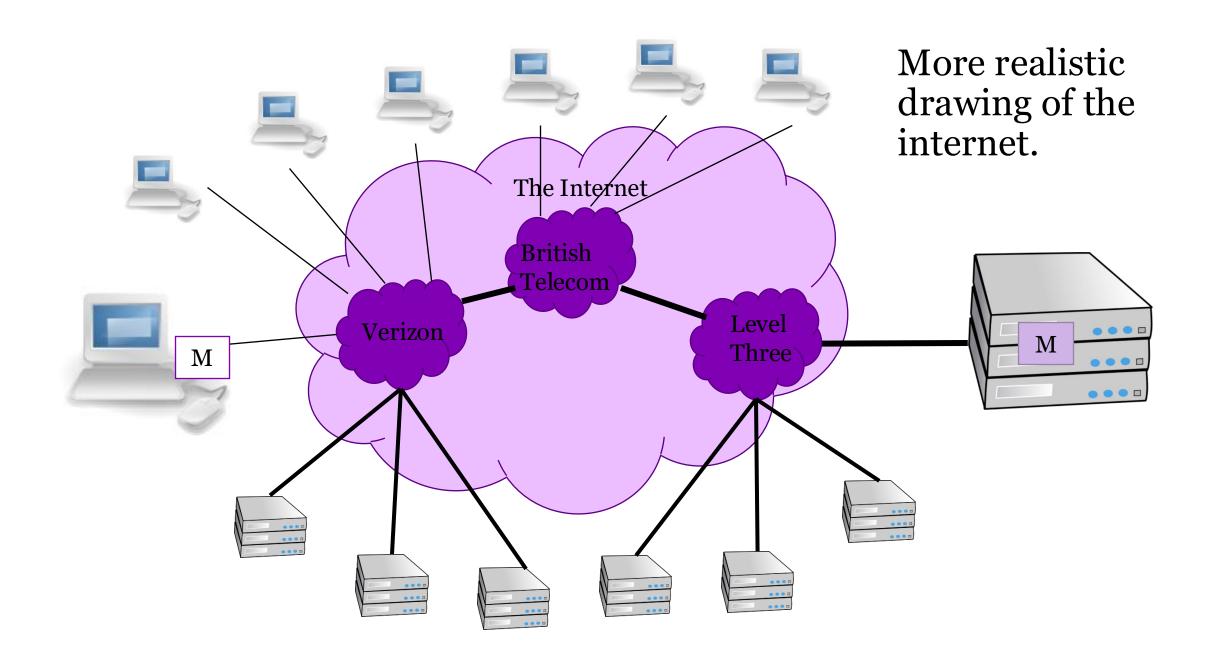
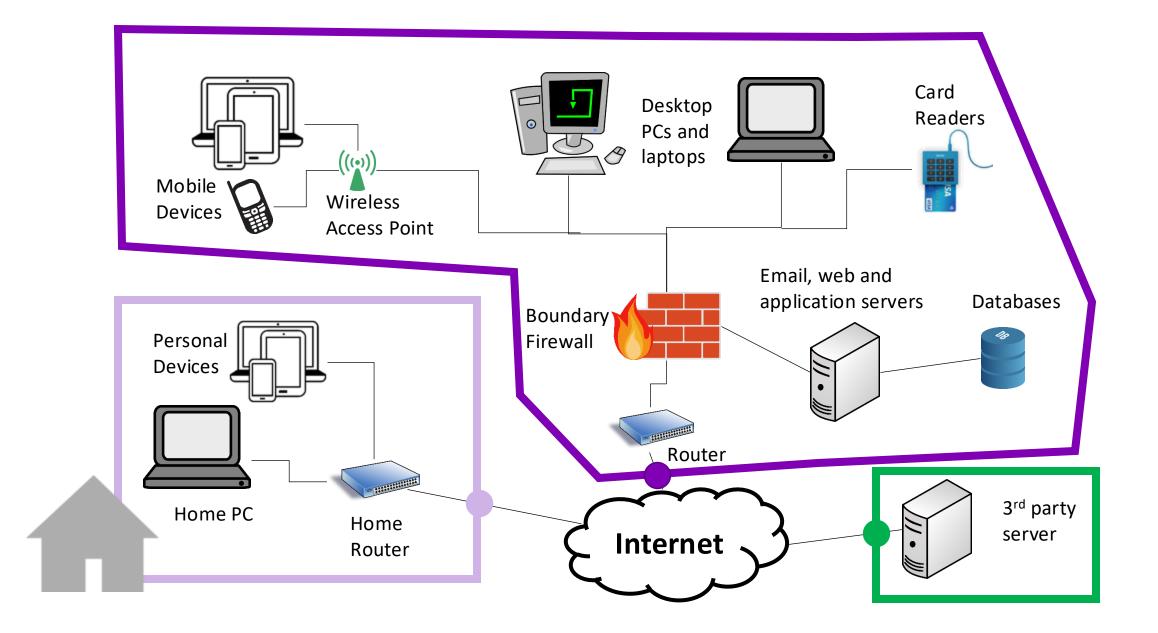

ECE458/ECE750T27: Computer Security Networking

Dr. Kami Vaniea Electrical and Computer Engineering kami.vaniea@uwaterloo.ca

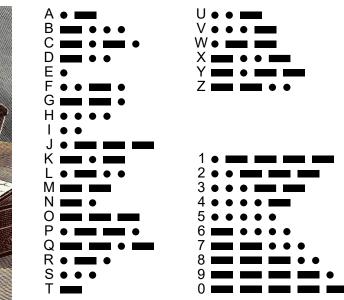


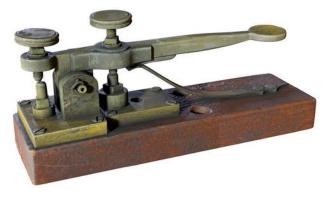


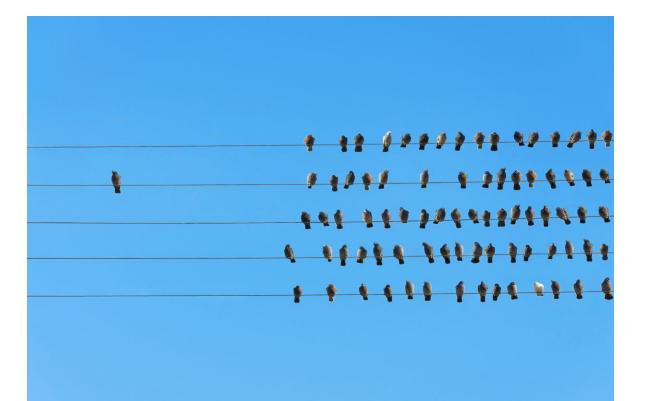
Basic standard drawing of the Internet.

Your computer (left) connects to "the cloud" (middle) which connects you to the webserver you want to talk with (right).

NETWORKING – A BIT OF HISTORY

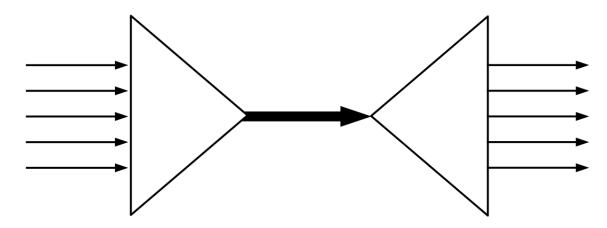

Telegraphs

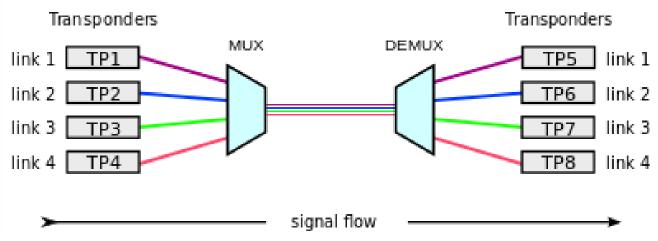

- Messages used to be sent via telegraph
 - 1844: First telegraph message sent
 - 1866: Telegraph wires between US and Europe
- The operator pushes down on the button creating a "beep" as long as they press


International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- The space between letters is three units.
 The space between words is seven units.

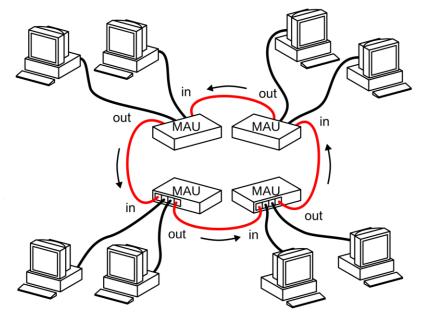
Problem: How do N things all use one wire without problems?




Science Photo Library

Partial Solution: Multiplexing

- Send multiple signals at once.
- Signals are just wave forms, so we could send at different frequencies.
- Good: we can now send more than one signal, but still quite expensive to direct connect two computers this way.


wavelength-division multiplexing (WDM)

Token Ring (1984)

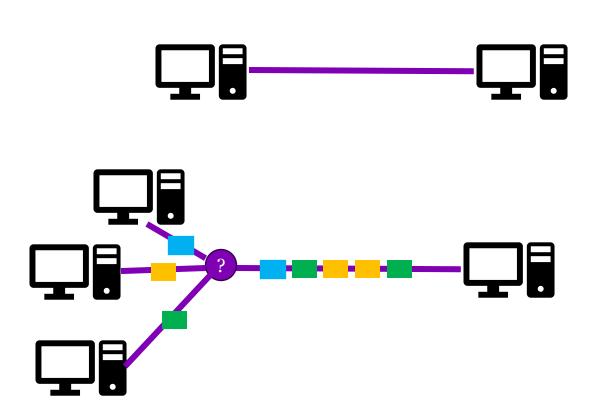
- Ring of computers
- A token passes around the ring
- A computer who wants to send, takes the token off the ring, transmits, then puts it back on when done

Stating Daimiator			Destination PAddres	on Source Addres		Endine Frank				
	SD	SD AC FC DA SA PDU from LLC (IEEE 802.2)		CRC	ED	FS				
	8 bits	8 bits	8 bits	48 bits	48 bits	Up to 4500×8 bits	32 bits	8 bits	8 bits	

By Andrew 28913 on Wikipedia

Datagram:

"A self-contained, independent entity of data carrying sufficient information to be routed from the source to the destination computer without reliance on earlier exchanges between this source and destination computer and the transporting network."

