assuredly correct

There are several ways to implement an access monitor

ECE 458 - Kami Vaniea 21

Here forward, I will mostly be talking about access control managed by an
Operating System
▪ Operating systems mostly control access to files and to memory.

▪ Within-file access control is normally done by programs, for example, a database
maintains and enforces access control separately from the operating system

▪ Network file system access control is also a bit different and depends on network-
wide consistent user and file identifiers

ECE 458 - Kami Vaniea 22

How does an OS manage permission information efficiently?

▪ Decides what user/application is
allowed to perform actions on

resources like memory and devices

▪ Issues

o Lookup speed

o Clear answer (do they or don't they have
access)

o Cost to delete file/permission

o DAC? MAC?

o Storage space

ECE 458 - Kami Vaniea 23

Kernel placement

Application

Kernel

CPU Memory Devices

User

ACCESS CONTROL IMPLEMENTATIONS

ECE 458 - Kami Vaniea 24

Think-pair-share: Serendipity photo sharing

▪ You are building a new FooBar app for
serendipitous photo sharing.

▪ Users can take photos and upload them.

The system then grants view access of
the photo to a randomly selected 5% of
other users.

▪ Users can request edit access to photos
which allows them to re-touch them.

▪ What access control implementation is

best for this situation?

ECE 458 - Kami Vaniea 25

Access Control Directory

▪ Create a directory for each Subject (user) of all the files they
can access

▪ Users can only access files in their directory

ECE 458 - Kami Vaniea 26

Access Control Directory

File Name Access
Rights

File
Pointer

PROG1.C ORW

PROG1.EXE OX

BIBLIOG ORW

HELP.TXT R

TEMP ORW

ECE 458 - Kami Vaniea 27

File Name Access
Rights

File
Pointer

BIBLIOG R

TEST.TMP OX

PRIVATE ORW

HELP.TXT R

User B Directory

User A Directory

Access Control Directory
Permission granted twice

File Name Access
Rights

File
Pointer

PROG1.C ORW

PROG1.EXE OX

BIBLIOG ORW

HELP.TXT R

TEMP ORW

ECE 458 - Kami Vaniea 28

File Name Access
Rights

File
Pointer

BIBLIOG R

BIBLIOG
(symlink)

RW

TEST.TMP OX

HELP.TXT R

User B Directory

User A Directory

Access Control Matrix

Bibliog Temp F Help.txt C_Comp Linker Clock Printer

User A ORW ORW ORW R X X R W

User B R R X X R W

User S RW R R X X R W

Sys Mgr RW OX OX ORW O

User
Svcs

O X X R W

▪ Matrix of all the Subjects (rows) and all the Objects (columns) with the access
modes listed in the cells

▪ Clear and lookup is efficient

▪ Most of the matrix is empty since most Subjects do not have access to most Objects

ECE 458 - Kami Vaniea 29

Access Control Matrix (more formally)

Bibliog Temp F Help.txt

User A ORW ORW ORW R

User B R R

User S RW R R

Sys Mgr RW

User
Svcs

O

How are access control rights defined?
Many schemes but ultimately

modelled by:

▪ A set S of subjects, a set O of objects

▪ A set A of operations (modeled by

access rights), we consider
A={own, read, write}

▪ An access control matrix

𝑀 = 𝑀𝑠𝑜 𝑠𝜖𝑆,𝑜𝜖𝑂

Where each entry 𝑀𝑠𝑜 ⊆ 𝐴 defines rights for
s to access o

ECE 458 - Kami Vaniea 30

Access Control Triples

▪ One row for each triple of <subject,
object, access right> where one exists

▪ Solves the space problem

▪ Lookups are now expensive

Subject Object Access Right

User A Bibliog ORW

User B Bibliog R

User S Bibliog RW

User A Temp ORW

User A F ORW

… …. …

ECE 458 - Kami Vaniea 31

Access Control Lists

Bibliog Temp F Help.txt C_Comp Linker Clock Printer

User A ORW ORW ORW R X X R W

User B R R X X R W

User S RW R R X X R W

Sys Mgr RW OX OX ORW O

User
Svcs

O X X R W

▪ Idea: store the column of the Access Control Matrix with each file

▪ Less space needed, though still quite a bit

▪ Faster lookup

▪ But still slow to make changes. Denying all access for a specific user requires searching and
editing many lists

