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Abstract—We propose an achievable rate region for the two-
way two-relay channel using decode-and-forward block Marko-
vian coding. A previous attempt to obtain an achievable region
for this network encountered a fundamental deadlock problem
in which each relay needed to decode before the other to enable
mutual assistance. In this paper, the deadlock is resolved by
introducing an additional constraint that ensures some relay can
decode at least one source before the other relay. The resulting
achievable region is an extension of existing results for the two-
way single-relay channel.

I. INTRODUCTION

The two-way relay channel [1] is often cited to explain

the benefits of network-coding for the wireless setting. In

this channel, two sources communicate to each other with the

help of a relay using the network-coding protocol. First, the

relay linearly combines (or XORs) the two source messages

it has decoded and broadcasts the result. Then the source

nodes, knowing what they transmitted in the past, can recover

each other’s message by decoding the relay transmission and

inverting the linear operation. Thus, the flow of information

remains uninterrupted despite the common channel between

the relay and sources.

More generally, it turns out the idea of network coding can

be applied with random binning, a classical technique in multi-

user information theory. Under this framework, the following

achievable rates for the two-way single-relay channel were

obtained in [2],

R1 < I(X1, X2; Y3|X3) (1)

R3 < I(X2, X3; Y1|X1) (2)

and

R1 < I(X1; Y2|X2, X3) (3)

R3 < I(X3; Y2|X1, X2) (4)

R1 + R3 < I(X1, X3; Y2|X2) (5)

for any p(x1)p(x2)p(x3), where nodes 1 and 3 are the

sources, and node 2 is the relay.

A consequence of the network coding strategy is that the

input distribution of each node must be independent, thus

precluding the use of beamforming. If we use superposition

coding instead, then the input distribution of each node will be

correlated, allowing the use of beamforming. Such a scheme

for this network was first studied in [3], where, however, it

was incorrectly claimed that (1)-(5) are achievable for any

p(x1|x2f )p(x3|x2b)p(x2f )p(x2b). The analysis in [3] was lim-

ited to the AWGN channel, but erred by not distinguishing the

signal power sending superimposed “new” information, from

the signal power coherently transmitting “old” information.

The correct achievable region based on superposition coding

is as follows,

R1 < I(X1, X2; Y3|U3, X3) (6)

R3 < I(X2, X3; Y1|U1, X1) (7)

and

R1 < I(X1; Y2|U1, U3, X2, X3) (8)

R3 < I(X3; Y2|U1, U3, X1, X2) (9)

R1 + R3 < I(X1, X3; Y2|U1, U3, X2) (10)

for any p(u1)p(u3)p(x1|u1)p(x2|u1, u3)p(x3|u3), where U1

and U3 are auxiliary random variables.

Depending on the channel parameters, neither of the two

achievable regions (1)-(5) and (6)-(10) is always superior than

the other. In this paper we will focus on network coding, which

is relatively simpler to extend, but the basic strategies can be

similarly applied to superposition coding as well.

The achievable rate region in [2] has a simple interpretation;

(1) and (2) are cut-set bounds without beamforming, while (3)-

(5) is the multiple-access region if the relay is to fully decode

both sources. Now, an immediate question is whether this

interpretation extends to the two-relay case. More specifically,

we would like to know if the following rates are achievable

in the two-relay setting,

R1 < I(X1, X2, X3; Y4|X4) (11)

R4 < I(X2, X3, X4; Y1|X1) (12)

and

R1 < I(X1; Y2|X2, X3, X4) (13)

R4 < I(X3, X4; Y2|X1, X2) (14)

R1 + R4 < I(X1, X3, X4; Y2|X2) (15)

and

R1 < I(X1, X2; Y3|X3, X4) (16)

R4 < I(X4; Y3|X1, X2, X3) (17)

R1 + R4 < I(X1, X2, X4; Y3|X3) (18)

where nodes 1 and 4 are the sources, and nodes 2 and 3 are

the relays.
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Notice that (11) and (12) correspond to the cut-set bounds.

Furthermore, (13)-(15) and (16)-(18) seem reasonable exten-

sions of the multiple access constraints to each relay node.