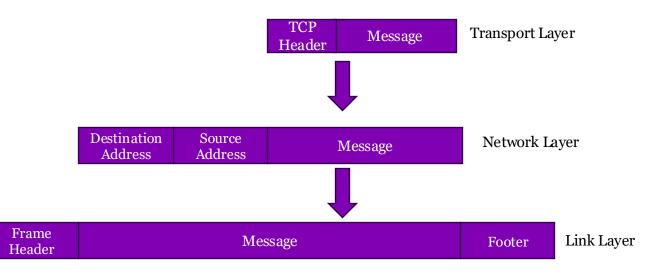


Partial solution 2: share the wire using datagrams

- Each computer breaks their messages into datagrams of a max size
- Then those datagrams are put across the wire.
- Now we can share the transmission line
- How to decide who sends when

 \circ Collisions

 \circ Congestion


Protocol

- Language or set of conventions for how two computers will interact.
- Issues like:
 - When to send
 - What the end of a transmission looks like
 - Structure of the packet sent

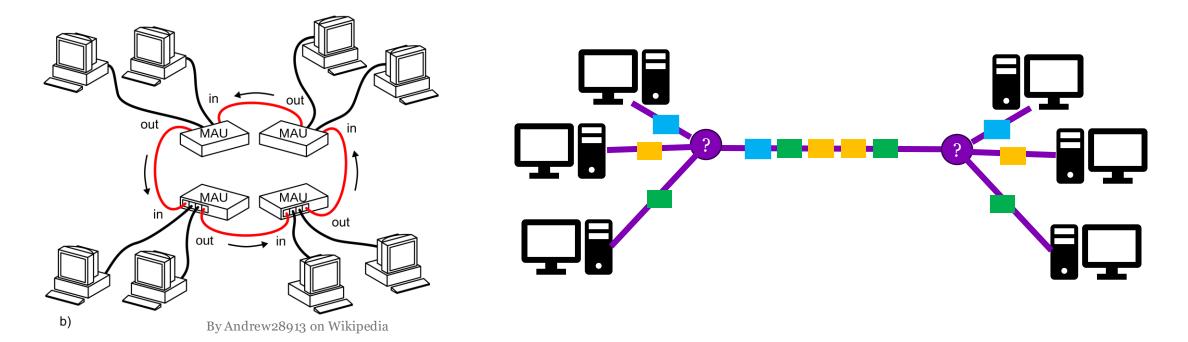
Statine ator				Destinati Addres	on Source Addre	3 ⁵	Endine initiator				
	SD AC FC DA SA PDU from LLC (IEEE 802.2		CRC	ED	FS						
	8 bits	8 bits	8 bits	48 bits	48 bits	Up to 4500×8 bits	32 bits	8 bits	8 bits		

Packet

- Smallest individually addressable data unit transmitted.
- A packet is a simple concept: it has a destination address, source address and message.
- Usually created in layers by different parts of the software stack.

Frame

Footer


TCP

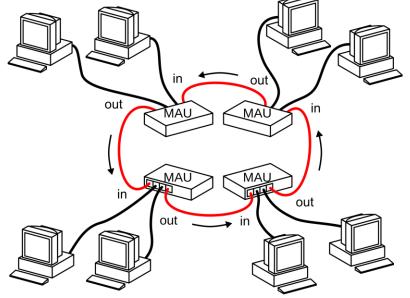
Header

Message

Packet addressing

- How do computers/routers know where to send datagrams?
- How does a computer know when to pickup a packet/datagram from the network?

Frame


Header

MAC address

- Medium Access Control (MAC) address
- Assigned at time of manufacture (mostly)
- Six groups of 2 hexadecimal digits
- Used to identify unique devices on a local network

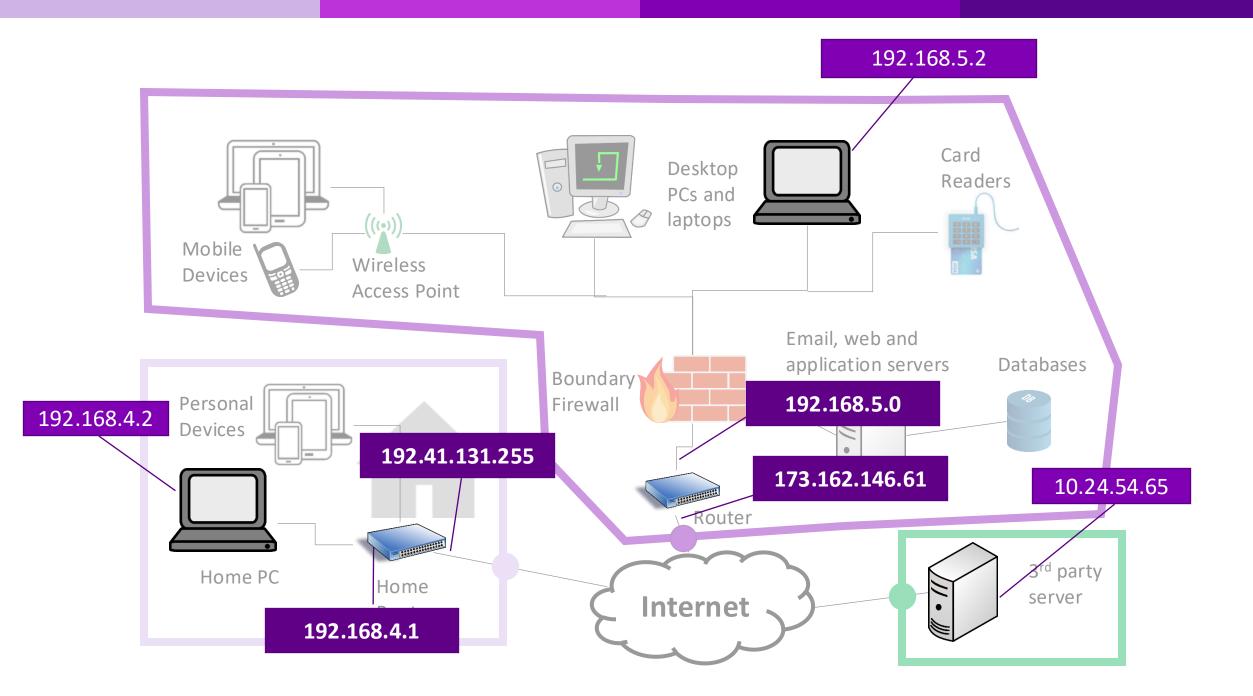
By © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons), CC BY-SA 4.0

By Andrew 28913 on Wikipedia

INTERNET PROTOCOL (IP) ADDRESSES

An IPv4 address (dotted-decimal notation)

172 . 16 . 254 . 1 10101100.00010000.11111110.00000001One byte=Eight bits Thirty-two bits (4×8) , or 4 bytes


By Indeterminate - Own work, Public Domain,

nttps://commons.wikimedia.org/w/index.php?curid=286

Every computer on a network has an IP address which is unique from the other computers.

Each interface on a computer gets one IP address.

So your WIFI would get one IP address and your wired network connection would get a different IP address if both were connected.

kvaniea@brendel:~\$
1240 > ifconfig
bond0: flags=5187<UP_BROADCAST,RUNNING,MASTER,MULTICAST> mtu 1500
 inet 129.215.33.112 netmask 255.255.255.0 broadcast 129.215.33.255
 inet0 2001:050:5c1:33:222:19ff:fed5:cb52 prefixlen 64 scopeid 0x0<global>
 inet6 fe80::222:19ff:fed5:cb52 prefixlen 64 scopeid 0x20<link>
 ether 00:22:19:d5:cb:52 txqueuelen 1000 (Ethernet)
 RX packets 367631439 bytes 246252199152 (229.3 GiB)
 RX errors 0 dropped 14546 overruns 0 frame 0
 TX packets 317902874 bytes 189161541398 (176.1 GiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

