
ECE458/ECE750T27: Computer Security
Programming Security

Dr. Kami Vaniea,
Electrical and Computer Engineering
kami.vaniea@uwaterloo.ca

1ECE458 - Kami Vaniea

First, the news…

▪ First 5 minutes we talk about something interesting and recent

▪ You will not be tested on the news part of lecture

▪ You may use news as an example on tests

▪ Why do this?

1. Some students show up late for various good reasons

2. Reward students who show up on time

3. Important to see real world examples

ECE458 - Kami Vaniea 2

Marks and Spencer data
breach and ransomeware.

OR

How cybersecurity caused
there to be no food.

ECE458 - Kami Vaniea 3

Monday/Tuesday is Canada Day so there is no lecture
Monday.

Wednesday there is lecture.

ECE458 - Kami Vaniea 4

HISTORY … WHY ARE PROGRAMMING
LANGUAGES SO INSECURE?

5

Toy dog I had as a
kid

I “programmed” the
design on its
sleeping bag using
punch cards

6

Knitting is a grid.
Punch card says
which color to use
in each square

7

Understanding this
programming language is easy.
Whole system easy to
understand and reason about.
Programmer trusted to think
about and avoid
security/reliability problems
without assistance.

8

My point:

New technology is
built on old
technology

Really old computer
technology assumed
the programmer had
full understanding of
the system

9ECE458 - Kami Vaniea

Modern
programming
assumes
abstraction

10

OSI network

model, for

example, abstracts

upper and lower
layers

Kami Vaniea
Image from: http://www.tech-faq.com/osi-model.html

SECURITY VS. PRIVACY AND TRUST

ECE458 - Kami Vaniea 11

ECE458 - Kami Vaniea 12

Theoretically how
the system works

Actually how the
system works

Security
professional:
Remove, block, defend,
or otherwise prevent
unintended harmful
uses of a system.

Security expects specifications

▪ There is no such thing as a fully
secure system that is protected

from everything.

▪ Systems can be protected against
specified threats, allow specified
actions, and accept specified risks.

▪ Confidential: only authorized entities
can read data or infer information

▪ Integral: only authorized entities can

alter data.

▪ Available: authorized entities can

access the data

▪ Accountable: all actions are recorded

and traceable to who/what did it

▪ Authenticated: all entities have had
their identities or credentials verified

ECE458 - Kami Vaniea 13

How “secure” are the images on your smartphone?

1. Threat model – what threats are you worried about?

2. Access goal – who or what do you want to access your photos?

3. Risk acceptance – what risks are you ok with taking?

4. Trust model – who or what are you going to trust?

(Even if it/they don’t deserve it.)

▪ Based on the above: how secure are the images on your smartphone?

14ECE458 - Kami Vaniea

ERRORS VS FLAWS

15ECE458 - Kami Vaniea

Errors

▪ Unintentional

▪ Mistakes

▪ Typos

▪ Possible to find through testing

▪ If you were to compare a system diagram
or specification to the code, there should be a
discrepancy

▪ Can only be detected after programming

Flaws

▪ Code intentionally written that way,
security side-effects likely unintentional

▪ Code follows intended design

▪ Hard to impossible to find from testing, if
test and code are both based on the same
system design plan

▪ Can be detected at the project planning phase

Errors vs Flaws

ECE458 - Kami Vaniea 16

Error: Goto fail

▪ C-function
called "SSLVerifySignedServerKeyExc

hange"

▪ Code checks the certificate validity of
websites

ECE458 - Kami Vaniea 17

 OSStatus err;

 if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;

 fail:
 return err;

https://slate.com/technology/2014/02/apple-security-bug-a-critical-flaw-was-extraordinarily-simple.html

Error: Goto fail

▪ C-function
called "SSLVerifySignedServerKeyExc

hange"

▪ Code checks the certificate validity of
websites

▪ The problem is the double "goto fail"
which cause the last check to always
be skipped

▪ Result: certificate validity was never

checked... for 18 months on most
Apple products

 OSStatus err;

 if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;

 fail:
 return err;

ECE458 - Kami Vaniea 18

https://slate.com/technology/2014/02/apple-security-bug-a-critical-flaw-was-extraordinarily-simple.html

ECE458 - Kami Vaniea 19

Sadly, the big problems change slowly

ECE458 - Kami Vaniea 19

OWASP Top 10 Vulnerabilities

ECE458 - Kami Vaniea 20

Sadly, the big problems change slowly

ECE458 - Kami Vaniea 20

OWASP Top 10 Vulnerabilities

Top 10 Software Security Design Flaws

1. Earn or give but never assume trust

2. Use an authentication mechanism
that cannot be bypassed or

tampered with

3. Authorize after you authenticate

4. Strictly separate data and control
instructions and never process

control instructions received
from untrusted sources

5. Define an approach that ensures all
data are explicitly validated

6. Use cryptography correctly

7. Identify sensitive data and how they
should be handled

8. Always consider the user

9. Understand how integrating external
components changes your attack
surface

10. Be flexible when considering future

changes to objects and actors

ECE458 - Kami Vaniea 21

Avoiding the top 10 software security design flaws by Iván Arce et al.

https://mail.intgovforum.org/cms/igf2016/uploads/proposal_background_paper/Top-10-Flaws.pdf

Flaw: Use an authentication mechanism that cannot
be bypassed or tampered with.