Unfortunately, there is a fundamental difficulty in achieving

(11)-(18). To achieve (13)-(15), node 3 needs to decode before

node 2 in order to help, but the reverse is also needed for (16)-

(18). This “deadlock” problem was identified in [4] when a

backward decoding scheme was tried for achieving (11)-(18).

In this paper, we resolve the deadlock by adding an ad-

ditional constraint to (11)-(18) that ensures some relay can

decode at least one of the sources before the other relay.

Intuitively, this requirement is reasonable; to start the flow

of information it is expected that one of the relays must be

able to decode a source message first.

There are two ways in which a coding scheme satisfies the

additional constraint: in the first case some relay decodes one
source before the other relay, and in the second case some

relay decodes both sources before the other relay. For each

case, we will develop coding schemes that can recover the

region defined by (11)-(18). A key ingredient in some of the

coding schemes is an offset-encoding strategy developed in

[5], that gives more flexibility when combined with sliding-

window decoding. As in [2] the schemes presented in this

paper also introduce random binning at the relay nodes.

This paper is organized as follows. In section II, we

introduce the two-way two-relay channel model, state the

achievable region, and provide an intuitive interpretation of

the results. In section III three coding schemes are introduced

that collectively achieve the rate region of section II. Section

IV concludes the paper.

II. THE TWO-WAY TWO-RELAY CHANNEL

Consider a network of four nodes 1, 2, 3, 4, with the input-

output dynamics modeled by the discrete memoryless channel

(X1 ×X2 ×X3 ×X4, p(y1, y2, y3, y4|x1, x2, x3, x4),
Y1 × Y2 × Y3 × Y4)

That is, at any time t = 1, 2, . . . , the outputs y1,t,

y2,t, y3,t, and y4,t received by the four nodes respectively

only depend on the inputs x1,t, x2,t, x3,t, and x4,t trans-

mitted by the four nodes at the same time according to

p(y1,t, y2,t, y3,t, y4,t|x1,t, x2,t, x3,t, x4,t).
In the two-way two-relay problem, the source nodes 1 and 4

communicate with each other at rates R1 and R4 respectively,

with the help of the relay nodes 2 and 3. We are interested

in the simultaneously achievable rates (R1, R4). The standard

definitions of codes and achievable rates are omitted, except a

special note that during any time t, each node i can choose its

input xi,t based on the past outputs (yi,t−1, yi,t−2, . . . , yi,1) it

has already received.

Theorem 2.1: For the two-way two-relay problem defined

above, any rates (R1, R4) satisfying (11)-(18) are simultane-

ously achievable, provided that at least one of the following

constraints hold:

R1 < I(X1; Y2|X2, X3) (19)

R4 < I(X4; Y3|X2, X3) (20)

R1 + R4 < max{I(X1, X4; Y2|X2, X3), (21)

I(X1, X4; Y3|X2, X3)}
Observe that by symmetry, it is only necessary to consider two

mutually exclusive cases in (19)-(21).

• Case 1 in which (20) holds. In this case, the rate of

node 4 is low enough to ensure node 3 can decode the

message despite interference from node 1. More gener-

ally, it will be shown that the first case applies when some

relay decodes one source before the other relay.

• Case 2 in which the first part of (21) holds but nei-

ther (19) nor (20) hold. The throughput is low enough

to ensure node 2 can decode without assistance from

node 3 but unlike the first case, node 1 does not cause

any interference. More generally, it will be shown that

the second case applies when some relay decodes both
sources before the other relay.

It is emphasized that the rate regions of the first and second

cases are different. That is, there exist rate pairs (R1, R4) that

satisfy (19) or (20) but not (21) and vice-versa.

III. PROOF OF THEOREM 2.1

Each case is examined separately. In the first case we

show there are two coding strategies that together, obtain the

rate region defined by (11)-(18) and (20): an offset encoding

scheme, and a no-offset encoding scheme. In the second case,

we use a multiple-access strategy to recover the rate region

defined by (11)-(18) and the first part of (21).