ifconfig on Linux

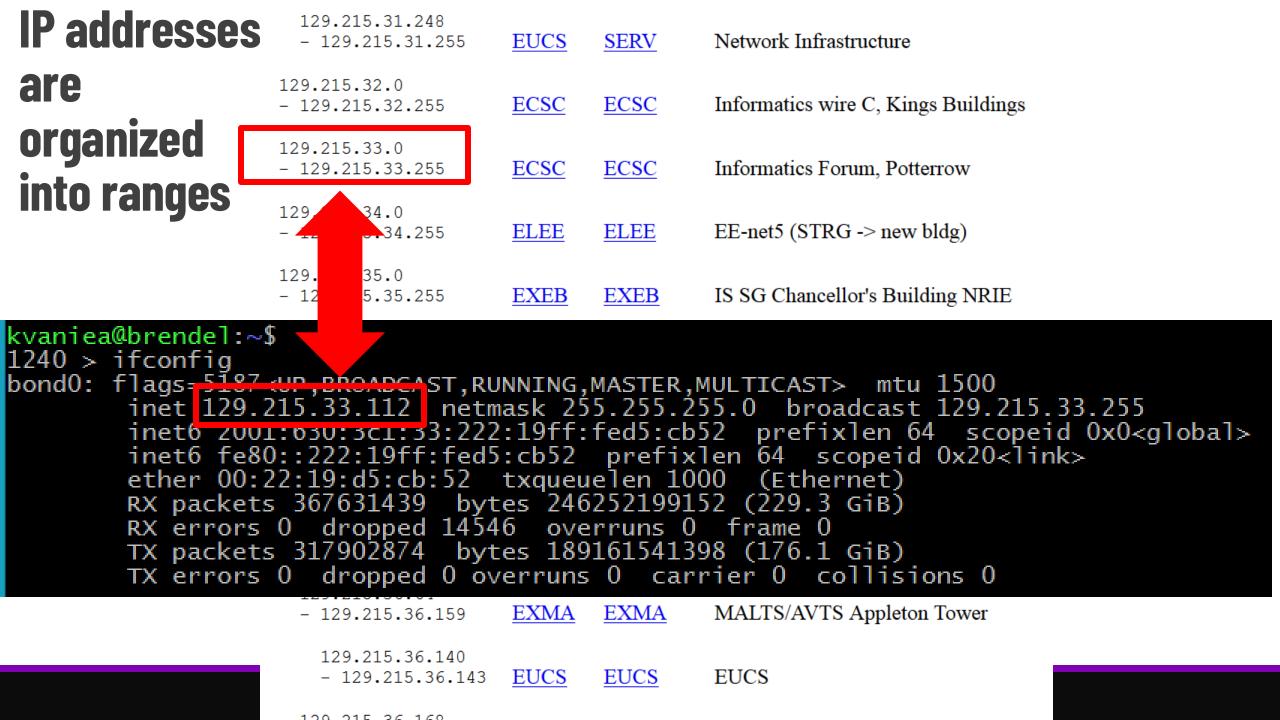
ipconfig on Windows

Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix . :	lan
IPv6 Address	fd02:9d33:f1fa::446
IPv6 Address	fd02:9d33:f1fa:0:483:b9e3:91bd:d0d1
Temporary IPv6 Address :	fd02:9d33:f1fa:0:80d:954d:fb96:88c5
Link-local IPv6 Address :	
IPv4 Address	192.168.2.103
Subnet Mask	255.255.255.0
Default Gateway	192.168.2.1

If you check your own IP address regularly, you will notice that it changes every time your computer changes networks.

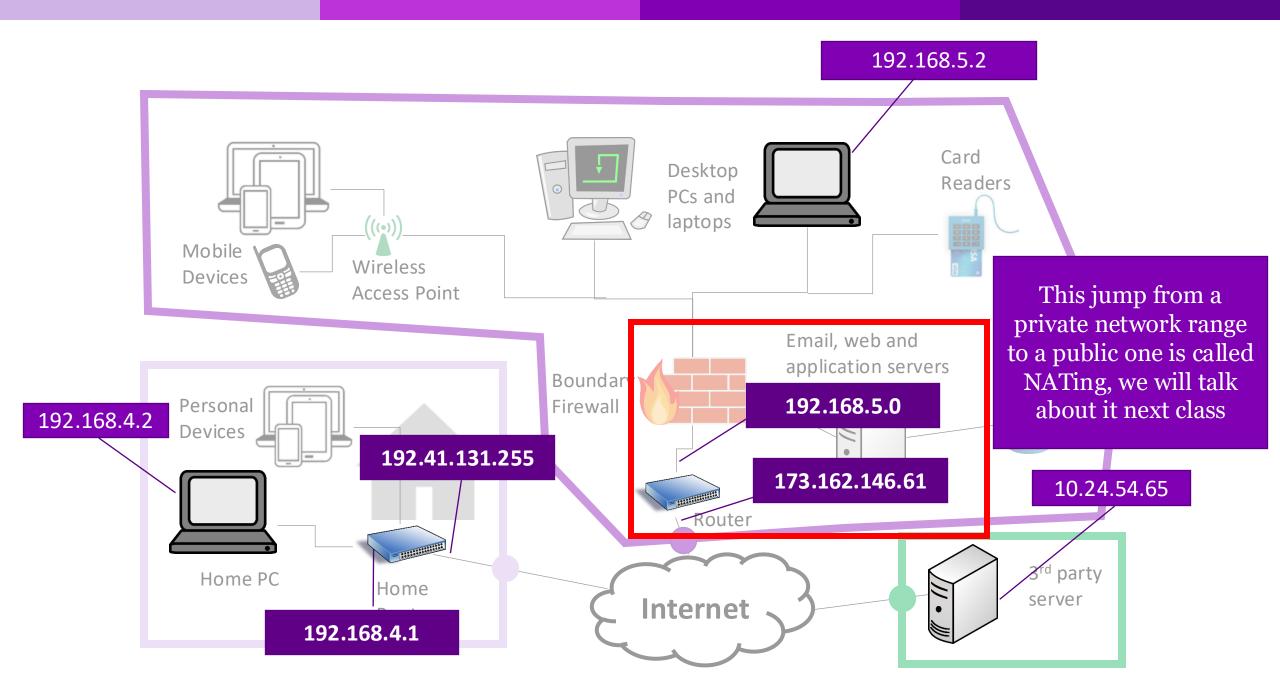
Inside the University only the last few bits will normally change, but if you go home the whole address will most likely change.



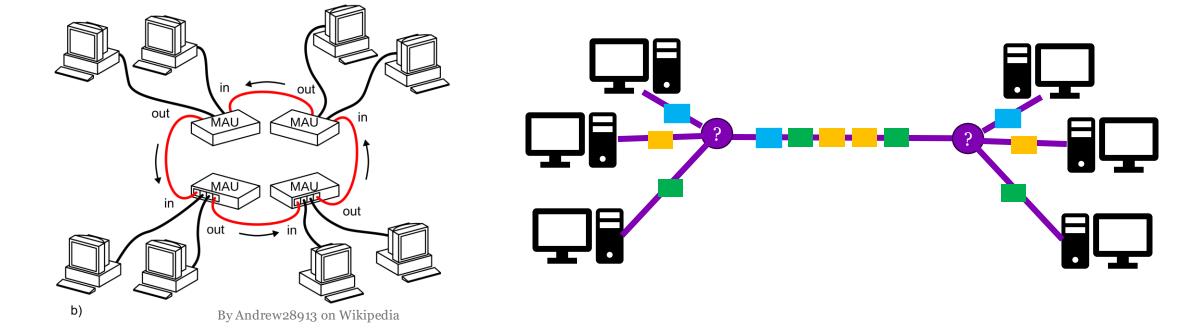
Terminal - bash

guest@dnstools.ch:~> traceroute facebook.com
1 static.1.241.243.136.clients.your-server.de (136.243.241.1) 0.228 ms
2 core24.fsn1.hetzner.com (213.239.229.53) 0.230 ms
3 core1.fra.hetzner.com (213.239.229.77) 4.921 ms
4 core2.ams.hetzner.com (213.239.203.158) 10.602 ms
5 br02.ams1.tfbnw.net [80.249.209.164) 11.665 ms
6 po131.asw02.ams2.tfbnw.net (204.15.21.94) L1.682 ms
7 po231.psw01.ams2.tfbnw.net [157.240.35.163] 12.001 ms
8 173.252.67.187 173.252.67.187) 11.678 ms
9 edge-star-mini-shv-01-amt2.facebook.com (31.13.64.35) 11.870 ms

24


http://en.dnstools.ch/visual-traceroute.html

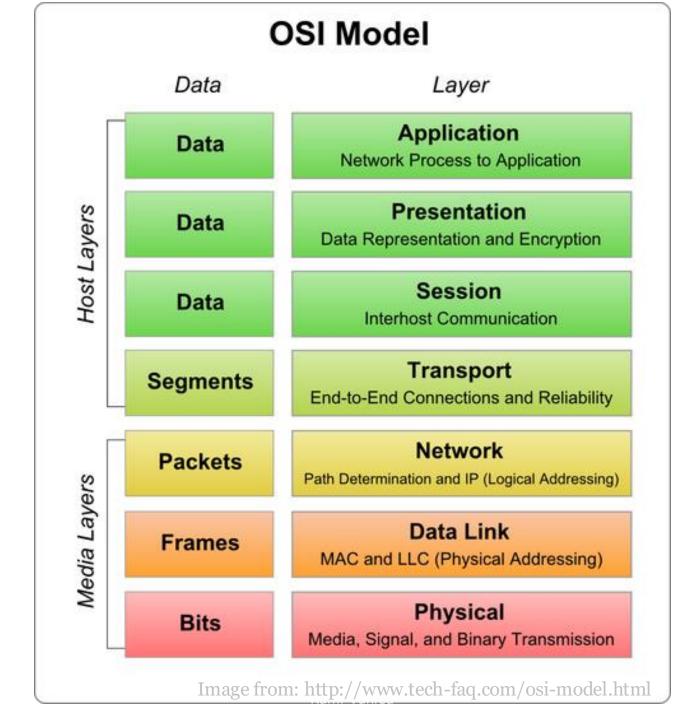
Class	Start Address	End Address
A – Private	10.0.0	10.255.255.255
B – Private	172.16.0.0	172.31.255.255
C – Private	192.168.0.0	192.168.255.255
Loopback	127.0.0.0	127.255.255.255

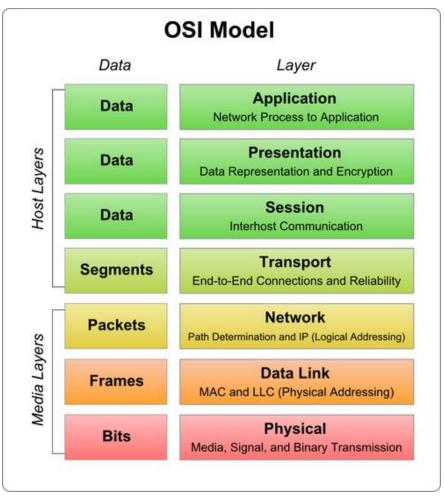

Wi

Class	Start Address	End Address
A – Private	10.0.0	10.255.255.255
B – Private	172.16.0.0	172.31.255.255
C – Private	192.168.0.0	192.168.255.255
Loopback	127.0.0.0	127.255.255.255
reless LAN adapter Wi-Fi: Connection-specific DNS Suf IPv6 Address IPv6 Address Temporary IPv6 Address Link-local IPv6 Address	: fd02 33:f1fa : fd02 33:f1fa : fd02 33:f1fa : fd02 .3:f1fa : fe80::483:b9e3	:0:483:b9e3:91bd:d0d1 :0:80d:954d:fb96:88c5
IPv4 Address		
Default Gateway		

Think-pair-share

- Where is the reference monitor?
- Each packet is addressed, what ensures that only the intended recipient gets the message?


