
ECE458/ECE750T27: Computer Security
Programming Security

Dr. Kami Vaniea,
Electrical and Computer Engineering
kami.vaniea@uwaterloo.ca

1ECE458 - Kami Vaniea

First, the news…

▪ First 5 minutes we talk about something interesting and recent

▪ You will not be tested on the news part of lecture

▪ You may use news as an example on tests

▪ Why do this?

1. Some students show up late for various good reasons

2. Reward students who show up on time

3. Important to see real world examples

ECE458 - Kami Vaniea 2

INCOMPLETE MEDIATION

ECE458 - Kami Vaniea 3

Incomplete Mediation

▪ Buffer overflows are an example of “incomplete mediation”

▪ Mediation – checking

▪ Incomplete mediation – failing to check the authorization and properties of a

subject/object before using it

ECE458 - Kami Vaniea 4

Client sends:
https://exampleShop.com?price=4.99&user=4837&login=true

Server:
function f(price, user, login)

if(login = true)

chargeUser(price, user)

No server-side check if
user is logged in. No
server-side check if
price is appropriate.

Stack smashing – incomplete mediation

▪ Below code never checks the length of
the buffer

▪ Worse, gets doesn’t even have a

parameter to state what length of string
is expected

buffer

overflow

overflow

b

ECE458 - Kami Vaniea 5

Text/Code

High address

Low address

Stack pointer

…

Return address

#include <stdio.h>

void func(int a, int b) {

char buffer[10];

gets(buffer);

printf("%s", buffer);

}

void main(){

func(1,4);

}

1

2

3

4

5

6

7

8

9

???

FUZZ TESTING

ECE458 - Kami Vaniea 6

Testing
▪ Testing is how we figure out if the specification

matches the implementation.

▪ White Box

▪ Tester has access to the full specification and the code

▪ Internal test engineer

▪ Black Box

▪ Tester has access to a complied binary or the physical
device only.

▪ Could be internal test engineer, could be attacker

▪ Grey Box

▪ Partial information: documentation, algorithm used,
knows which open source libraries are being used

ECE458 - Kami Vaniea 7

Theoretically how
the system works

Actually how the
system works

Normal testing

▪ Take the specification and test that the
program does what it is supposed to do

▪ Thoughtful and planned

▪ Skilled test engineer will include out-of-
bounds inputs

Fuzz testing

▪ Generate semi-valid random input

▪ Detailed knowledge of specification not
needed

▪ Black box testing

▪ Goal is to find situations that crash the
program or otherwise cause instability

▪ Ideally find input that crosses a trust
boundary without being checked

Fuzz testing

ECE458 - Kami Vaniea 8

Incomplete
Mediation

Fuzzing: IoT devices

▪ IoT devices are black boxes

▪ Fuzz testing can be used to find
potential failures

▪ Which then can be followed-up on
manually

▪ Consumer evaluation groups like
Consumer Reports (US) and Which?

(UK) use Fuzz testing to evaluate
products for “stability”

ECE458 - Kami Vaniea 9

Volkswagen “defeat device”

▪ Car emissions are tested using pre-
agreed tests

▪ Defeating these tests just requires

detecting that one is happening

▪ Volkswagen did just that, the car

looked for test conditions and then
turned on the emission control
system

▪ No test conditions, emission control

system reduced to improve car
functionality and performance

ECE458 - Kami Vaniea 10

OpenSSL Fuzz Testing -> Heartbleed

▪ Open SSL was being evaluated by a
couple different researchers

▪ Two groups (Google, Codenomicon)

used Fuzz Testing and found what is
now known as Heartbleed

▪ Heartbleed: a vulnerability where a

client sends a short string AND the
length to the server, and the server

returns the string

ECE458 - Kami Vaniea 11

MALWARE

ECE458 - Kami Vaniea 12

Malware

▪ Virus - relies on someone or something else to propagate

▪ Worm – self propagating

▪ Trojan horse – appears to be one type of software but has unexpected (bad)

functionality

▪ Trapdoor or Backdoor – allows unauthorized access to a system

▪ Rabbit – malicious program that exhausts system resources

▪ Spyware – steals information, often monitor keystrokes

ECE458 - Kami Vaniea 13

Kami Vaniea 15

▪ Virus

▪ Worm

▪ Trojan

horse

▪ Trapdoor
or
backdoor

▪ Rabbit

▪ Spyware

SOME FAMOUS MALWARE
AND LESSONS LEARNED

ECE458 - Kami Vaniea 16

Brain Virus (1986)