Proof: For any fixed p(x1)p(x2)p(x3)p(x4), choose

R2 ≥ max{I(X2; Y1|X1, X3), I(X2; Y3|X3, X4),
I(X2; Y4|X3, X4)}

R3 ≥ max{I(X3; Y1|X1, X2), I(X3; Y2|X1, X2),
I(X3; Y4|X4)}

We use the Markov block coding argument. Consider B
blocks of transmission, each of n transmission slots. For some

fixed K, J ∈ I, a sequence of B − K indices, w1,b ∈
{1, . . . , 2nR1}, b = 1, 2, . . . , B − K will be sent over from

node 1 to node 4 in nB transmission slots, and at the same

time, another sequence of B−J indices, w4,b ∈ {1, . . . , 2nR4}
will be sent over from node 4 to node 1.

Generation of Codebooks: For each node i = 1, . . . , 4
independently generate 2nRi i.i.d n-sequences

xi = (xi,1, . . . , xi,n) in Xn
i according to p(xi). Index

them as xi(wi), wi ∈ {1, 2, . . . , 2nRi}.

Random Binning: For each relay node i = 2, 3, generate

2nRi bins, indexed by Bi(k) with k = 1, . . . , 2nRi . Indepen-

dently throw each index pair (w1, w4), w1 ∈ {1, 2, . . . , 2nR1},

w4 ∈ {1, 2, . . . , 2nR4} into the 2nRi bins according to the

uniform distribution. Let ki(w1, w4) be the index of the bin

which contains the pair (w1, w4).
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TABLE I
AN OFFSET ENCODING SCHEME FOR CASE 1

Node Block b− 3 Block b− 2 Block b− 1 Block b

1 x1(w1,b−3) x1(w1,b−2) x1(w1,b−1) x1(w1,b)

2 x2(w1,b−5, w4,b−5) x2(w1,b−4, w4,b−4) x2(w1,b−3, w4,b−3) x2(w1,b−2, w4,b−2)

3 x3(w1,b−6, w4,b−4) x3(w1,b−5, w4,b−3) x3(w1,b−4, w4,b−2) x3(w1,b−3, w4,b−1)

4 x4(w4,b−3) x4(w4,b−2) x4(w4,b−1) x4(w4,b)

A. Case 1: An Offset Encoding Scheme
Encoding: We use an offset encoding scheme to obtain

an achievable rate region consistent with (20). The encoding

scheme is depicted in table I. It is assumed that a message

pair transmitted in block b was decoded at the end of block

b − 1. An interesting feature of this coding scheme is that

node 2 decodes the message from node 1 based on the signals

received over two blocks (not one block).
Decoding:
1) At the end of each block b = 3, . . . , B, node 1 deter-

mines the unique index ŵ4,b−2 that satisfies the joint

typicality checks:
(
X1,b−2,x2(k2(w1,b−4, w4,b−4)),x3(k3(w1,b−5, w4,b−3)),

x4(ŵ4,b−2),Y1,b−2

) ∈ A(n)
ε (X 1,X2,X3,X4,Y1)(

X1,b−1,x2(k2(w1,b−3, w4,b−3)),x3(k3(w1,b−4, ŵ4,b−2)),

Y1,b−1

) ∈ A(n)
ε (X1,X2,X3,Y1)

(
X1,b,x2(k2(w1,b−2, ŵ4,b−2)),Y1,b

) ∈ A(n)
ε (X1,X2,Y1)

2) At the end of each block b = 2, . . . , B, node 2 de-

termines the unique index pair (ŵ1,b−1, ŵ4,b−1) that

satisfies the joint typicality checks:
(
x1(ŵ1,b−1),X2,b−1,x3(k3(w1,b−4, w4,b−2)),x4(ŵ4,b−1),

Y2,b−1

) ∈ A(n)
ε (X1,X2,X3,X4,Y2)

(
X2,b,x3(k3(w1,b−3, ŵ4,b−1)),Y2,b

) ∈ A(n)
ε (X2,X3,Y2)

3) At the end of each block b = 1, . . . , B, node 3 deter-

mines the unique index pair (ŵ1,b−2, ŵ4,b) that satisfies

the joint typicality checks:
(
x1(ŵ1,b−2),x2(k2(w1,b−4, w4,b−4)),X3,b−2,x4(w4,b−2),