FrameDestinationSourceICPMessageFrameHeaderAddressAddressHeaderFooter	Frame Header	Destination Address	Source Address	TCP Header	Message	Frame Footer
---	-----------------	------------------------	-------------------	---------------	---------	-----------------


OSI NETWORK MODEL

Open Systems Interconnect model

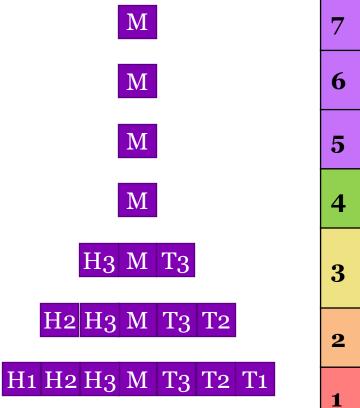
- A good way to think about networking steps logically
- Not how software is actually built

OSI in terms of debugging errors

Can your browser open another website?

Do you have a viewer that supports jpg (image format)? Can you ping the webserver you are trying to reach? Can you ping the gateway or DNS server? Do you have an IP address? Is the light on the modem on?

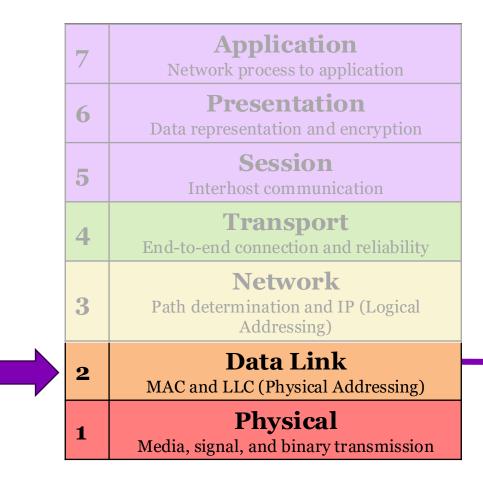
Is the network cable plugged in?

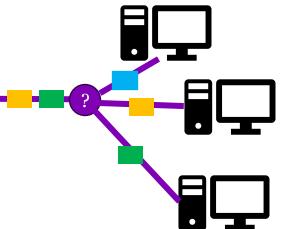

<pre>4 <doctfe be="" needs="" the="" to="" v<br="">into quicks mode, rather < <docment starts=""> < <docment starts=""> </docment></docment></doctfe></pre> deadb <end'sal doctype.inc=""> in <title nee="">
</pre>
distable</th><th>rg/TR/html4/loose
very first thing
than standards m
>
rse - University
-></th><th>of Edinburgh School of Inform
refed> Sender:
Amough Course - University of Ed</th><th>Data starts at the
top of the OSI stack
at level 7.
It progresses down</th><th></th><th><section-header> Recipient: Display in the second second</th><th>Provide the strength of the strengt of the strength of the strength of the strength of</th></tr><tr><th></th><th>7</th><th>Application
Network process to application</th><th>the stack with each successive level</th><th>7</th><th>Application
Network process to application</th><th></th></tr><tr><th></th><th>6</th><th>Presentation
Data representation and encryption</th><th>adding or changing information.</th><th>6</th><th>Presentation Data representation and encryption</th><th></th></tr><tr><th></th><th>5</th><th>Session
Interhost communication</th><th>At level 1 it travels
across the physical</th><th>5</th><th>Session
Interhost communication</th><th></th></tr><tr><th></th><th>4</th><th>Transport
End-to-end connection and reliability</th><th>layer to the recipient computer.</th><th>4</th><th>Transport
End-to-end connection and reliability</th><th></th></tr><tr><th></th><th>3</th><th>Network
Path determination and IP (Logical
Addressing)</th><th>The recipient then processes the data</th><th>3</th><th>Network
Path determination and IP (Logical
Addressing)</th><th></th></tr><tr><th></th><th>2</th><th>Data Link
MAC and LLC (Physical Addressing)</th><th>up the stack. At
level 7 an
application</th><th>2</th><th>Data Link
MAC and LLC (Physical Addressing)</th><th></th></tr><tr><th></th><th>1</th><th>Physical
Media, signal, and binary transmission</th><th>processes the data.</th><th>1</th><th>Physical
Media, signal, and binary transmission</th><th></th></tr></tbody></table></title></end'sal>
--

Levels 7 and 6 involve the internal representation of the message

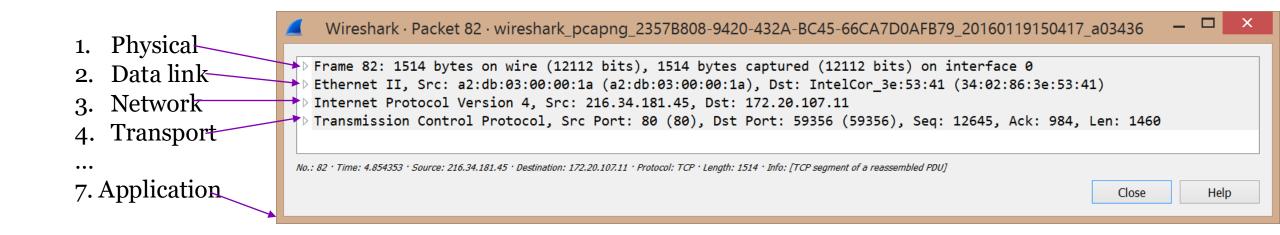
Levels 5 and 4 involve setting up the connection

Levels 3, 2, and 1 add header (H) and tail (T) information to each packet

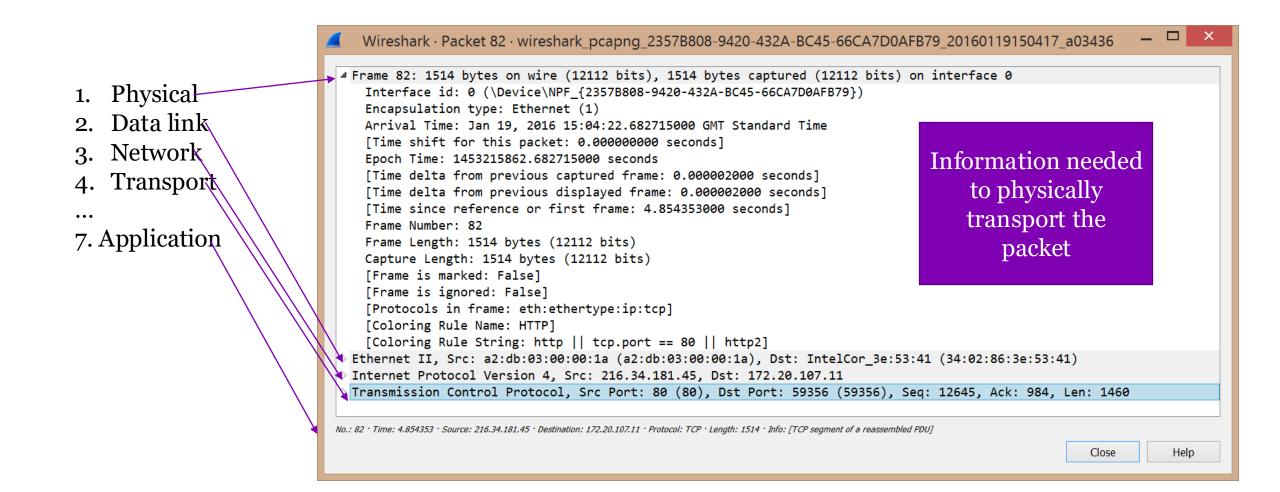

Information is added to the message as it travels down the OSI levels

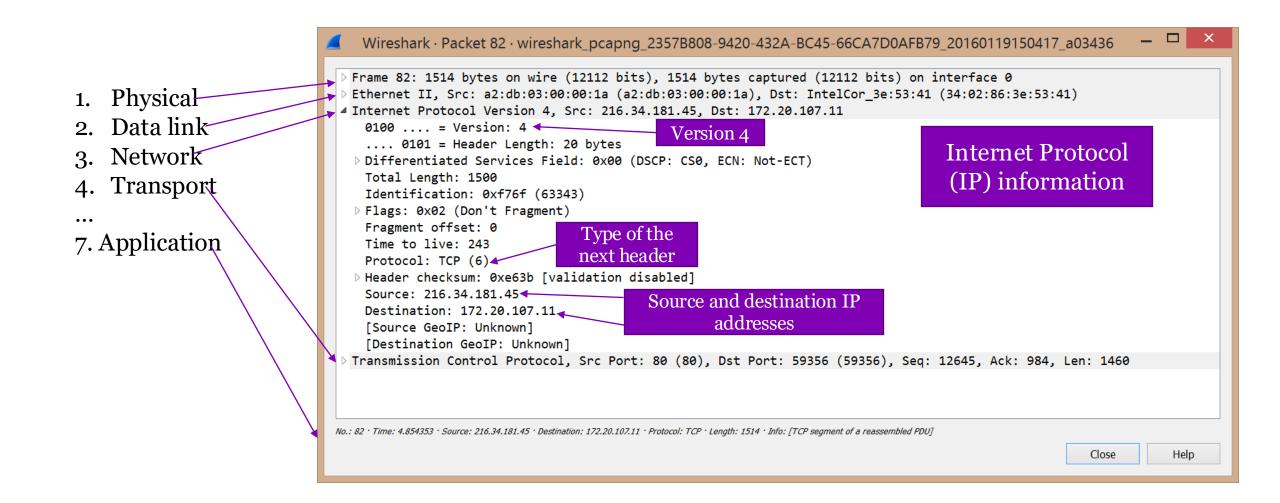


7	Application Network process to application			
6	Presentation Data representation and encryption			
5	Session Interhost communication			
4	Transport End-to-end connection and reliability			
3	Network Path determination and IP (Logical Addressing)			
2	Data Link MAC and LLC (Physical Addressing)			
1	Physical Media, signal, and binary transmission			


