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Abstract

An expression for the variance of the estimated spectrum based on auto-regressions is developed.
This expression is asymptotic in the number of data, but exact in the model order. As the order tends
to in.nity it converges to the well known result that the variance is proportional to the model
order times the square of the spectrum itself. The exact expression gives insight into the character
of this convergence, its speed and its dependence on the poles of the underlying AR-process.
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1. Introduction

In this paper we will study the asymptotic properties of spectral estimates based on
Autoregressive (AR) models of time series. This is of course a much-studied subject
with many well known results. Our contribution will be an exact expression for the
variance of the asymptotic distribution of the spectral estimate for .nite order AR
models. In particular, this result illuminates the character of the convergence to the
well known asymptotic expressions as the order of the AR model tends to in.nity.
The role of the poles of the underlying true AR-process will also be displayed.
The setup is as follows: Consider a stationary time series y(t); t = 1; 2; : : : : Denote

its spectral density by �y(!). From N observations from the time series, an AR-model
of order n is estimated by minimizing

N∑
t=n+1

(y(t) + a1y(t − 1) + · · ·+ any(t − n))2; (1)
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w.r.t. ak ; 16 k6 n, yielding the estimates âk(N ). The variance of the innovation pro-
cess is estimated by

�̂N =
1

N − n

N∑
t=n+1

(y(t) + â1(N )y(t − 1) + · · ·+ ân(N )y(t − n))2: (2a)

Then the estimate of the spectral density of y is formed as

�̂N (!) =
�̂N

|ÂN (!)|2
; (2b)

ÂN (!) = 1 + â1(N )e−j! + · · ·+ ân(N )e−jn!: (2c)

The asymptotic properties of this estimate are well known, e.g. Hannan (1970) or
Hannan and Deistler (1988). Suppose that the given process y(t) indeed can be de-
scribed by a rth order AR-process:

y(t) + a1y(t − 1) + · · ·+ ary(t − r) = e(t); (3a)

Ee2(t) = �; (3b)

Ee3(t) = 0; (3c)

E(e2(t)− �)2 = �; (3d)

where e(t) is a sequence of i.i.d. random variables. (The asymptotic properties below
also hold under weaker assumptions on e.) Then, if n¿ r and we denote

�̂N =




â1(N )

...

ân(N )


 (4)

and let �0 be the corresponding vector of the true AR-parameters, we have that
√
N (�̂N − �0)∈AsN(0; P); (5a)

P = �[E t Tt ]
−1; (5b)

 t =




y(t − 1)
...

y(t − n)


 ; (5c)

√
N (�̂N − �)∈AsN(0; �): (5d)

Here xN ∈AsN(a; B) means that the random variable xN converges in distribution to
the normal distribution with mean a and covariance matrix B as N tends to in.nity.
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Moreover, the asymptotic joint distribution of the two estimates is normal with �̂
independent of �̂.
From (5) all results about the asymptotic distribution of �̂N (!) readily can be

derived. We will be particularly interested in the variance of the asymptotic distribution
of

√
N (�̂N (!)− �y(!)) and denote it by �n(!):
√
N (�̂N (!)− �y(!))∈AsN(0; �n(!)): (6)

It can be computed from (5) using e.g. Lemma 2.1 below. As the order of the
AR-model, n, tends to in.nity, the expression for �n(!) simpli.es considerably:

lim
n→∞

1
n
�n(!) =

{
2�2y(!) if ! �= 0; ! �= �;

4�2y(!) if != 0 or != �:
(7)

This has been proved in Kromer (1970), for the case of a .xed regression order, and
in Berk (1974) for the case where n tends to in.nity and n3=N → 0 as N → ∞. The
case of an input (exogenous process) present is treated in e.g., Ljung and Wahlberg
(1992) and Hannan and Kavalieris (1984).
The purpose of the current paper is to give an explicit expression for �n(!) as a

function of n. An important observation, established in Ninness et al. (1999b), is that
the calculation to achieve this is made much simpler by choosing another orthonormal
basis. In our case this basis should be constructed with the poles of the true underlying
AR-process. The explicit expression will display the nature of the convergence taking
place in (7), the convergence rate, and also the role that is played by the poles of the
true underlying AR-process. Related results for processes with an exogenous input are
described in Ninness et al. (1999a), Xie and Ljung (2001) and Ninness and Hjalmarsson
(2002a, b).