Y3,b−2

) ∈ A(n)
ε (X1,X2,X3,X4,Y3)(

x2(k2(ŵ1,b−2, w4,b−2)),X3,b,x4(ŵ4,b),Y3,b

)

∈ A(n)
ε (X2,X3,X4,Y3)

4) At the end of each block b = 4, . . . , B, node 4 deter-

mines the unique index ŵ1,b−3 that satisfies the joint

typicality checks:
(
x1(ŵ1,b−3),x2(k2(w1,b−5, w4,b−5)),
x3(k3(w1,b−6, w4,b−4)),X4,b−3,Y4,b−3

)

∈ A(n)
ε (X1,X2,X3,X4,Y4)(

x2(k2(ŵ1,b−3, w4,b−3)),x3(k3(w1,b−4, w4,b−2)),

X4,b−1,Y4,b−1

) ∈ A(n)
ε (X2,X3,X4,Y4)

(
x3(k3(ŵ1,b−3, w4,b−1)),X4,b,Y4,b

) ∈ A(n)
ε (X3,X4,Y4)

Analysis of Probability of Error:

1) In block b, node 1 can decode w4,b−2 with arbitrarily

small probability of error if

R4 < I(X4; Y1|X1, X2, X3) + I(X3; Y1|X1, X2)
+I(X2; Y1|X1)

where the three mutual informations follow from the

three typicality checks respectively and their combina-

tion leads to (12).

2) In block b, node 2 can decode the pair (w1,b−1, w4,b−1)
with arbitrarily small probability of error if

R1 < I(X1; Y2|X2, X3, X4)
R4 < I(X4; Y2|X1, X2, X3) (22)

+I(X3; Y2|X2)
R1 + R4 < I(X1, X4; Y2|X2, X3) + I(X3; Y2|X2)

= I(X1, X3, X4; Y2|X2)

where each inequality corresponds to one of the three

ways a message pair can be decoded incorrectly.

3) In block b, node 3 can decode the pair (w1,b−2, w4,b)
with arbitrarily small probability of error if

R1 < I(X1; Y3|X2, X3, X4) + I(X2; Y3|X3, X4)
= I(X1, X2; Y3|X3, X4)

R4 < I(X4; Y3|X2, X3)
R1 + R4 < I(X1; Y3|X2, X3, X4) + I(X2, X4; Y3|X3)

= I(X1, X2, X4; Y3|X3)

4) In block b, node 4 can decode the message w1,b−3 with

arbitrarily small probability of error if

R1 < I(X1; Y4|X2, X3, X4) + I(X2; Y4|X3, X4)
+I(X3; Y4|X4)

where the three mutual informations lead to (11).

B. Case 1: A No-offset Encoding Scheme

Encoding: We use a no-offset encoding scheme to obtain an

achievable region consistent with (20). The encoding scheme

is depicted in table II.

Decoding:

1) At the end of each block b = 3, . . . , B, node 1 deter-

mines the unique index ŵ4,b−2 that satisfies the joint
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typicality checks:
(
X1,b−2,x2(k2(w1,b−3, w4,b−4)),x3(k3(w1,b−4, w4,b−3)),

x4(ŵ4,b−2),Y1,b−2

) ∈ A(n)
ε (X1,X2,X3,X4,Y1)(

X1,b−1,x2(k2(w1,b−2, w4,b−3)),x3(k3(w1,b−3, ŵ4,b−2)),

Y1,b−1

) ∈ A(n)
ε (X1,X2,X3,Y1)

(
X1,b,x2(k2(w1,b−1, ŵ4,b−2)),Y1,b

) ∈ A(n)
ε (X1,X2,Y1)

2) At the end of each block b = 1, . . . , B, node 2 deter-

mines the unique index pair (ŵ1,b, ŵ4,b−1) that satisfies

the joint typicality checks:
(
x1(w1,b−1),X2,b−1,x3(k3(w1,b−3, w4,b−2)),x4(ŵ4,b−1),