Routers should be able to route traffic without understanding message content

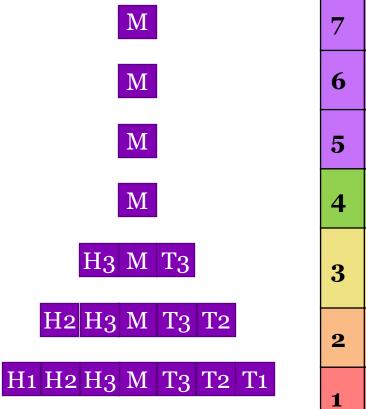
7	Application Network process to application			
6	Presentation Data representation and encryption			
5	Session Interhost communication			
4	Transport End-to-end connection and reliability			
3	Network Path determination and IP (Logical Addressing)			
2	2 Data Link MAC and LLC (Physical Addressing)			
1	Physical Media, signal, and binary transmission			




Header data on a packet

Frame header data on a packet

IP header data on a packet



Levels 7 and 6 involve the internal representation of the message

Levels 5 and 4 involve setting up the connection

Levels 3, 2, and 1 add header (H) and tail (T) information to each packet

Information is added to the message as it travels down the OSI levels

7	Application Network process to application
6	Presentation Data representation and encryption
5	Session Interhost communication
4	Transport End-to-end connection and reliability
3	Network Path determination and IP (Logical Addressing)
2	Data Link MAC and LLC (Physical Addressing)
1	Physical Media, signal, and binary transmission

This is me visiting https://slashdot.org

6 packets were sent from my computer to the server

50 packets were sent from the server to my computer 🧾 Wireshark · Follow TCP Stream (tcp.stream eq 46) · wireshark_2357B808-9420-432A-BC45-66CA7D0AFB79_2...

41

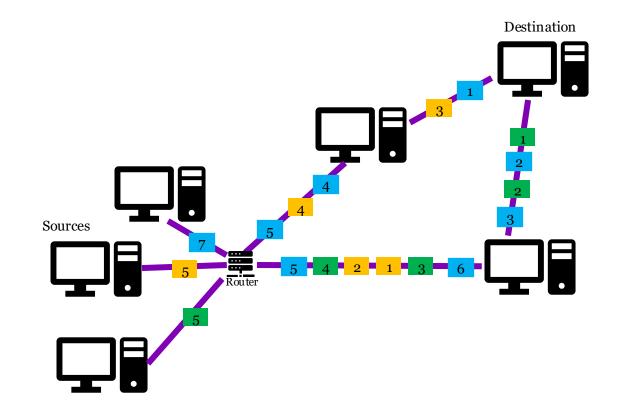
×

```
....E.
....7.`.It.?W9...#.?...9.w... .....%.s
.....3.9./.5.
...x.....slashdot.org.....
.....h2.spdy/3.1.http/1.1.....
.....P'.p`b.4.aS$.N.x...nG .L]&-M.. ....%.p
.I.....:..1!.Z.jU..7.....
..x...)2c..0
      *.H..
....0]1.0
           ..U....US1.0...U.
Let's Encrypt1#0!..U....Let's Encrypt Authority X30..
160902181900Z.
161201181900Z0.1.0...U....slashdot.org0.."0
      *.H..
.....&..W..6..G...{..|.....mD
1].Z....(.....T...+..J.O..X.Yc...~....e.......*.....h....Y.E:R.....H....~
.1.....U....!....JDZE.P.^..6..Uqu..@..,.e..f.*s.s.f.....?-...V..../i...SU......0...0...U......
0p..+.....d0b0/..+....0..#http://ocsp.int-x3.letsencrypt.org/0/..+....0..#http://cert.int-
x3.letsencrypt.org/0....U.....
0.....apache.slashdot.org..api.slashdot.org..apple.slashdot.org..ask.slashdot.org..askslashdot.slashdot.org..a
wards.slashdot.org..back.slashdot.org..backslash.slashdot.org..bi.slashdot.org..books.slashdot.org..bsd.slashd
ot.org..build.slashdot.org..cc.slashdot.org..cloud.slashdot.org..cmdrtaco.slashdot.org..datacenter.slashdot.or
g..design.slashdot.org..developers.slashdot.org..devices.slashdot.org..entertainment.slashdot.org..features.sl
ashdot.org..games.slashdot.org..hardware.slashdot.org..idle.slashdot.org..images-
ssl.slashdot.org..images.slashdot.org..info.slashdot.org..interviews.slashdot.org..it....!.....
                                                                                  ~0.
z0..b.....H..s
..x...)2c..0
      *.H..
....0J1.0
           ..U....US1.0...U.
6 client pkts, 50 server pkts, 10 turns.
                                                                                   Stream 46
                                   Show and save data as ASCII
Entire conversation (124 kB)
                              •
Find:
                                                                                     Find Next
```

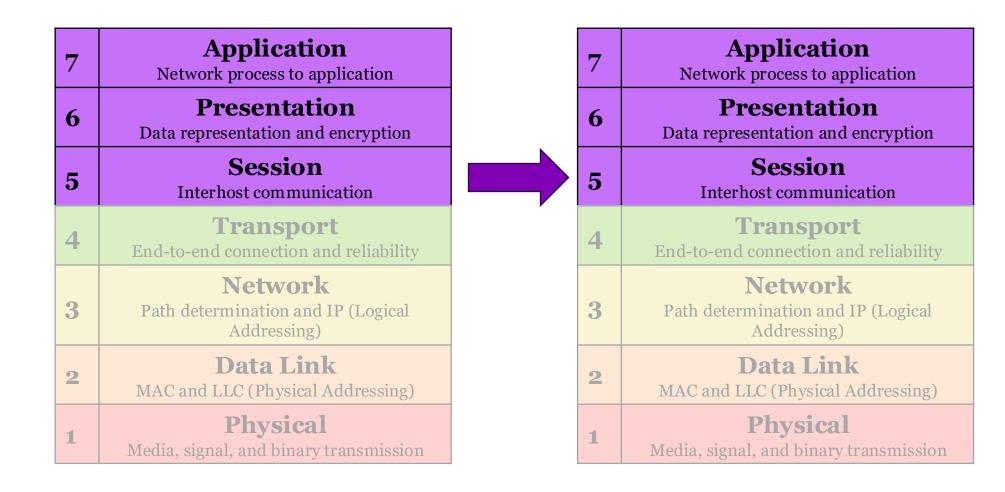
Kami Vaniea

This is me visiting http://vaniea.com

Note the lack of https

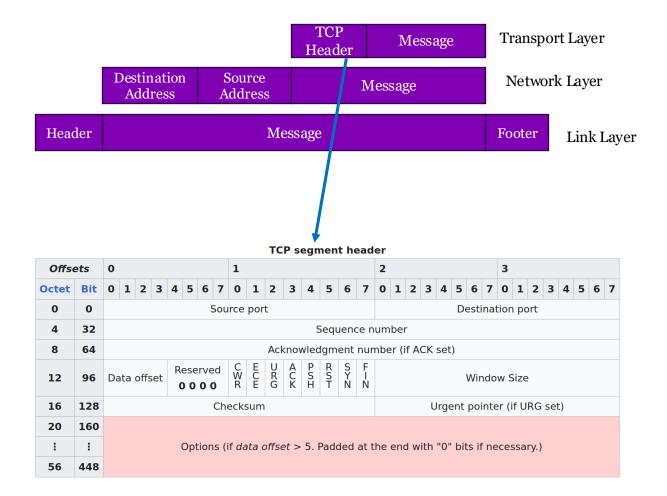

Why does the text look garbled anyway? 🚄 Wireshark · Follow TCP Stream (tcp.stream eq 36) · wireshark_2357B808-9... 🗕 🗖 GET / HTTP/1.1 Host: vaniea.com User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:49.0) Gecko/20100101 Firefox/49.0 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en-US, en; q=0.5 Accept-Encoding: gzip, deflate DNT: 1 Connection: keep-alive Upgrade-Insecure-Requests: 1 HTTP/1.1 200 OK Date: Sun, 25 Sep 2016 21:03:35 GMT Server: Apache Last-Modified: Mon, 29 Aug 2016 11:39:46 GMT ETag: "10de-53b34522f89ac" Accept-Ranges: bytes Vary: Accept-Encoding Content-Encoding: gzip

5..C.~...."W.....^....4.!?MX4....~.@UN +.t.+|xG.*|./..m%jZ...:.S...


TRANSMISSION CONTROL PROTOCOL (TCP)

Transmission Control Protocol (TCP)

- Problem:
 - The network isn't very reliable, packets get lost
 - \circ Packets arrive out-of-order
 - Congestion forces network slow-down
- Applications need the packets to all get there and be in order
- Connection needs to look invisible to upper OSI network model levels



Applications should be able to send across the network without understanding network structures or issues

TCP

- TCP creates a "pipe" where it makes sure data is transferred with high reliability and not lost
- TCP is good for reliability and less good for speed
- TCP breaks message into smaller messages that fit well in packets
- Each packet is assigned tracking information (sequence numbers)

TCP: Three-part handshake

- TCP uses sequence numbers to ensure that all packets are arriving. The threepart-handshake sets up the connection and the randomly chosen sequence number start points
- Basic three-part handshake used by Alice to initiate a TCP connection with Bob.