ECE 458 - Kami Vaniea 32

Access Control Lists

File Access
List

Pointer

HELP.TXT

F

BIBLIOG

TEMP

ECE 458 - Kami Vaniea 33

User Access
Rights

User A R

User B R

User S R

Sys Mgr RW

User Sycs O

Files

Directory

User Access
Rights

User A ORW

User S R

User Access
Rights

User A ORW

User B R

User S RW

User Access
Rights

User A ORW

Access Control Lists
Ordered, with wildcards

File Access
List

Pointer

HELP.TXT

F

BIBLIOG

TEMP

ECE 458 - Kami Vaniea 34

User Access
Rights

User Syncs O

Sys Mgr RW

* R

Files

Directory

User Access
Rights

User A ORW

User S R

User Access
Rights

User A ORW

User B R

User S RW

User Access
Rights

User A ORW

Linux uses the Access Control Lists model

▪ Every file has a User, Group,
and Other

▪ The User is the owner

▪ The Group is a list of users
for whom these permissions

will apply

▪ Other refers to all users

logged into this computer

ECE 458 - Kami Vaniea 35

Windows also uses the Access Control List model

ECE 458 - Kami Vaniea 36

Windows also uses the Access Control List model

ECE 458 - Kami Vaniea 37

Think-pair-share: Serendipity photo sharing

▪ You are building a new FooBar app for
serendipitous photo sharing.

▪ Users can take photos and upload them.
The system then grants view access of
the photo to a randomly selected 5% of
other users.

▪ Users can request edit access to photos
which allows them to re-touch them.

▪ Original uploaders can delete photos.

▪ What access control implementation is
best for this situation?

ECE 458 - Kami Vaniea 38

▪ Also consider:

▪ User count

▪ Resource count

▪ What is the reference monitor?

▪ Frequency of permission changes

Confused deputy problem
Compiler bill.csv

Alice x --

Compiler rx rw

ECE 458 - Kami Vaniea 40

Access Control Matrix

▪ Alice and the Compiler have different
access rights to the file bill.csv

▪ Alice can ask the Compiler to write

debug output to bill.csv which it has
the right to do

▪ When designing a system access
needs to be tracked for users AND
processes they are running

▪ In a well-designed system the

confused deputy problem should not
happen

Alice Compiler bill.csv

Lots of
debug
statements

Debug
Filename
bill.csv

Capabilities

▪ Single- or multi-use ticket for a <subject, object, access mode> triple

▪ To access a resource the User or a process acting on the user’s behalf presents a
capability to the operating system

▪ One option is that the OS looks up the user’s permissions and issues a process
with a capability, at next access the process provides the capability making access

rights lookup faster

▪ Capabilities are also easier to delegate, so easier to keep track of what each process

is allowed to do on behalf of the user

ECE 458 - Kami Vaniea 41

INFORMATION FLOW CONTROL

ECE 458 - Kami Vaniea 42

Access control

A guard controls whether a principal (the subject) is allowed access to a
resource (the object).

Subject
Access
request

Reference
monitor

Object

Authentication Authorization

Information flow control

A guard controls whether a principal (the subject) is allowed access to a
resource (the object).

This is the dual notion, sometimes used when confidentiality is the
primary concern.

Object
Reference
monitor

Subject

Authorization Authentication

Information flow control

ECE 458 - Kami Vaniea 45

Email Server Journalist

Biba Integrity Model

▪ Focus on the integrity of the data rather than the confidentiality

▪ Subjects S and Objects O have Integrity values

▪ Simple Integrity Property – subjects at a given level of integrity must not read

data at a lower integrity level (no read down)

▪ * Integrity Property – subjects at a given level of integrity must not write to
data at a higher level of integrity (no write up)

▪ Invocation Property – processes from below cannot request higher access; only
with subjects at an equal or lower level

46

MULTILEVEL SECURITY MODELS

ECE 458 - Kami Vaniea 47

Multi-level security

▪ Multi-level security (MLS) systems originated in the military. A security level
is a label for subjects and objects to describe a policy.