2. A preliminary result

We will use polynomials in the shift operator q for eMcient notation and write

A0(q)y(t) = e(t) (8)

for the true AR-representation (3a). This means that

A0(q) = 1 + a1q−1 + · · ·+ arq−r :

Similarly the nth order model used in (1)–(2) will be written as

A(q; �)y(t) = e(t); (9)

where � collects the parameters ak ; 16 k6 n in a column vector. The corresponding
estimate is denoted �̂N as in (4).
Thus, from (2c)

ÂN (!) = A(e j!; �̂N ) = 1 +
n∑

k=1

âk(N )e−j!k = 1 +W T(e j!)�̂N ; (10)
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where �̂N contains the LS-estimated AR-parameters and with

W (e j!), [e−j!; e−2j!; : : : ; e−nj!]T:

To proceed, we need several times a standard result about convergence in distribu-
tion. For a proof, see, e.g., Rao (1973, Theorem 6a.2(ii), p. 387).

Lemma 2.1. Let X̂ N be a sequence of k-dimensional estimates of parameter vector
X0 such that the asymptotic distribution of

√
N [X̂ N − X0] is k-variate normal with

mean zero and covariance matrix �. Further let g be a function of k variables
which is di:erentiable in a neighborhood of X0. Then the asymptotic distribution of√
N (g(X̂ N )− g(X0)) is normal with mean zero and variance

v(X0) = J T�J; with J =
9g
9X

∣∣∣∣
X=X0

;

provided v(X0) �= 0.

Using this lemma we .rst prove a preliminary result about the asymptotic distribution
of the model polynomial (10):

Theorem 2.1. Consider the AR-process (8) of order r. Let the A-polynomial be esti-
mated as an n:th order AR model (9) and assume that n¿ r. Let the roots of the
true AR-polynomial zrA0(z) be #k ; k =1; : : : ; r. Then the real part and the imaginary
part of the A(e j!; �̂N )-function are both asymptotically distributed as√

N (Re{A(e j!; �̂N )} − Re{A0(e j!)})∈AsN(0; v1);
√
N (Im{A(e j!; �̂N )} − Im{A0(e j!)})∈AsN(0; v2);

with v1 + v2 = |A0(e j!)|2
[
(n− r) +

r∑
m=1

1− |#m|2
|e j! − #m|2

]
: (11)

Proof. From (5) the asymptotic distribution of the LS-estimated AR-parameters �̂N is
given by√

N (�̂N − �0)∈AsN(0; �R−1); (12)

where

R= E{ t Tt };  t ,
d
d�
[A(q; �)y(t)] = [y(t − 1); y(t − 2); : : : ; y(t − n)]T: (13)

By Parseval’s relation and Eq. (8),

R= T (�y(!)); �y(!) =
�

|A0(e j!)|2 ; (14)

where

T (f(!)),
1
2�

∫ �

−�
W (e j!)W ∗(e j!)f(!) d!; (15)

with W (e j!) de.ned in (10) and (·)∗ denoting the conjugate transpose.
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Then by Lemma 2.1 and (10),
√
N (Re{A(e j!; �̂N )} − Re{A0(e j!)})∈AsN(0; v1);
with v1 = �Re{W T(e j!)}T−1(�y(!)) Re{W (e j!)};
√
N (Im{A(e j!; �̂N )} − Im{A0(e j!)})∈AsN(0; v2);

with v2 = � Im{W T(e j!)}T−1(�y(!)) Im{W (e j!)}:

Then it is not diMcult to check that

v1 + v2 = �W ∗(e j!)T−1(�y(!))W (e j!): (16)

But it is hard to directly convert (16) into a simple analytic form, which obviously
should only depend on A0.
In order to get a simple analytic expression, we introduce a virtual time series {v(t)}

de.ned by

A1(q)y(t) = v(t): (17)

Then by (9), we have a new model

A(q; �)
A1(q)

v(t) = e(t): (18)

The model (18) may not be actually used, but using it will result in the same variance
as using (9), and the expression may be easier to simplify. That is indeed the case if
A1 = A0. Then v(t) = e(t) is i.i.d. and the new model (18) becomes