Y2,b−1

) ∈ A(n)
ε (X1,X2,X3,X4,Y2)(

x1(ŵ1,b),X2,b,x3(k3(w1,b−2, ŵ4,b−1)),Y2,b

)

∈ A(n)
ε (X1,X2,X3,Y2)

3) At the end of each block b = 1, . . . , B, node 3 deter-

mines the unique index pair (ŵ1,b−1, ŵ4,b) that satisfies

the joint typicality checks:
(
x1(ŵ1,b−1),x2(k2(w1,b−2, w4,b−3)),X3,b−1,x4(w4,b−1),

Y3,b−1

) ∈ A(n)
ε (X1,X2,X3,X4,Y3)(

x2(k2(ŵ1,b−1, w4,b−2)),X3,b,x4(ŵ4,b),Y3,b

)

∈ A(n)
ε (X2,X3,X4,Y3)

4) At the end of each block b = 3, . . . , B, node 4 deter-

mines the unique index ŵ1,b−2 that satisfies the joint

typicality checks:
(
x1(ŵ1,b−2),x2(k2(w1,b−3, w4,b−4)),
x3(k3(w1,b−4, w4,b−3)),X4,b−2,Y4,b−2

)

∈ A(n)
ε (X1,X2,X3,X4,Y4)(

x2(k2(ŵ1,b−2, w4,b−3)),x3(k3(w1,b−3, w4,b−2)),

X4,b−1,Y4,b−1

) ∈ A(n)
ε (X2,X3,X4,Y4)

(
x3(k3(ŵ1,b−2, w4,b−1)),X4,b,Y4,b

) ∈ A(n)
ε (X3,X4,Y4)

Analysis of Probability of Error:
1) In block b, node 1 can decode w4,b−2 with arbitrarily

small probability of error if

R4 < I(X4; Y1|X1, X2, X3) + I(X3; Y1|X1, X2)
+I(X2; Y1|X1)

where the combination of the three mutual informations

leads to (12).

2) In block b, node 2 can decode the pair (w1,b, w4,b−1)
with arbitrarily small probability of error if

R1 < I(X1; Y2|X2, X3) (23)

R4 < I(X4; Y2|X1, X2, X3)
+I(X3; Y2|X1, X2)

= I(X3, X4; Y2|X1, X2)
R1 + R4 < I(X4; Y2|X1, X2, X3)

+I(X1, X3; Y2|X2)
= I(X1, X3, X4; Y2|X2)

TABLE II
A NO-OFFSET ENCODING SCHEME FOR CASE 1

Node Block b− 2 Block b− 1 Block b

1 x1(w1,b−2) x1(w1,b−1) x1(w1,b)

2 x2(w1,b−3, w4,b−4) x2(w1,b−2, w4,b−3) x2(w1,b−1, w4,b−2)

3 x3(w1,b−4, w4,b−3) x3(w1,b−3, w4,b−2) x3(w1,b−2, w4,b−1)

4 x4(w4,b−2) x4(w4,b−1) x4(w4,b)

3) In block b, node 3 can decode the pair (w1,b−1, w4,b)
with arbitrarily small probability of error if

R1 < I(X1; Y3|X2, X3, X4)
+I(X2; Y3|X3, X4)

= I(X1, X2; Y3|X3, X4)
R4 < I(X4; Y3|X2, X3)

R1 + R4 < I(X1; Y3|X2, X3, X4) + I(X2, X4; Y3|X3)
= I(X1, X2, X4; Y3|X3)

4) In block b, node 4 can decode the message w1,b−2 with

arbitrarily small probability of error if

R1 < I(X1; Y4|X2, X3, X4) + I(X2; Y4|X3, X4)
+I(X3; Y4|X4)

where the combination of the three mutual informations

leads to (11).

The combined rate region obtained from the offset and no-

offset coding schemes is given by (11)-(18) and (20). This

statement is verified by observing that (23) and (22) imply

(15). In other words, we have shown that if (20) is true,

there are two coding schemes that together recover the region

defined by (11)-(18). In both schemes, node 3 decodes w4,b

before node 2, which is consistent with the practical interpre-

tation of case 1.