▪ These are models or ways of thinking about the problem of access control logically

and are not implementations

▪ Security levels are ordered

Unclassified ≤ Confidential ≤ Secret ≤ Top Secret

▪ Ordering is important since it can express policies like “no write down” to prevent

a subject with high-level clearance from writing secrets into a low-level document

ECE 458 - Kami Vaniea 48

Running
Example

Admin

User

Manager

Classifications (H)

▪ Admin

▪ Manager

▪ User

Bell-LaPadula

▪ Simple model of MLS designed to promote academic thought

▪ Simple Security Condition – Subject S can read object O if and only if 𝐿(𝑂) ≤ 𝐿(𝑆)

▪ *-Property (star property) - Subject S can read object O if and only if 𝐿(𝑆) ≤ 𝐿(𝑂)

▪ In other words:

▪ No read up

▪ No write down

ECE 458 - Kami Vaniea 50

Running
Example

Admin

User

Manager

Classifications (H)

▪ Admin

▪ Manager

▪ User

Admin File

Manager File

User

RW

RW

RW

R

W

R

W

Problem: most real systems don't fit neatly into
clearence levels. It is rare that someone with a Top
Security clearance really needs access to all Top
Security files.

Solution: categories

52

Security lattice

▪ A lattice is a set L equipped with a partial ordering ≤ such every two elements a, b
∈ L has a least upper bound a ∨ b and a greatest lower bound a ∧ b. A finite lattice

must have top and bottom elements.

▪ take a set of classifications H and linear ordering ≤H

▪ take a set C of categories; compartments are subsets of C

▪ security levels are pairs (h, c) with h ∈ H and c ⊆ C

▪ ordering (h1, c1) ≤ (h2, c2) ⇐⇒ h1 ≤ h2, c1 ⊆ c2 gives a lattice.

ECE 458 - Kami Vaniea 53

Running
Example

Classifications (H)

▪ Admin

▪ Manager

▪ User

Categories (C)

▪ H (Hippo project)

▪ W (Walrus project)

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Running
Example

Classifications (H)

▪ Admin

▪ Manager

▪ User

Categories (C)

▪ H (Hippo project)

▪ W (Walrus project)

User, {H, W}

User, {W} User, {H}

User, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})

User, {H, W}

User, {W} User, {H}

User, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})
(User,{W}) ≤ (User, {H, W})
(User,{H}) ≤ (User, {H, W})

User, {H, W}

User, {W} User, {H}

User, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})
(User,{W}) ≤ (User, {H, W})
(User,{H}) ≤ (User, {H, W})
(User,{}) ≤ (Manager,{})
(User,{H,W})≤(Manager,{H,W})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(User,{}) ≤ (User, {W})
(User,{}) ≤ (User, {H})
(User,{W}) ≤ (User, {H, W})
(User,{H}) ≤ (User, {H, W})
(User,{}) ≤ (Manager,{})
(User,{H,W})≤(Manager,{H,W})
(User,{W}) ≤ (Manager,{W})
(User,{H}) ≤ (Manager,{H})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(Manager,{}) ≤ (Manager, {W})
(Manager,{}) ≤ (Manager, {H})
(Manager,{W}) ≤ (Manager, {H, W})
(Manager,{H}) ≤ (Manager, {H, W})
(Manager,{}) ≤ (Admin,{})
(Manager,{H,W})≤(Admin,{H,W})
(Manager,{W}) ≤ (Admin,{W})
(Manager,{H}) ≤ (Admin,{H})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Orderings:
(Admin,{}) ≤ (Admin, {W})
(Admin,{}) ≤ (Admin, {H})
(Admin,{W}) ≤ (Admin, {H, W})
(Admin,{H}) ≤ (Admin, {H, W})

Admin, {H, W}

Admin, {W} Admin, {H}

Admin, {}

User, {H, W}

User, {W} User, {H}

User, {}

Manager, {H, W}

Manager, {W} Manager, {H}

Manager, {}

Biba Integrity Model

▪ Focus on the integrity of the data rather than the confidentiality

▪ Subjects S and Objects O have Integrity values

▪ Simple Integrity Property – subjects at a given level of integrity must not read

data at a lower integrity level (no read down)

▪ * Integrity Property – subjects at a given level of integrity must not write to
data at a higher level of integrity (no write up)

▪ Invocation Property – processes from below cannot request higher access; only
with subjects at an equal or lower level

62

Think-pair-share

▪ How can covert channels still happen under:

▪ Bell-LaPaula

▪ Biba

ECE 458 - Kami Vaniea 63

QUESTIONS

ECE 458 - Kami Vaniea 64

	Default Section
	Slide 1: ECE458/ECE750T27: Computer Security Access Control
	Slide 2: First, the news…
	Slide 3: News…
	Slide 4: No Lecture Monday

	Tutorials
	Slide 5: Tutorials
	Slide 6: Tutorials

	Access and Information Flow
	Slide 7: Access and information flow
	Slide 8: System security policies and models
	Slide 9: Access control
	Slide 10: Information flow control
	Slide 11: The difference

	Access Control
	Slide 12: Access Control
	Slide 13: Access Control
	Slide 14: Example: Figma
	Slide 15: Access Modes can have wide variety
	Slide 16: Principle of least privilege
	Slide 17: Example: Elevator
	Slide 18: Example: Ransomware
	Slide 19: Who sets the policy?
	Slide 20: Ownership and identity
	Slide 21: Reference Monitor
	Slide 22: Here forward, I will mostly be talking about access control managed by an Operating System
	Slide 23: How does an OS manage permission information efficiently?

	Access Control Implementations
	Slide 24: Access Control Implementations
	Slide 25: Think-pair-share: Serendipity photo sharing
	Slide 26: Access Control Directory
	Slide 27: Access Control Directory
	Slide 28: Access Control Directory Permission granted twice
	Slide 29: Access Control Matrix
	Slide 30: Access Control Matrix (more formally)
	Slide 31: Access Control Triples
	Slide 32: Access Control Lists
	Slide 33: Access Control Lists
	Slide 34: Access Control Lists Ordered, with wildcards
	Slide 35: Linux uses the Access Control Lists model
	Slide 36: Windows also uses the Access Control List model
	Slide 37: Windows also uses the Access Control List model
	Slide 38: Think-pair-share: Serendipity photo sharing
	Slide 40: Confused deputy problem
	Slide 41: Capabilities

	Information Flow Control
	Slide 42: Information Flow Control
	Slide 43: Access control
	Slide 44: Information flow control
	Slide 45: Information flow control
	Slide 46: Biba Integrity Model
	Slide 47: Multilevel Security Models
	Slide 48: Multi-level security
	Slide 49: Running Example
	Slide 50: Bell-LaPadula
	Slide 51: Running Example
	Slide 52: Problem: most real systems don't fit neatly into clearence levels. It is rare that someone with a Top Security clearance really needs access to all Top Security files. Solution: categories
	Slide 53: Security lattice
	Slide 54: Running Example
	Slide 55: Running Example
	Slide 56: Orderings: (User,{}) ≤ (User, {W}) (User,{}) ≤ (User, {H})
	Slide 57: Orderings: (User,{}) ≤ (User, {W}) (User,{}) ≤ (User, {H}) (User,{W}) ≤ (User, {H, W}) (User,{H}) ≤ (User, {H, W})
	Slide 58: Orderings: (User,{}) ≤ (User, {W}) (User,{}) ≤ (User, {H}) (User,{W}) ≤ (User, {H, W}) (User,{H}) ≤ (User, {H, W}) (User,{}) ≤ (Manager,{}) (User,{H,W})≤(Manager,{H,W})
	Slide 59: Orderings: (User,{}) ≤ (User, {W}) (User,{}) ≤ (User, {H}) (User,{W}) ≤ (User, {H, W}) (User,{H}) ≤ (User, {H, W}) (User,{}) ≤ (Manager,{}) (User,{H,W})≤(Manager,{H,W}) (User,{W}) ≤ (Manager,{W}) (User,{H}) ≤ (Manager,{H})
	Slide 60: Orderings: (Manager,{}) ≤ (Manager, {W}) (Manager,{}) ≤ (Manager, {H}) (Manager,{W}) ≤ (Manager, {H, W}) (Manager,{H}) ≤ (Manager, {H, W}) (Manager,{}) ≤ (Admin,{}) (Manager,{H,W})≤(Admin,{H,W}) (Manager,{W}) ≤ (Admin,{W}) (Manager,{H}) ≤ (Admin
	Slide 61: Orderings: (Admin,{}) ≤ (Admin, {W}) (Admin,{}) ≤ (Admin, {H}) (Admin,{W}) ≤ (Admin, {H, W}) (Admin,{H}) ≤ (Admin, {H, W})
	Slide 62: Biba Integrity Model
	Slide 63: Think-pair-share
	Slide 64: Questions