ECE458 - Kami Vaniea 22

▪ Example is from a Capture the Flag
event

▪ Viewing page source shows that the

password is hard coded in the
page’s Javascript

▪ Giving the client the correct password
so client-side authentication can be
done is a design flaw

https://ctfacademy.github.io/web/challenge2/answer.htm

Flaw: Use an authentication mechanism that cannot
be bypassed or tampered with.

ECE458 - Kami Vaniea 23

▪ Example is from a Capture the Flag
event

▪ Viewing page source shows that the

password is hard coded in the
page’s Javascript

▪ Giving the client the correct password
so client-side authentication can be
done is a design flaw

https://ctfacademy.github.io/web/challenge2/answer.htm

BUFFER OVERFLOW

ECE458 - Kami Vaniea 24

Buffer Overflow

ECE458 - Kami Vaniea 25

A B

▪ More data is written into a buffer
than the buffer has allocated memory

▪ As a result, the memory allocated

next to the buffer gets overwritten

▪ For example, initiate a character

array (A) and an unsigned short
integer (B). Then copy a string into A
that has a length > A. Result B is

overwritten.

char A[8] = “”;

unsigned short B = 1979;

e x c e s s i v 25856

65 78 63 65 73 73 69 76 65 00

null 1979

0 0 0 0 0 0 0 0 07 BB

Value

Hex

strcpy(A, “excessive”);

Value

Hex

Buffer Overread

ECE458 - Kami Vaniea 26

A B

▪ More data is read from a buffer than
the buffer has allocated memory

▪ As a result, the memory allocated

next to the buffer gets read as well

char A[8] = “”;

unsigned short B = 1979;

e x c e s s i v 25856

65 78 63 65 73 73 69 76 65 00

null 1979

0 0 0 0 0 0 0 0 07 BB

Value

Hex

char overread = *((char *)A + 8);

Value

Hex

Buffer Overread: Heartbleed (XKCD Comic)

ECE458 - Kami Vaniea 27

CALL STACK

ECE458 - Kami Vaniea 29

Warning: I’m about to present the most common way
memory is handled. Every OS, and compiler does it a
bit differently.

ECE458 - Kami Vaniea 30

Memory Basics

▪ Memory for a program is roughly divided into:

▪ Text/Code

▪ Data – static variables

▪ Heap – dynamic data (malloc)

▪ Stack – processor “scratch paper” – dynamic local

variables, parameters for functions, return
address for function call

▪ Stack grows towards lower addresses

▪ Stack Pointer (SP) tracks the “top” of the stack

▪ Heap grows towards bigger addresses

ECE458 - Kami Vaniea 31

Text / Code

Data

Heap

Stack High address

Low address

SP
(stack pointer)

Think-pair-share

▪ What would happen if the Heap and the
Stack ran into each other?

(Assuming the OS didn’t notice/care.)

▪ How might an attacker use such a

collision?

ECE458 - Kami Vaniea 32

Text / Code

Data

Heap

Stack High address

Low address

SP
(stack pointer)

Call Stack

▪ When a new function is called, the
current function:

▪ Adds parameters to the top of the stack

▪ Adds its own return address

▪ Jumps to the new function

ECE458 - Kami Vaniea 33

By R. S. Shaw - Wikipedia

void DrawLine(int a, int b){

char buffer[10];

}

void DrawSquare(int a, int b){

DrawLine(1,2);

}

void main(){

DrawSquare(1,2);

}

1

2

3

4

5

6

7

8

9

Function call

▪ When a function is called, the calling
function adds the function parameters to

the stack and a return address

buffer

ret

a

b

ECE458 - Kami Vaniea 34

Text/Code

High address

Low address

Stack pointer

…

Return address

void func(int a, int b){

char buffer[10];

}

void main(){

func(1,2);

}

1

2

3

4

5

6

Stack smashing

▪ Goal: overwrite the return address

▪ Result

▪ Crash the program

▪ Execute code at new address

buffer

overflow

overflow

b

ECE458 - Kami Vaniea 36

Text/Code

High address

Low address

Stack pointer

…

Return address

void func(int a, int b) {

int buffer[10];

buffer[20] = 37;

}

void main(){

func(1,4);

}

1

2

3

4

5

6

7

???