A(q; �)
A0(q)

v(t) = e(t): (19)

Now, supposing #k ; 16 k6 r are the roots of A0(q) (max16k6r |#k |¡ 1 for the
AR-process (8) to be stationary), if we reparameterize model (19) using the orthonor-
mal basis (see Ninness et al., 1999b)

)n;r(q) = [*1(q); *2(q); : : : ; *n(q)]T; (20)

where, *i(q); 16 i6 n is de.ned by

*i(q),

{
q−i ; 16 i6 n− r;

bi−(n−r)(q) q−(n−r); n− r ¡ i6 n;
(21)

with

bk(q),

√
1− |#k |2
q− #k

k−1∏
m=1

1− P#mq
q− #m

; 16 k6 r; (22)
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then we have a new equivalent model

A′(q; �′)v(t) = e(t); (23)

with A′(q; �′),
1

A0(q)
+ (�′)∗ · )n;r(q)

=
1

A0(q)
+ Pa′1q

−1 + · · ·+ Pa′n−rq
−(n−r)

+ Pa′n−r+1b1(q)q
−(n−r) + · · ·+ Pa′nbr(q)q−(n−r); (24)

where �′ , [a′1; a
′
2; : : : ; a

′
n]
T are the new parameters and (·)∗ denotes the conjugate

transpose. Note that �′ would be complex if A0 has complex roots. Actually it is easy
to check that there exist linear transformations between the old and new parameters,
and between the old and new orthonormal basis:

�=, · �′; (25)

)n;r(q) =,∗ · W (q)
A0(q)

; (26)

where, W (q) = [q−1; q−2; : : : ; q−n]T, and , is an n× n constant matrix, whose entries
only depend on the roots of A0: #k ; 16 k6 r.
Let

�̂′N , ,−1 · �̂N ; (27)

where �̂N are the LS-estimates of the parameters � in (4).
By (10), (24), (26)–(27) and noticing that �̂N are real estimates, we have

A(e j!; �̂N ) = 1 + �̂TN ·W (e j!) = 1 + (�̂′N )∗ ·,∗ · W (e
j!)

A0(e j!)
· A0(e j!)

= 1 + (�̂′N )
∗ · )n;r(e j!) · A0(e j!)

= 1 + (�̂N )T · (,∗)−1 · )n;r(e j!) · A0(e j!):
Hence, by Lemma 2.1 and (12), we have

v1 = �Re{(,∗)−1 · )n;r(e j!) · A0(e j!)}TR−1 Re{(,∗)−1 · )n;r(e j!) · A0(e j!)};
v2 = � Im{(,∗)−1 · )n;r(e j!) · A0(e j!)}T R−1Im{(,∗)−1 · )n;r(e j!) · A0(e j!)}:

Therefore, by (13) and noticing that  t is real,

v1 + v2 = �{(,∗)−1 · )n;r(e j!) · A0(e j!)}∗R−1{(,∗)−1 · )n;r(e j!) · A0(e j!)}
= �|A0(e j!)|2)∗

n; r(e
j!)(E {,∗ t ∗

t ,})−1)n;r(e j!)

= |A0(e j!)|2)∗
n; r(e

j!))n;r(e j!); (28)
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where, the last equality follows from (3b), (8), (26) and the orthonormality of )n;r(q)
with

,∗ t =,∗W (q)y(t) = )n;r(q)A0(q)y(t) = )n;r(q)e(t): (29)

Finally, by explicitly expressing (28) in terms of (20)–(22), we have (11).

Although we aim at a result about the asymptotic distribution of the spectrum esti-
mate (6), the result of Theorem 2.1 is of independent interest. It shows that when n
tends to in.nity, the variance of the estimated A-polynomial behaves like ∼ n|A0(e j!)|2.
It also shows how the poles #m of the true AR-representation aQect the variance for
.nite orders n.

3. The main result

Let us now turn to the main result, an expression for �n(!) in (6).