 $A \rightarrow B$: SYN, X $B \rightarrow A$: ACK, X + 1; SYN, Y $A \rightarrow B$: ACK, Y + 1

- Following packets include sequence numbers (Alice sequence starting with X+2)
- Server Bob responds with Ack packets (with sequence starting Y+2) signaling how many of the packets have come through (X+n)

SYN

10.32.113.90	34.120.208.123	TCP	7437010 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=2121452297 TSecr=0 WS=128
34.120.208.123	10.32.113.90	TCP	74443 → 37010 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1250 SACK_PERM=1 TSval=2389897682 TSecr=2121452297 WS=256
10.32.113.90	34.120.208.123	ТСР	6637010 → 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2121452305 TSecr=2389897682

	e 203: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface wlp0s20f3, id 0)		
	rnet II, Src: IntelCor_ef:1b:77 (74:04:f1:ef:1b:77), Dst: Cisco_f3:e1:54 (d4:2c:44:f3:e1:54) rnet Protocol Version 4, Src: 10.32.113.90, Dst: 34.120.208.123			
	smission Control Protocol, Src Port: 37010, Dst Port: 443, Seq: 0, Len: 0			
	purce Port: 37010			
	estination Port: 443			
	Stream index: 4] Conversation completeness: Complete, WITH_DATA (31)]			
	<pre>FCP Segment Len: 0]</pre>			
-	equence Number: 0 (relative sequence number)			
	equence Number (raw): 1049082332			
	Next Sequence Number: 1 (relative sequence number)]			
	cknowledgment Number: 0 cknowledgment number (raw): 0			
10	D10 = Header Length: 40 bytes (10) Lags: 0x002 (SYN)			
10 • <mark>Fl</mark> Wi	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) Lndow: 64240			
10 • <mark>Fl</mark> Wi [0	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) Lindow: 64240 Calculated window size: 64240]			
10 Fl Wi [C Ch	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) Lindow: 64240 Calculated window size: 64240] hecksum: 0x6e9c [unverified]			
10	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) indow: 64240 Calculated window size: 64240] necksum: 0x6e9c [unverified] Checksum Status: Unverified]			
10 > Fl Wi [C Ch [C Ur	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) Lindow: 64240 Calculated window size: 64240] hecksum: 0x6e9c [unverified]	dow so	cale	
10 Fl Wi [C Ch [C Ur • Op	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) indow: 64240 Calculated window size: 64240] necksum: 0x6e9c [unverified] Checksum Status: Unverified] rgent Pointer: 0	tow so	cale	
16 • Fl wi [C Ch [C Ur • Op • [T	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) Indow: 64240 Calculated window size: 64240] Decksum: 0x6e9c [unverified] Checksum Status: Unverified] Cgent Pointer: 0 Dions: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Wind Fimestamps] d4 2c 44 f3 e1 54 74 04 f1 ef 1b 77 08 00 45 00 ·.D··Tt····w·E·	dow so	cale	
16 • Fl Wi [C Ch [C Ur • Op • [T)0000 0010	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) Indow: 64240 Calculated window size: 64240] Decksum: 0x6e9c [unverified] Checksum Status: Unverified] Cgent Pointer: 0 Ditions: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Wind Timestamps] d4 2c 44 f3 e1 54 74 04 f1 ef 1b 77 08 00 45 00 ·,D··Tt····w·E· 00 3c 41 ed 40 00 40 06 8a 61 0a 20 71 5a 22 78 · <a·@·@··a·qz"x< td=""><td>dow so</td><td>cale</td><td></td></a·@·@··a·qz"x<>	dow so	cale	
16 • Fl Wi [C Ch [C Ur • Op • [T)0000 0010 0020	010 = Header Length: 40 bytes (10) Lags: 0x002 (SYN) Indow: 64240 Calculated window size: 64240] Decksum: 0x6e9c [unverified] Checksum Status: Unverified] Cgent Pointer: 0 Dions: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Wind Fimestamps] d4 2c 44 f3 e1 54 74 04 f1 ef 1b 77 08 00 45 00 ·.D··Tt····w·E·	dow so	cale	

48

10.32.113.90 34.120.208.123 10.32.113.90	34.120.208.123 TCP 74 37010 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=2121452297 TSecr= 10.32.113.90 TCP 74 443 → 37010 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1250 SACK_PERM=1 TSval=238989 34.120.208.123 TCP 66 37010 → 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2121452305 TSecr=2389897682			2121452297 WS=256
	Wireshark • Packet 204 • wlp0s20f3	- •	×	
	<pre>> Frame 204: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface wlp0s20f3, id 0 > Ethernet II, Src: Cisco_f3:e1:54 (d4:2c:44:f3:e1:54), Dst: IntelCor_ef:1b:77 (74:04:f1:ef:1b:77) > Internet Protocol Version 4, Src: 34.120.208.123, Dst: 10.32.113.90 > Transmission Control Protocol, Src Port: 443, Dst Port: 37010, Seq: 0, Ack: 1, Len: 0 Source Port: 443 Destination Port: 37010 [Stream index: 4] [Conversation completeness: Complete, WITH_DATA (31)] [TCP Segment Len: 0] Sequence Number: 0 (relative sequence number) Sequence Number (raw): 1537189781 [Next Sequence Number: 1 (relative sequence number)] Acknowledgment Number: 1 (relative ack number)</pre>			
	Acknowledgment number (raw): 1049082333 1010 = Header Length: 40 bytes (10) Flags: 0x012 (SYN, ACK) Window: 65535 [Calculated window size: 65535] Checksum: 0x82aa [unverified] [Checksum Status: Unverified] Urgent Pointer: 0 > Options: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Window > [Timestamps] > [SEQ/ACK analysis]	scale		
	0000 74 04 f1 ef 1b 77 d4 2c 44 f3 e1 54 08 00 45 00 t · · · · w · , D · · T · E · 0010 00 3c 00 00 40 00 73 06 99 4e 22 78 d0 7b 0a 20 < · · @ · s · · N"x · { ·		•	
	Help	<u>×c</u>	lose	

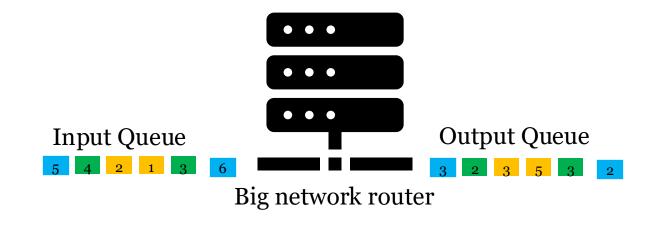
ACK

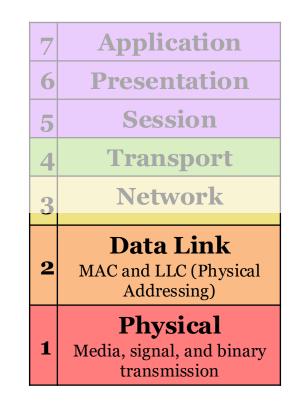
10.32.113.90	34.120.208.123	TCP	7437010 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM		
34.120.208.123	10.32.113.90	TCP	74443 \rightarrow 37010 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=125		7 WS=256
10.32.113.90	34.120.208.123	ТСР	6637010 $ ightarrow$ 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=212145	2305 TSecr=2389897682	
			Wireshark · Packet 205 · wlp0s20f3	— — ×	
	<pre>> Ether > Inter > Trans So De [S [C [T Se Se Se [N Ac Ac 10 > Fl Wi [C [W Ch [C UT > Op > [T] </pre>	net II, Si met Protocomission Co urce Port: stination tream inde onversatio CP Segment quence Num quence Num ext Sequen knowledgme knowledgme on = ags: 0x010 ndow: 502 alculated indow size ecksum: 0x necksum St gent Point tions: (12 imestamps] EQ/ACK ana	bytes on wire (528 bits), 66 bytes captured (528 bits) on inter c: IntelCor_ef:1b:77 (74:04:f1:ef:1b:77), Dst: Cisco_f3:e1:54 col Version 4, Src: 10.32.113.90, Dst: 34.120.208.123 ontrol Protocol, Src Port: 37010, Dst Port: 443, Seq: 1, Ack: : 37010 Port: 443 x: 4] n completeness: Complete, WITH_DATA (31)] Len: 0] ber: 1 (relative sequence number) ber (raw): 1049082333 ce Number: 1 (relative sequence number)] nt Number: 1 (relative ack number) nt number (raw): 1537189782 Header Length: 32 bytes (8) (ACK) window size: 64256] scaling factor: 128] 6e94 [unverified] atus: Unverified] er: 0 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps lysis] 3 e1 54 74 04 f1 ef 1b 77 08 00 45 00 ·.D·Ttoo.vw.E.	rface wlp0s20f3, id 0 (d4:2c:44:f3:e1:54)	
			e 40 00 40 06 8a 68 0a 20 71 5a 22 78 4A @ @ h qZ"x 2 01 bb 3e 87 b9 dd 5b 9f a7 96 80 10 {···> [····		
				v	
	? Help				

TCP: First message of conversation (TLS setup)

Wireshark · Packet 206 · wlp0s20f3 –	
<pre>> Frame 206: 1320 bytes on wire (10560 bits), 1320 bytes captured (10560 bits) on interface wlp0s20f3 > Ethernet II, Src: IntelCor_ef:1b:77 (74:04:f1:ef:1b:77), Dst: Cisco_f3:e1:54 (d4:2c:44:f3:e1:54) > Internet Protocol Version 4, Src: 10.32.113.90, Dst: 34.120.208.123 > Transmission Control Protocol, Src Port: 37010, Dst Port: 443, Seq: 1, Ack: 1, Len: 1254 Source Port: 37010 Destination Port: 443 [Stream index: 4] [Conversation completeness: Complete, WITH_DATA (31)] [TCP Segment Len: 1254] Sequence Number: 1 (relative sequence number) Sequence Number: 1 (relative sequence number) Sequence Number: 1255 (relative sequence number)] Acknowledgment Number: 1 (relative ack number) Acknowledgment number (raw): 1537189782 1000 = Header Length: 32 bytes (8) > Flags: 0x018 (PSH, ACK) window: 502 [Calculated window size: 64256]</pre>	
<pre>[Window size scaling factor: 128] Checksum: 0x737a [unverified] [Checksum Status: Unverified] Urgent Pointer: 0 > Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps > [Timestamps] > [SEQ/ACK analysis] TCP payload (1254 bytes)</pre>	
Transport Layer Security	
0000 d4 2c 44 f3 e1 54 74 04 f1 ef 1b 77 08 00 45 00 ·, D··Tt···w··E· 0010 05 1a 41 ef 40 00 40 06 85 81 0a 20 71 5a 22 78 ·, D··Tt···w··E·	•
Help	<mark>⊗C</mark> lose