▪ Mostly just annoying, non-harmful

▪ Replaced floppy drive boot sector with
itself and installed copies of itself in
other places

▪ Screened disk access to avoid detection

▪ Each time the disk was read it would
check if it was still in the boot sector
and if not reinstall itself

▪ Authors claimed it only infected
copyright infringers

▪ Notable for being one of the first
viruses

ECE458 - Kami Vaniea 17

By Avinash Meetoo - avinash@noulakaz.net - Wikipedia

Welcome to the Dungeon (c) 1986 Amjads
(pvt) Ltd VIRUS_SHOE RECORD V9.0
Dedicated to the dynamic memories of millions
of viruses who are no longer with us today -
Thanks GOODNESS!!! BEWARE OF THE
er..VIRUS : this program is catching program
follows after these$#@%$@!!

Boot record

Morris Worm (1988)

▪ Written as a curiosity but had a flaw (according to Morris)

▪ Designed to:

1. Determine where it could spread

2. Spread infection wherever possible

3. Remain undiscovered

▪ Exploited several vulnerabilities

o Weak passwords – password guessing

o Hole in the debug mode of Unix sendmail (patch available)

o Buffer overflow hole in “fingerd"

o Sent 99 lines of C-code to victim which then downloaded
the rest

ECE458 - Kami Vaniea 18

Morris Worm – also unintentionally a rabbit

▪ Worked hard to not be discovered

▪ If transmission interrupted – self deleted

▪ Code encrypted when downloaded (rare)

▪ Downloaded code deleted after compilation

▪ Periodically changed process name and PID

▪ Was supposed to periodically check if a system was
infected before trying to infect it

▪ But… that check was not always done

▪ So re-infection of infected systems resulted in memory exhaustion
(rabbit)

ECE458 - Kami Vaniea 19

Morris Worm – important because

▪ Internet was supposed to survive nuclear attack. But a
grad student took it down with some C code

▪ More damage caused by people panicking and unplugging

their systems

▪ Lead to the creation of the Computer Emergency

Response Team (CERT) at Carnegie Mellon University

▪ CERTs now exist world-wide

▪ Sadly the Morris worm didn’t result in a re-design of the
internet protocols with more security in mind….

ECE458 - Kami Vaniea 20

Code Red (2001) - Worm

▪ Infected more than 300,000
computers in about 14 hours

▪ Exploited a buffer overflow in

Microsoft IIS server software

▪ The monitored traffic on port 80

looking for more possible victims

▪ Notable for how fast it spread across

the internet

▪ Infection did different things on
different days of the month

▪ 1-19 – spread infection

▪ 20-27 – attempt DDoS attack on
www.whitehouse.gov

ECE458 - Kami Vaniea 21

Code red – case study in update issues

▪ Microsoft quickly released a patch to
fix Code Red

▪ But the patch had an error, the

second patch fixed the first, but had a
smaller error

▪ Third patch finally fixed the error

▪ Most systems installed first and

second patch but not the third

ECE458 - Kami Vaniea 22

D. Moore, C. Shannon et al., “Code-red: a case study on the spread and victims of an internet worm,” in Proc. SIGCOMM Workshop on Internet Measurement. 2002.

SQL Slammer Worm (2003)

▪ Infected 75,000 systems in 10
minutes

▪ At peak infections doubled every 8.5
seconds

▪ Fit into one 376-byte UDP packet

▪ Each infected computer randomly

generated IP addresses and tried to
infect them

▪ Firewalls let the single UDP packet
through

▪ Firewalls at the time were often setup

to let random packets through and
then monitor the connection

▪ No one thought working code could fit
into 376 bytes

ECE458 - Kami Vaniea 23

Stuxnet (2005)

▪ Advanced information warfare

▪ Deliberately designed to disrupt
Iranian nuclear fuel processing

▪ It infected nuclear refinement center
and caused an expensive part

(centrifuge) to wear out quickly

▪ Used 4 unpatched Windows

vulnerabilities

▪ Compromised an “air gapped” system
by infecting USB drives that were
moved across the air gap

ECE458 - Kami Vaniea 24

NotPetya (2017)

