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Consider a channel with M +1 nodes. Let the source node
be denoted by 0, the destination node by M , and let the other
M − 1 nodes be denoted sequentially as 1, 2, . . . , M − 1 in
arbitrary order. Assume each Node i ∈ {0, 1, . . . , M−1} sends
xi(t) ∈ Xi at time t, and each Node k ∈ {1, 2, . . . , M} receives
yk(t) ∈ Yk at time t, where the finite sets Xi and Yk are
the corresponding input and output alphabets. The channel
dynamics is described by p(y1, y2, . . . , yM |x0, x1, . . . , xM−1).
Finally, a one-step time delay is assumed at every relay node
i ∈ {1, 2, . . . , M−1}: xi(t) = fi,t(yi(t−1), yi(t−2), . . .), where
fi,t can be designed to be any causal function.

The case of M = 2 (single relay) was considered in [1],
where the following rate is proved to be achievable:

R < max
p(x0,x1)

min{I(X0; Y1|X1), I(X0, X1; Y2)}. (1)

Later on, the coding scheme used for proving (1) was extended
to the multiple level relay case (M ≥ 2) in [2], and an achiev-
able rate formula in a recursive constraint form was proved.

In [3], we proposed a new coding scheme and proved a new
achievable rate formula for the Gaussian case. The scheme
is simpler and avoids some inconvenient techniques (e.g., the
Slepian-Wolf partitioning), although it coincides with [1] in
giving the same achievable rate for the single relay case. More
importantly, this new coding scheme is easier to extend to
the multiple level relay case, and generally achieves higher
rates than those proved in [2]. Here we present the results for
the discrete memoryless case. A full version with additional
discussions on feedback and degradedness can be found in [4].

The advantages of the new coding scheme of [3] have also
been recognized by [5], where the corresponding achievable
rate formula for the discrete memoryless case is also stated.
The paper [5] also goes on to obtain the capacity of some
relay channels under fading, which is the first significant ca-
pacity result for such channels, and one which may possibly
constitute a breakthrough in the field.

Theorem 1 For the discrete memoryless multiple level relay
channel defined above, the following rate is achievable:

R < max
p(x0,x1,...,xM−1)

min
1≤k≤M

I(X0, . . . , Xk−1; Yk|Xk, . . . , XM−1).

We provide a brief description of our coding scheme for
the single relay case (M = 2) in the following. (For the
Gaussian case, the coding scheme can be made even sim-
pler as presented in [3].) Consider B blocks of transmission,
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each of T transmission slots. A sequence of B − 1 indices,
w(b) ∈ {1, . . . , 2TR}, b = 1, 2, . . . , B − 1 will be sent over in
TB transmission slots.

Generation of codebooks Here one significant difference
from [1] is that all the codebooks are of the same length 2TR.
(No more 2TR0 as in [1]). Consider any fixed p(x0, x1).

1) Generate at random 2TR i.i.d. T -sequences in X T
1 , each

drawn according to Prob(x1) =
∏T

t=1
p(x1,t). Index them as

x1(w1), w1 ∈ {1, 2, . . . , 2TR}.
2) For each x1(w1), generate 2TR conditionally independent
T -sequences x0(w0|w1), w0 ∈ {1, 2, . . . , 2TR}, drawn indepen-

dently according to Prob(x0|x1(w1)) =
∏T

t=1
p(x0,t|x1,t(w1)).

This defines the joint codebook for Nodes 0, 1:

C0 := {x0(w0|w1), x1(w1)}. (2)

Repeating the above process 1)-2) independently once more,
we generate another random codebook C1 similar to C0. We
will use these two codebooks alternately as follows: In block
b = 1, . . . , B, the codebook C(b mod 2) is used.

Encoding At the beginning of each block b ∈ {1, . . . , B},
Node 1 has an estimate (see “Decoding” below) ŵ1(b − 1) of
w(b− 1), and sends x1(ŵ1(b− 1)) in the block, while Node 0
as the source sends x0(w(b)|w(b − 1)). Let ~Yk(b) denote the
corresponding T -sequence received by Node k ∈ {1, 2}.
Decoding At the end of each block b ∈ {1, . . . , B}, Node 1 de-
clares that ŵ1(b) = w if w is the unique value in {1, . . . , 2TR}
such that in the block b,

{x0(w|ŵ1(b− 1)), x1(ŵ1(b− 1)), ~Y1(b)} ∈ A(T )
ε (X0, X1, Y1).

Also, Node 2 declares that ŵ2(b − 1) = w if w is the unique
value in {1, . . . , 2TR} such that in both the blocks b and b− 1,

{x1(w), ~Y2(b)} ∈ A
(T )
ε (X1, Y2), and

{x0(w|ŵ2(b− 2)), x1(ŵ2(b− 2)), ~Y2(b− 1)} ∈ A
(T )
ε (X0, X1, Y2).

Unlike the sequential manner in [1], our decoding is a simul-
taneous typicality check of the previous several blocks.
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