Stack smashing (gets)

buffer

ret

a

b

ECE458 - Kami Vaniea 37

Text/Code

High address

Low address

Stack pointer

…

Return address

#include <stdio.h>

void func(int a, int b) {

char buffer[10];

gets(buffer);

printf("%s", buffer);

}

void main(){

func(1,4);

}

1

2

3

4

5

6

7

8

9

C:> billingprog

Enter Serial Number
432dkgewdk

Stack smashing (gets)

buffer

overflow

overflow

b

ECE458 - Kami Vaniea 38

Text/Code

High address

Low address

Stack pointer

…

Return address

#include <stdio.h>

void func(int a, int b) {

char buffer[10];

gets(buffer);

printf("%s", buffer);

}

void main(){

func(1,4);

}

1

2

3

4

5

6

7

8

9

???

C:> billingprog

Enter Serial Number
aaa
aaa
aaaaaaaaaaaaaaaaaaa

Stack smashing

▪ Goal: run evil code

▪ Use buffer overflow to inject evil code
onto the stack itself

▪ Overwrite return pointer so instead of
returning after the function buffer

Evil code

ret’

a

b

ECE458 - Kami Vaniea 39

Text/Code

High address

Low address

Stack pointer
…

Return address

Stack smashing

▪ Attacker’s Problem: predicting the exact
address of evil code and the return

pointer is hard

▪ Solution: bigger targets

▪ Write the return address many times to be
sure it is located where the return address
pointer points

▪ Use NOP’s so ret’ can point to evil code even
if the attacker isn’t 100% sure of their
relative addresses

NOP

NOP

NOP

Evil code

ret’

ret’

ret’

ECE458 - Kami Vaniea 40

Text/Code

High address

Low address

Stack pointer

…

Real return
address

Overwritten
buffer

…
…

Canary

▪ Add a fixed value right below (lower
address) the return address that can be

checked before jumping to the return
address

buffer

canary

ret

a

b

ECE458 - Kami Vaniea 41

Text/Code

High address

Low address

Stack pointer
…

Return address

void func(int a, int b){

char buffer[10];

}

void main(){

func(1,2);

}

1

2

3

4

5

6

Canary in a Coal Mine

▪ Coal miners used to bring canaries with
them into mines

▪ Canaries have to breath more often than

people so they react quicker to
poisonous gas, like carbon monoxide

▪ If the canary started doing poorly,
miners would immediately leave

ECE458 - Kami Vaniea 42

Smithsonian Magazine. George McCaa, U.S. Bureau of Mines

Canary

▪ Canary sits right above the return
address, so will be overwritten by a

buffer overflow

▪ Sneaky overflow could just write canary
value back the way it was

▪ 0x000aff0d is the most common

canary value to use

▪ 0x00 is the string termination. Any buffer

overflow string containing it will terminate
and not overwrite the return address

buffer

canary

ret

a

b

ECE458 - Kami Vaniea 43

Text/Code

High address

Low address

Stack pointer
…

Return address

NX bits: Access control preventing execution on stack

▪ Hardware supports no execute (NX)
bits

▪ Memory can be flagged as NX, so

code sitting in that memory cannot
execute

▪ Simple and effective

▪ But … only applies to code on the

stack

ECE458 - Kami Vaniea 44

Text / Code

Data

Heap

Stack High address

Low address

SP
(stack pointer)

N
o

 e
X

ec
u

te
 (

N
X

)

Return to libc attack

▪ Circumvent NX bit limitations

▪ Overwrite return pointer with an
address in the libc library

▪ Library is in Text/Code, so no NX bit

▪ Effectively create evil code out of calls
to libc

▪ Or even calls that jump into the
middle of libc functions

ECE458 - Kami Vaniea 45

Text / Code

Data

Heap

Stack High address

Low address

SP
(stack pointer)

N
o

 e
X

ec
u

te
 (

N
X

)

ASLR: Address Space Layout Randomization

▪ Stack smashing works because
attacker can predict the address of

code

▪ But there is no reason addressing
needs to be linear, the OS can adjust
at runtime

▪ ASLR randomizes the location of key
data areas of a process such as:

executable code, and positions of
stack, heap, and libraries.

ECE458 - Kami Vaniea 46

buffer

ret

a

b

Text/Code

High address

Low address

Stack pointer

Return address

libc?

INCOMPLETE MEDIATION

ECE458 - Kami Vaniea 47

Incomplete Mediation

▪ Buffer overflows are an example of “incomplete mediation”

▪ Mediation – checking

▪ Incomplete mediation – failing to check the authorization and properties of a

subject/object before using it

ECE458 - Kami Vaniea 48

Client sends:
https://exampleShop.com?price=4.99&user=4837&login=true

Server:
function f(price, user, login)

if(login = true)

chargeUser(price, user)

No server-side check if
user is logged in. No
server-side check if
price is appropriate.