▪ A small Ukraine company that makes
tax software got infected

▪ The attacker then modified their tax

software code and pushed an
automatic update

▪ That update was installed world-wide

▪ Used EternalBlue (developed by USA)

to spread as a worm

▪ Pretended to be ransomware but was
likely political

ECE458 - Kami Vaniea 25

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

Trojan Example

▪ Trojans look like normal software but
are not

▪ Imagine downloading

“freeMusic.mp3”

▪ Then double clicking the icon

▪ Expected behavior: iTunes opens and
plays music

▪ Actual behavior: iTunes opens and

plays weird laughter then pop-up
appears

ECE458 - Kami Vaniea 26

freeMusic.mp3

Yep, this is an application

 What is your iTunes playing now?

OK

Trojan Example – what happened?

▪ Things like icons and file extensions
are mostly for people, access control

is not linked to them

▪ This file has the mp3 icon set

▪ It is an executable

▪ File extensions are not always shown, or a
vulnerability can cause an override of
default file extension actions

ECE458 - Kami Vaniea 27

freeMusic.mp3

Yep, this is an application

 What is your iTunes playing now?

OK

There are many copies of
software on a computer

▪ Webkit – for example – used to be
the main engine for Safari AND

iTunes

▪ Users might update Safari because
bad things come from the internet

▪ But they might not update iTunes
because its “just a music program”

▪ Trojan can then use Webkit
vulnerability via iTunes

ECE458 - Kami Vaniea 28

Nappa, Antonio, et al. "The attack of the clones: A study of the impact of shared code on
vulnerability patching." 2015 IEEE symposium on security and privacy. IEEE, 2015.

Kami Vaniea et al. “Betrayed By Updates: How Negative Experiences Affect Future
Security”. In Proc of the SIGCHI Conference on Human Factors in Computing Systems.

Think-pair-share

▪ Patching is widely accepted to be a best practice

▪ Bad software often targets unpatched systems

▪ What makes patching risky?

▪ How might those risks be mitigated? (Not just testing.)

ECE458 - Kami Vaniea 29

Trojans common in phishing

▪ Complex programs like Microsoft Word use things like macros to create trojan
type behavior

▪ To protect you, programs auto turn off uncommon features, like macros, to limit

chance of damage from attachments

▪ Editing also turned off

▪ Kami’s opinion: blame-the-user security rather than actually fixing the software.
Just viewing a Word document should really never infect a computer!

ECE458 - Kami Vaniea 30

Trojans in peer to peer (P2P) file
sharing (2024)
▪ Bandwidth costs money

▪ Even “unlimited” plans typically have
secret limitations

▪ Companies like to get rid of their heavy
users

▪ Korean telecom infecting heavy users

with malware to slow their usage of
file sharing

ECE458 - Kami Vaniea 31

Trojans in peer to peer (P2P) file
sharing (2024)
▪ Bandwidth costs money

▪ Even “unlimited” plans typically have
secret limitations

▪ Companies like to get rid of their heavy
users

▪ Korean telecom infecting heavy users

with malware to slow their usage of
file sharing

ECE458 - Kami Vaniea 32

“KT's position is that since the web hard
drive P2P service itself is a malicious

program, it has no choice but to control it.”

Disney employee installs “fun AI” loses Disney

▪ Disney employee on his home
computer downloaded a free AI tool

▪ It didn’t work, so he deleted it

▪ It was really a trojan, and it happily
broke into his OnePassword account

▪ OnePassword included some of his
Disney employee passwords

▪ Attackers then took more then a TB

from internal Disney Slack and
published it online

ECE458 - Kami Vaniea 33

MALWARE DETECTION

ECE458 - Kami Vaniea 34

Signature Detection

▪ Relies on finding patterns – older
method and common for anti-virus

programs

▪ Known malware is analyzed to find
commonalities

▪ Commonalities are converted into
signature patterns which the anti-
virus software looks for

▪ Files with the pattern are then further

analyzed to limit false positives

▪ Example: w32/Beast virus always
contains the code:

▪ 83EB 0274 EB0E 740A 81EB 0301 000

ECE458 - Kami Vaniea 35

Change Detection

▪ Monitor files for unexpected changes

▪ Malware code must live somewhere, so
monitor common places it might be

▪ Heartland data breach, the majority of the
malware was in unallocated memory

▪ Look for weird anomalies

▪ Inode numbers (unique file ID) on critical
system files should be sequential

ECE458 - Kami Vaniea 36

Anomaly Detection

▪ Looking for inconsistencies in
behavior

▪ Labor intensive – a technical

professional needs to check up on
identified issues

▪ Good way to find unknown malware
and other issues

▪ Intrusion Detection Systems for
networking

▪ File access patterns

▪ Process creation patterns

ECE458 - Kami Vaniea 37

Anomaly Detection: Machine Learning

▪ Machine learning is a natural match
for anomaly detection

▪ It is good at looking at “normal”

traffic patterns and then flagging
cases where traffic seems odd

ECE458 - Kami Vaniea 38

Target data breach (2013)

▪ Target had a point-of-sale compromise
(lost credit card data) right before

Christmas

▪ Third party HVAC vendor had network
access, and they had bad security

▪ Target failed to respond to multiple
automated warnings from the anti-
intrusion software about malware install

▪ Also ignored warnings from network anti-

intrusion systems as data was exfiltrated

ECE458 - Kami Vaniea 39

Committee on Commerce, Science and Transportation, A “Kill Chain” Analysis of the 2013 Target Data Breach

No-fault

▪ Areas like aviation and nautical take a
“no fault” view towards incident

management

▪ The sectors consider it more
important to learn from problems
than to blame and punish

ECE458 - Kami Vaniea 40

Think-pair-share

▪ Why is n0-fault not used in computer security?

ECE458 - Kami Vaniea 41

Collaboration

▪ Defenders do need to collaborate

▪ No one likes viruses, malware, or
phishing, so these are “safe” to share

▪ Organizations like VirusTotal and APWG
collect together examples of such bad
things and share those examples with
everyone

▪ Company privacy costs money:
“By submitting data [you agree] to the
sharing of your Sample submission with
the security community.”

ECE458 - Kami Vaniea 42

Attacking from the inside

▪ Not all attacks are from external,
some are from employees

▪ Castle security thinking does not

work well with insider attacks

ECE458 - Kami Vaniea 43

Salami Attacks

▪ Attack that takes only a small amount
of the resource each time to avoid

being noticed

▪ Program bank software so that money

that is rounded off is moved to a bank
account

ECE458 - Kami Vaniea 44

QUESTIONS

ECE458 - Kami Vaniea 45

	Default Section
	Slide 1: ECE458/ECE750T27: Computer Security Programming Security
	Slide 2: First, the news…

	Incomplete Mediation
	Slide 3: Incomplete Mediation
	Slide 4: Incomplete Mediation
	Slide 5: Stack smashing – incomplete mediation

	Fuzz Testing
	Slide 6: Fuzz Testing
	Slide 7: Testing
	Slide 8: Fuzz testing
	Slide 9: Fuzzing: IoT devices
	Slide 10: Volkswagen “defeat device”
	Slide 11: OpenSSL Fuzz Testing -> Heartbleed

	Malware
	Slide 12: Malware
	Slide 13: Malware
	Slide 15

	Malware Cases
	Slide 16: Some famous Malware and lessons learned
	Slide 17: Brain Virus (1986)
	Slide 18: Morris Worm (1988)
	Slide 19: Morris Worm – also unintentionally a rabbit
	Slide 20: Morris Worm – important because
	Slide 21: Code Red (2001) - Worm
	Slide 22: Code red – case study in update issues
	Slide 23: SQL Slammer Worm (2003)
	Slide 24: Stuxnet (2005)
	Slide 25: NotPetya (2017)
	Slide 26: Trojan Example
	Slide 27: Trojan Example – what happened?
	Slide 28: There are many copies of software on a computer
	Slide 29: Think-pair-share
	Slide 30: Trojans common in phishing
	Slide 31: Trojans in peer to peer (P2P) file sharing (2024)
	Slide 32: Trojans in peer to peer (P2P) file sharing (2024)
	Slide 33: Disney employee installs “fun AI” loses Disney

	Detection of Malware
	Slide 34: Malware Detection
	Slide 35: Signature Detection
	Slide 36: Change Detection
	Slide 37: Anomaly Detection
	Slide 38: Anomaly Detection: Machine Learning
	Slide 39: Target data breach (2013)
	Slide 40: No-fault
	Slide 41: Think-pair-share
	Slide 42: Collaboration
	Slide 43: Attacking from the inside
	Slide 44: Salami Attacks

	Questions
	Slide 45: Questions