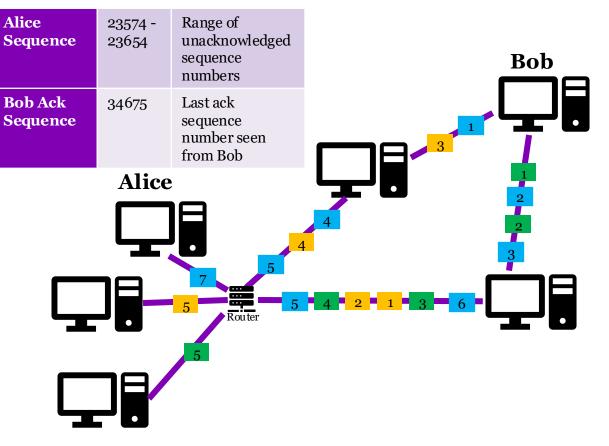
First ACK post handshake


Wireshark · Packet 207 · wlp0s20f3 –	
 Frame 207: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface wlp0s20f3, i Ethernet II, Src: Cisco_f3:e1:54 (d4:2c:44:f3:e1:54), Dst: IntelCor_ef:1b:77 (74:04:f1:ef:1b:7 Internet Protocol Version 4, Src: 34.120.208.123, Dst: 10.32.113.90 Transmission Control Protocol, Src Port: 443, Dst Port: 37010, Seq: 1, Ack: 1239, Len: 0 	
<pre>Source Port: 443 Destination Port: 37010 [Stream index: 4] [Conversation completeness: Complete, WITH_DATA (31)] [TCP Segment Len: 0] Sequence Number: 1 (relative sequence number) Sequence Number (raw): 1537189782 [Next Sequence Number: 1 (relative sequence number)] Acknowledgment Number: 1239 (relative ack number) Acknowledgment Number (raw): 1049083571 1000 = Header Length: 32 bytes (8) Flags: 0x010 (ACK) Window: 267 [Calculated window size: 68352] [Window size scaling factor: 256] Checksum: 0xaab0 [unverified] [Checksum Status: Unverified] Urgent Pointer: 0 > Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps > [Timestamps]</pre>	
0000 74 04 f1 ef 1b 77 d4 2c 44 f3 e1 54 08 00 45 00 t · · · · w · , D · · T · · E · 0010 00 34 b3 f4 00 00 73 06 25 62 22 78 d0 7b 0a 20 · 4 · · · · s · %b"x · { ·	•
Help	<u>C</u> lose


TCP connection works by coordinating the sequence numbers

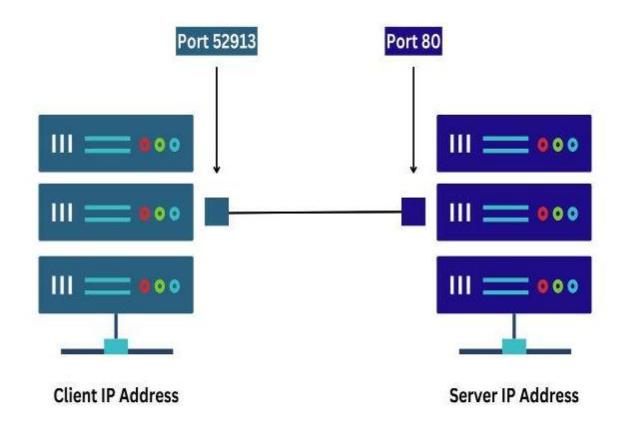
Time	Source	Destination	Protocol	Length Info
5.096284559	10.32.113.90	34.120.208.123	ТСР	7437010 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=2121452297 TSecr=0 W
5.104798465	34.120.208.123	10.32.113.90	TCP	74 443 → 37010 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1250 SACK_PERM=1 TSval=238989768
5.104842223	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2121452305 TSecr=2389897682
5.106365475	10.32.113.90	34.120.208.123	TLSv1.3	1320 Client Hello
5.114125383	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=1 Ack=1239 Win=68352 Len=0 TSval=2389897692 TSecr=2121452307
5.116321749	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=1 Ack=1255 Win=68352 Len=0 TSval=2389897694 TSecr=2121452307
5.138999171	34.120.208.123	10.32.113.90	TLSv1.3	3578 Server Hello, Change Cipher Spec, Application Data
5.139033771	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=1255 Ack=3513 Win=60800 Len=0 TSval=2121452340 TSecr=2389897716
5.142016312	10.32.113.90	34.120.208.123	TLSv1.3	130 Change Cipher Spec, Application Data
5.142391566	10.32.113.90	34.120.208.123	TLSv1.3	236 Application Data
5.142423997	10.32.113.90	34.120.208.123	TLSv1.3	1693 Application Data, Application Data
5.148618301	34.120.208.123	10.32.113.90	TLSv1.3	97[TCP Previous segment not captured] , Application Data
5.148651920	10.32.113.90	34.120.208.123	ТСР	78 [TCP Dup ACK 211#1] 37010 → 443 [ACK] Seq=3116 Ack=3513 Win=64128 Len=0 TSval=212145234
5.148618763	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=3513 Ack=2727 Win=73728 Len=0 TSval=2389897727 TSecr=2121452343
5.148618820	34.120.208.123	10.32.113.90	ТСР	652[TCP Out-Of-Order] 443 → 37010 [PSH, ACK] Seq=3513 Ack=2727 Win=73728 Len=586 TSval=238
5.148681362	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=3116 Ack=4130 Win=63616 Len=0 TSval=2121452349 TSecr=2389897727
5.149103475	10.32.113.90	34.120.208.123	TLSv1.3	97 Application Data
5.154335724	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=4130 Ack=3116 Win=76288 Len=0 TSval=2389897733 TSecr=2121452343
5.154335959	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=4130 Ack=3147 Win=76288 Len=0 TSval=2389897733 TSecr=2121452350
5.230705410	34.120.208.123	10.32.113.90	TLSv1.3	515 Application Data
5.230705747	34.120.208.123	10.32.113.90	TLSv1.3	353 Application Data
5.230951852	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=3147 Ack=4866 Win=64128 Len=0 TSval=2121452432 TSecr=2389897810
5.231846280	34.120.208.123	10.32.113.90	TLSv1.3	338 Application Data
5.232185942	34.120.208.123	10.32.113.90	TLSv1.3	105 Application Data
5.232524812	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=3147 Ack=5177 Win=64128 Len=0 TSval=2121452433 TSecr=2389897810
5.232539206	10.32.113.90	34.120.208.123	TLSv1.3	105 Application Data
5.239771080	34.120.208.123	10.32.113.90	ТСР	66443 → 37010 [ACK] Seq=5177 Ack=3186 Win=76288 Len=0 TSval=2389897818 TSecr=2121452433
32.253414829	10.32.113.90	34.120.208.123	TLSv1.3	214 Application Data
	10.32.113.90	34.120.208.123	TLSv1.3	1258 Application Data
	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=5177 Ack=3334 Win=78592 Len=0 TSval=2389924839 TSecr=2121479454
	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=5177 Ack=4526 Win=81408 Len=0 TSval=2389924839 TSecr=2121479454
	34.120.208.123	10.32.113.90	TLSv1.3	134 Application Data
	34.120.208.123	10.32.113.90	TLSv1.3	211 Application Data
	34.120.208.123	10.32.113.90	TLSv1.3	252 Application Data
32.362345194		10.32.113.90	TLSv1.3	105 Application Data
	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=4526 Ack=5615 Win=64128 Len=0 TSval=2121479563 TSecr=2389924941
32.362815884		34.120.208.123	TLSv1.3	105 Application Data
32.369943709	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=5615 Ack=4565 Win=81408 Len=0 TSval=2389924948 TSecr=2121479563

Data loss happens in the network because routers can only handle so much traffic


- Routers must process every packet that comes across
- They have a fixed-size queue of packets waiting to be processed
- If there are too many packets to fit in the queue, the router "drops" the packets without telling the source

TCP detects and handles dropped packets

- Problem:
 - The network isn't very reliable, packets get lost
 - Packets arrive out-of-order
 - Congestion forces network slow-down
- Applications need the packets to all get there and be in order
- Connection needs to look invisible to upper OSI network model levels