Theorem 3.1. Consider the AR-process (8) of order r. Let the A-polynomial be es-
timated as an nth order AR model (9) and assume that n¿ r. Let the roots of the
true AR-polynomial zrA0(z) be #k ; k=1; : : : ; r and arrange them in the following way:
the r − 2- <rst ones are real and the remaining 2- ones occur in complex conjugate
pairs: #r−2-+2k−1 = .k ; #r−2-+2k = P.k ; k = 1; : : : ; -. From all the roots de<ne

,k(!), e−2(n−r)j!
k∏

m=1

(1− P#me j!)2

(e j! − #m)2
; 06 k6 r − 1; (30)

and from the complex conjugated roots de<ne for 16 i6 -,

C(.i), (1− |.i|2) · (1− .ie j!)(1− P.ie j!) + (e j! − .i)(e j! − P.i)

(e j! − .i)2(e j! − P.i)2
: (31)

Then the estimated spectrum de<ned by (2) is asymptotically distributed as
√
N (�̂N (!)− �y(!))∈AsN(0; �n(!)) (32)

with

�n(!) =
�
�2

�2y(!) + 2�
2
y(!)Sn(!; A0); (33)

where Sn is de<ned by

Sn(!; A0) = (n− r) +
n−r∑
p=1

cos(2p!) +
r∑

k=1

1− |#k |2
|e j! − #k |2

+Re

{r−2-∑
k=1

1− |#k |2
(e j! − #k)2

,k−1(!) +
-∑

i=1

C(.i),r−2(-−i+1)(!)

}
; (34)

with C(.i), ,k(!) de<ned in (31) and (30).
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Proof. We .rst establish that the squared amplitude of the A(e j!; �̂N )-function is
asymptotically distributed as

√
N (|A(e j!; �̂N )|2 − |A0(e j!)|2)∈AsN(0; 2|A0(e j!)|4Sn(!; A0)): (35)

By Lemma 2.1 and (5a), we have (for simplicity, denote ÂN := A(e j!; �̂N ) and the
argument (e j!) is omitted in the following equations)

√
N (|ÂN |2 − |A0|2)∈AsN(0; v3);
with v3 = [2ReA0 ReW + 2 Im A0 ImW ]TP[2 ReA0 ReW + 2 Im A0 ImW ]:

After some calculation, it is not diMcult to verify that

v3 = 2|A0|2W ∗PW + 2Re{ PA20W TPW}: (36)

Now, by (5), (26) and (29), we have

W TPW = �W T[E t Tt ]
−1W

= �[A0(,∗)−1)n;r]T[E t Tt ]
−1[A0(,∗)−1)n;r]

= �A20)
T
n; r[E,

∗ t(,∗ t)T]−1)n;r

= �A20)
T
n; r[E)n;r(q)et)Tn; r(q)et]

−1)n;r : (37)

To continue on (37), by Parseval’s relation and (3b), we have

R1, E)n;r(q)et)Tn; r(q)et

=
�
2�

∫ �

−�
)n;r(e j!))Tn; r(e

−j!) d!:

Note that A0 has - pairs of complex conjugate roots: #r−2-+1=.1; #r−2-+2= P.1; : : : ; #r−1=
.-; #r = P.-. By (20)–(22), one .nds that

R1 =




In−2- 0 0 0

0 B1 0 0

0 0
. . . 0

0 0 0 B-



; (38)

where for i = 1; : : : ; -,

Bi =
1

1− .2i

[
1− |.i|2 .i − P.i

.i − P.i 1− |.i|2

]
;

and

B−1
i =

1

1− P.2i

[
1− |.i|2 P.i − .i

P.i − .i 1− |.i|2

]
:
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Finally, by (11), (16), (37) and (38), it is easy to check that

v3 = 2|A0(e j!)|4
{

n∑
i=1

|*i(e j!)|2 + Re
{n−2-∑

i=1

[*i(e j!)]2

+
-∑

i=1

C(.i),r−2(-−i+1)(!)

}}

= 2|A0(e j!)|4

(n− r) +

r∑
k=1

|bk(e j!)|2 +
n−r∑
p=1

cos(2p!)

+Re

{
e−2(n−r)!j

r−2-∑
k=1

[bk(e j!)]2 +
-∑

i=1

C(.i),r−2(-−i+1)(!)

}}

= 2|A0(e j!)|4

(n− r) +

r∑
k=1

1− |#k |2
|e j! − #k |2 +

n−r∑
p=1

cos(2p!)

+Re

{r−2-∑
k=1

1− |#k |2
(e j! − #k)2

,k−1(!) +
-∑

i=1

C(.i),r−2(-−i+1)(!)