Stack smashing – incomplete mediation

▪ Below code never checks the length of
the buffer

▪ Worse, gets doesn’t even have a

parameter to state what length of string
is expected

buffer

overflow

overflow

b

ECE458 - Kami Vaniea 49

Text/Code

High address

Low address

Stack pointer

…

Return address

#include <stdio.h>

void func(int a, int b) {

char buffer[10];

gets(buffer);

printf("%s", buffer);

}

void main(){

func(1,4);

}

1

2

3

4

5

6

7

8

9

???

“A system which is unspecified can never be
wrong, it can only be surprising.”

ECE458 - Kami Vaniea 50

Flaws

1. Earn or give but never assume trust

2. Use an authentication mechanism that cannot be bypassed or tampered with

5. Define an approach that ensures all data are explicitly validated

ECE458 - Kami Vaniea 51

Client sends:
https://exampleShop.com?price=4.99&user=4837&login=true

Server:
function f(price, user, login)

if(login = true)

chargeUser(price, user)

No server-side check if
user is logged in. No
server-side check if
price is appropriate.

Thinking outside the bounds

▪ A key to “hacking” is asking “what if….”

▪ Look at the example below, the parameters are clearly expecting certain values,
what would happen if you gave different values?

▪ What if for a date you submitted 1800Jan40?

ECE458 - Kami Vaniea 52

Client sends:
https://exampleShop.com?price=4.99&user=4837&login=true&date=2024Jan17

Server:
function f(price, user, login)

if(login = true)

chargeUser(price, user)

Questions

ECE458 - Kami Vaniea 53

	Default Section
	Slide 1: ECE458/ECE750T27: Computer Security Programming Security
	Slide 2: First, the news…
	Slide 3: Marks and Spencer data breach and ransomeware. OR How cybersecurity caused there to be no food.
	Slide 4: Monday/Tuesday is Canada Day so there is no lecture Monday. Wednesday there is lecture.

	History
	Slide 5: History … Why are programming languages so insecure?
	Slide 6: Toy dog I had as a kid I “programmed” the design on its sleeping bag using punch cards
	Slide 7: Knitting is a grid. Punch card says which color to use in each square
	Slide 8: Understanding this programming language is easy. Whole system easy to understand and reason about. Programmer trusted to think about and avoid security/reliability problems without assistance.
	Slide 9: My point: New technology is built on old technology Really old computer technology assumed the programmer had full understanding of the system
	Slide 10: Modern programming assumes abstraction

	Security vs Privacy and Trust
	Slide 11: Security vs. Privacy and Trust
	Slide 12
	Slide 13: Security expects specifications
	Slide 14: How “secure” are the images on your smartphone?

	Errors vs Flaws
	Slide 15: Errors vs Flaws
	Slide 16: Errors vs Flaws
	Slide 17: Error: Goto fail
	Slide 18: Error: Goto fail
	Slide 19: Sadly, the big problems change slowly
	Slide 20: Sadly, the big problems change slowly
	Slide 21: Top 10 Software Security Design Flaws
	Slide 22: Flaw: Use an authentication mechanism that cannot be bypassed or tampered with.
	Slide 23: Flaw: Use an authentication mechanism that cannot be bypassed or tampered with.

	Buffer Overflow
	Slide 24: Buffer Overflow
	Slide 25: Buffer Overflow
	Slide 26: Buffer Overread
	Slide 27: Buffer Overread: Heartbleed (XKCD Comic)

	Call Stack
	Slide 29: Call Stack
	Slide 30: Warning: I’m about to present the most common way memory is handled. Every OS, and compiler does it a bit differently.
	Slide 31: Memory Basics
	Slide 32: Think-pair-share
	Slide 33: Call Stack
	Slide 34: Function call
	Slide 36: Stack smashing
	Slide 37: Stack smashing (gets)
	Slide 38: Stack smashing (gets)
	Slide 39: Stack smashing
	Slide 40: Stack smashing
	Slide 41: Canary
	Slide 42: Canary in a Coal Mine
	Slide 43: Canary
	Slide 44: NX bits: Access control preventing execution on stack
	Slide 45: Return to libc attack
	Slide 46: ASLR: Address Space Layout Randomization

	Incomplete Mediation
	Slide 47: Incomplete Mediation
	Slide 48: Incomplete Mediation
	Slide 49: Stack smashing – incomplete mediation
	Slide 50: “A system which is unspecified can never be wrong, it can only be surprising.”
	Slide 51: Flaws
	Slide 52: Thinking outside the bounds

	Questions
	Slide 53: Questions