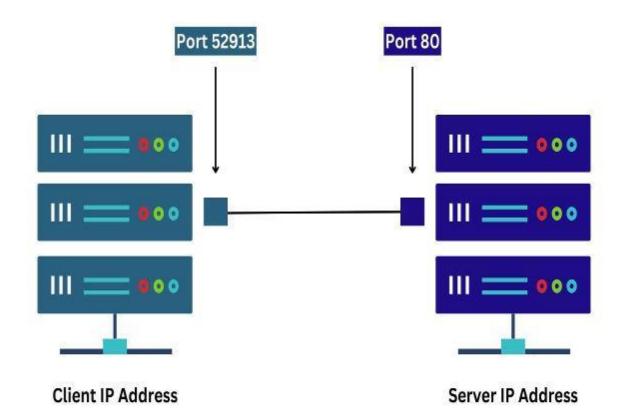

TCP connection works by coordinating the sequence numbers

Time	Source	Destination	Protocol	Length Info
5.096284559	10.32.113.90	34.120.208.123	ТСР	7437010 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=2121452297 TSecr=0 W
5.104798465	34.120.208.123	10.32.113.90	TCP	74 443 → 37010 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1250 SACK_PERM=1 TSval=238989768
5.104842223	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2121452305 TSecr=2389897682
5.106365475	10.32.113.90	34.120.208.123	TLSv1.3	1320 Client Hello
5.114125383	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=1 Ack=1239 Win=68352 Len=0 TSval=2389897692 TSecr=2121452307
5.116321749	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=1 Ack=1255 Win=68352 Len=0 TSval=2389897694 TSecr=2121452307
5.138999171	34.120.208.123	10.32.113.90	TLSv1.3	3578 Server Hello, Change Cipher Spec, Application Data
5.139033771	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=1255 Ack=3513 Win=60800 Len=0 TSval=2121452340 TSecr=2389897716
5.142016312	10.32.113.90	34.120.208.123	TLSv1.3	130 Change Cipher Spec, Application Data
5.142391566	10.32.113.90	34.120.208.123	TLSv1.3	236 Application Data
5.142423997	10.32.113.90	34.120.208.123	TLSv1.3	1693 Application Data, Application Data
5.148618301	34.120.208.123	10.32.113.90	TLSv1.3	97[TCP Previous segment not captured] , Application Data
5.148651920	10.32.113.90	34.120.208.123	ТСР	78 [TCP Dup ACK 211#1] 37010 → 443 [ACK] Seq=3116 Ack=3513 Win=64128 Len=0 TSval=212145234
5.148618763	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=3513 Ack=2727 Win=73728 Len=0 TSval=2389897727 TSecr=2121452343
5.148618820	34.120.208.123	10.32.113.90	ТСР	652[TCP Out-Of-Order] 443 → 37010 [PSH, ACK] Seq=3513 Ack=2727 Win=73728 Len=586 TSval=238
5.148681362	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=3116 Ack=4130 Win=63616 Len=0 TSval=2121452349 TSecr=2389897727
5.149103475	10.32.113.90	34.120.208.123	TLSv1.3	97 Application Data
5.154335724	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=4130 Ack=3116 Win=76288 Len=0 TSval=2389897733 TSecr=2121452343
5.154335959	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=4130 Ack=3147 Win=76288 Len=0 TSval=2389897733 TSecr=2121452350
5.230705410	34.120.208.123	10.32.113.90	TLSv1.3	515 Application Data
5.230705747	34.120.208.123	10.32.113.90	TLSv1.3	353 Application Data
5.230951852	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=3147 Ack=4866 Win=64128 Len=0 TSval=2121452432 TSecr=2389897810
5.231846280	34.120.208.123	10.32.113.90	TLSv1.3	338 Application Data
5.232185942	34.120.208.123	10.32.113.90	TLSv1.3	105 Application Data
5.232524812	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=3147 Ack=5177 Win=64128 Len=0 TSval=2121452433 TSecr=2389897810
5.232539206	10.32.113.90	34.120.208.123	TLSv1.3	105 Application Data
5.239771080	34.120.208.123	10.32.113.90	ТСР	66443 → 37010 [ACK] Seq=5177 Ack=3186 Win=76288 Len=0 TSval=2389897818 TSecr=2121452433
32.253414829	10.32.113.90	34.120.208.123	TLSv1.3	214 Application Data
	10.32.113.90	34.120.208.123	TLSv1.3	1258 Application Data
	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=5177 Ack=3334 Win=78592 Len=0 TSval=2389924839 TSecr=2121479454
	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=5177 Ack=4526 Win=81408 Len=0 TSval=2389924839 TSecr=2121479454
	34.120.208.123	10.32.113.90	TLSv1.3	134 Application Data
	34.120.208.123	10.32.113.90	TLSv1.3	211 Application Data
	34.120.208.123	10.32.113.90	TLSv1.3	252 Application Data
32.362345194		10.32.113.90	TLSv1.3	105 Application Data
	10.32.113.90	34.120.208.123	TCP	6637010 → 443 [ACK] Seq=4526 Ack=5615 Win=64128 Len=0 TSval=2121479563 TSecr=2389924941
32.362815884		34.120.208.123	TLSv1.3	105 Application Data
32.369943709	34.120.208.123	10.32.113.90	TCP	66443 → 37010 [ACK] Seq=5615 Ack=4565 Win=81408 Len=0 TSval=2389924948 TSecr=2121479563

PORT

Ports

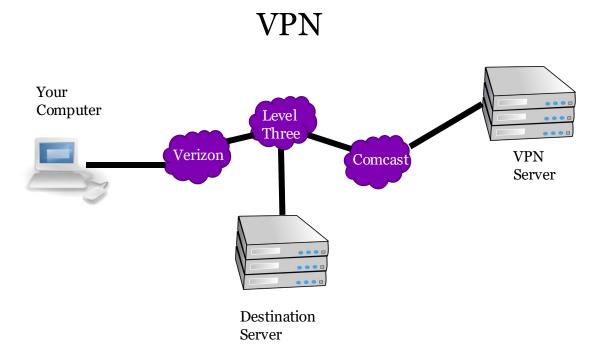
- MAC and IP addresses state which device to route to.
- But what software should handle each packet?
- We don't want to bother with a global list of software.
- Each software on the computer registers with a "port", which is just a number.


Ports

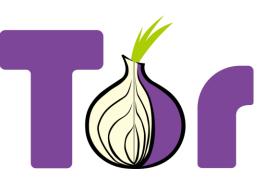
- The ports to the right are some of the most common externally visible ones.
- These ports are a *convention* not a required standard.
- If I want to run an SSH server on port 80, I can do so, though it will confuse allot of computers trying to talk to me.

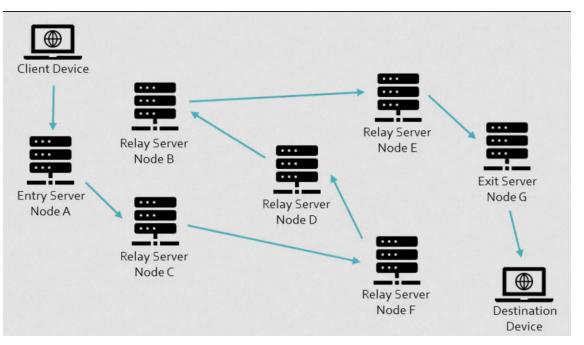
Port Number	Usage
20	File Transfer Protocol (FTP) Data Transfer
21	File Transfer Protocol (FTP) Command Control
22	Secure Shell (SSH)
23	Telnet - Remote login service, unencrypted text messages
25	Simple Mail Transfer Protocol (SMTP) E-mail Routing
53	Domain Name System (DNS) service
80	Hypertext Transfer Protocol (HTTP) used in World Wide Web
110	Post Office Protocol (POP3) used by e-mail clients to retrieve e-mail from a server
119	Network News Transfer Protocol (NNTP)
123	Network Time Protocol (NTP)
143	Internet Message Access Protocol (IMAP) Management of Digital Mail
161	Simple Network Management Protocol (SNMP)
194	Internet Relay Chat (IRC)
443	HTTP Secure (HTTPS) HTTP over TLS/SSL

Ports


- All software talking over the network needs a port, but not all software is always listening.
- When internal software wants to connect externally (i.e. Firefox wants to visit a website) the client computer assigns a blank port to that software.

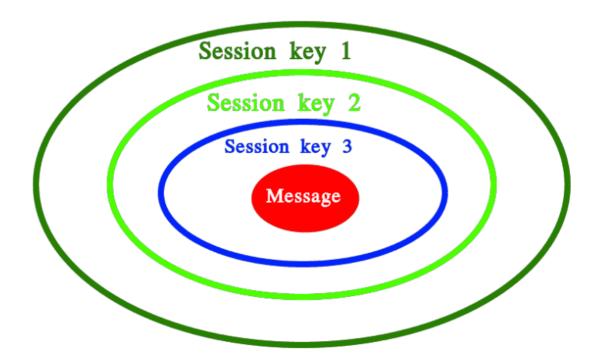
ONION ROUTING aka Tor

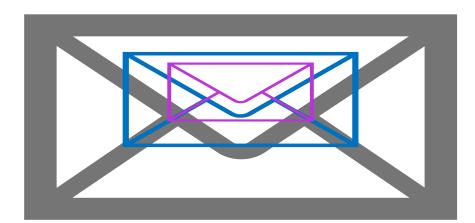

Problem: Anonymity


- VPN's were built to connect networks and ensure confidentiality of data
- Modern people also use them for anonymity, to hide what they are doing from a local threat
- But the VPN server has full knowledge of who it is connected to and all the traffic coming across
- Security weak point for hackers, governments, and law enforcement

Onion Routing

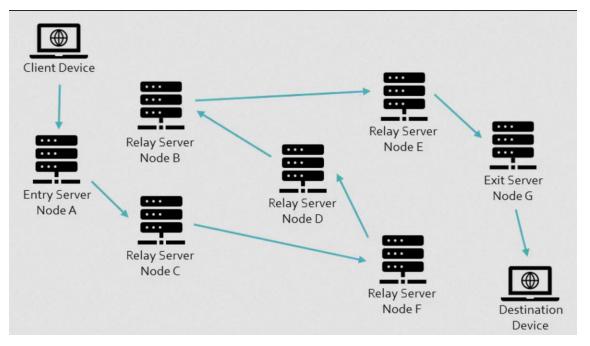
- Instead of one VPN server, how about we use several VPN servers
- Each server would know where it got traffic and where it sent traffic, but it won't know the whole path, just its neighbors
- This approach protects the client from connecting their real IP address with their traffic
 - First node (Node A) has the real IP address
 - Last node (Node G) has the real traffic
 - Nodes A and G do not know they are carrying the same person's traffic



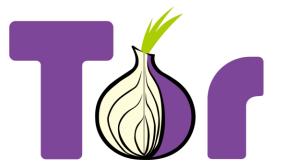


https://privacyhq.com/documentation/onion-routing-explained/

Onion Routing


- Encryption is also important to make all this work
- The client has a list of all onion routers in network, they select a set and encrypt the message in concentric layers
- Each layer:
 - Encrypted with current node's public key
 - Address of next destination

Onion Routing


- Each Node only knows the address of where it got the packet and the address of where the packet is going
- They can only decrypt one layer of the packet
- Called onion routing because it is done in layers, with layers constructed by the client and then stripped off by the nodes

https://privacyhq.com/documentation/onion-routing-explained/

Tor

- Tor is popular software that uses onion routing
- There are many ways a user can still show who they are even if using Tor
 - Example: log into Facebook
- Routing everything across Tor could be bad because all exiting traffic could be connected together, so if one bit of traffic leaks your identity, they identity known for all traffic
- Tor is often bundled with a carefully setup browser

Example of research attempt to prevent DoS

- Idea: use capabilities (see access control slides)
- As part of a connection setup, the sender must get a capability from the destination
- Routers can verify the capabilities on packets and then discard attack packets

QUESTIONS