}}
;

which is (35).
Now, again apply Lemma 2.1 with the function g(z; �) = �=z; z = |Â|2 to our just

established asymptotic distribution of |Â|2 and using (5d) together with asymptotic
independence between �̂ and �̂, and the theorem follows.

4. Discussion

The variance of the asymptotic distribution of the spectrum estimate is according to
the theorem given by

�n(!) =
�
�2

�2y(!) + 2�
2
y(!)Sn(!; A0); (39)

where Sn is de.ned by (34).
Moreover, it follows from (34) that Sn is of the form

Sn(!; A0) = n+ gn(!) + fr;n(!); (40)

where,

gn(!) =
n∑

p=1

cos(2p!) =



Re

{
e2jn! − 1
e−2j! − 1

}
if ! �= 0; �;

n else:

(41)

The term fr;n is −r − ∑n
p=n−r+1 cos(2p!) plus the three last terms of (34). These

sums contain no more than 3r terms together, and fr;n depends on n only via
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∑n
p=n−r+1 cos(2p!) and ,k(!). Obviously, |∑n

p=n−r+1 cos(2p!)|¡r. Moreover,
|,k(!)| is n-independent, so it follows that fr;n is bounded by an n-independent con-
stant, which means that

|Sn(!)− n|¡C; ! �= 0; �; C independent of n:

For != 0 or �, n should be replaced by 2n. This means that for .xed r we have the
limits

lim
n→∞

1
n
Sn(!) =

{
1 if ! �= 0; �;
2 else:

(42)

So the classical result (7) is re-established. It also shows that the convergence rate in
(42) is always like 1=n.
It is also clear from the expressions that the convergence will depend on the pole

location of the true AR-process A0. For example, if all poles are in the origin, i.e.,
#k ≡ 0, it follows that the second term of (34) will be r and it can be veri.ed that
the sum of the fourth and .fth terms will be

∑n
p=n−r+1 cos(2p!). Generally speaking,

poles close to the origin (#k ≈ 0) will make 1
nSn deviate less from its limit as n → ∞.

Acknowledgements

The authors would like to thank the referees for their several helpful comments.

References

Berk, K.N., 1974. Consistent autoregressive spectral estimates. The Annals of Statistics 2, 489–502.
Hannan, E.J., 1970. Multiple Time Series. Wiley, New York.
Hannan, E.J., Deistler, M., 1988. The Statistical Theory of Linear Systems. Wiley, New York.
Hannan, E.J., Kavalieris, L., 1984. Multivariate linear time series models. Advances in Applied Probability
16, 492–561.

Kromer, R.E., 1970. Asymptotic properties of the autoregressive spectral estimator. Ph.D. Thesis, Stanford
University.

Ljung, L., Wahlberg, B., 1992. Asymptotic properties of the least-squares method for estimating transfer
functions and disturbance spectra. Advances in Applied Probability 24, 412–440.

Ninness, B., Hjalmarsson, H., 2002a. Accurate quanti.cation of variance error. In Proceedings of the 15th
IFAC World Congress, pages Session T-Fr-M01, Barcelona, Spain, July.

Ninness, B., Hjalmarsson, H., 2002b. Exact quanti.cation of variance error. In Proceedings of the 15th IFAC
World Congress, pages Session T-Fr-M01, Barcelona, Spain, July.

Ninness, B., Hjalmarsson, H., Gustafsson, F., 1999a. The fundamental role of general orthonormal bases in
system identi.cation. IEEE Transactions on Automatic Control AC-44 (7), 1384–1406.

Ninness, B., Hjalmarsson, H., Gustafsson, F., 1999b. Generalized Fourier and Toeplitz results for rational
orthonormal bases. SIAM Journal on Control and Optimization 37 (2), 429–460.

Rao, C.R., 1973. Linear Statistical Inference and Its Applications. Wiley, New York.
Xie, L.L., Ljung, L., 2001. Asymptotic variance expressions for estimated frequency functions. IEEE
Transactions on Automatic Control AC-46 (12), 1887–1899.


	Variance expressions for spectra estimated using auto-regressions
	Introduction
	A preliminary result
	The main result
	Discussion
	Acknowledgements
	References