C. Case 2: A Multiple-access Scheme

Encoding: We present a scheme that obtains an achievable

rate region consistent with the first part of (21) given that

neither (19) nor (20) holds. The encoding scheme is depicted

in table III.

Decoding:
1) At the end of each block b = 3, . . . , B, node 1 deter-

mines the unique index ŵ4,b−2 that satisfies the joint

typicality checks:
(
X1,b−2,x2(k2(w1,b−3, w4,b−3)),x3(k3(w1,b−4, w4,b−4)),

x4(ŵ4,b−2),Y1,b−2

) ∈ A(n)
ε (X1,X2,X3,X4,Y1)(

X1,b−1,x2(k2(w1,b−2, ŵ4,b−2)),x3(k3(w1,b−3, w4,b−3)),

Y1,b−1

) ∈ A(n)
ε (X1,X2,X3,Y1)

(
X1,b,x3(k3(w1,b−2, ŵ4,b−2)),Y1,b

) ∈ A(n)
ε (X1,X3,Y1)

2) At the end of each block b = 1, . . . , B, node 2 deter-

mines the unique index pair (ŵ1,b, ŵ4,b) that satisfies the
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joint typicality check:
(
x1(ŵ1,b),X2,b,x3(k3(w1,b−2, w4,b−2)),x4(ŵ4,b),Y2,b

)

∈ A(n)
ε (X1,X2,X3,X4,Y2)

3) At the end of each block b = 2, . . . , B, node 3 de-

termines the unique index pair (ŵ1,b−1, ŵ4,b−1) that

satisfies the joint typicality checks:
(
x1(ŵ1,b−1),x2(k2(w1,b−2, w4,b−2)),X3,b−1,x4(ŵ4,b−1),

Y3,b−1

) ∈ A(n)
ε (X1,X2,X3,X4,Y3)

(
x2(k2(ŵ1,b−1, ŵ4,b−1)),X3,b,Y3,b

) ∈ A(n)
ε (X2,X3,Y3)

4) At the end of each block b = 3, . . . , B, node 4 deter-

mines the unique index ŵ1,b−2 that satisfies the joint

typicality checks:
(
x1(ŵ1,b−2),x2(k2(w1,b−3, w4,b−3)),
x3(k3(w1,b−4, w4,b−4)),X4,b−2,

Y4,b−2

) ∈ A(n)
ε (X1,X2,X3,X4,Y4)(

x2(k2(ŵ1,b−2, w4,b−2)),x3(k3(w1,b−3, w4,b−3)),

X4,b−1,Y4,b−1

) ∈ A(n)
ε (X2,X3,X4,Y4)

(
x3(k3(ŵ1,b−2, w4,b−2)),X4,b,Y4,b

) ∈ A(n)
ε (X3,X4,Y4)

Analysis of Probability of Error:
1) In block b, node 1 can decode w4,b−2 with arbitrarily

small probability of error if

R4 < I(X4; Y1|X1, X2, X3) + I(X2; Y1|X1, X3)
+I(X3; Y1|X1)

where the combination of the three mutual informations

leads to (12).

2) In block b, node 2 can decode the pair (w1,b, w4,b) with

arbitrarily small probability of error if

R1 < I(X1; Y2|X2, X3, X4) (24)

R4 < I(X4; Y2|X1, X2, X3) (25)

R1 + R4 < I(X1, X4; Y2|X2, X3) (26)

3) In block b, node 3 can decode the pair (w1,b−1, w4,b−1)
with arbitrarily small probability of error if

R1 < I(X1; Y3|X2, X3, X4) (27)

+I(X2; Y3|X3)
R4 < I(X4; Y3|X1, X2, X3) (28)

+I(X2; Y3|X3)
R1 + R4 < I(X1, X4; Y3|X2, X3) (29)

+I(X2; Y3|X3)
= I(X1, X2, X4; Y3|X3)

4) In block b, node 4 can decode the message w1,b−2 with

arbitrarily small probability of error if

R1 < I(X1; Y4|X2, X3, X4) + I(X2; Y4|X3, X4)
+I(X3; Y4|X4)

TABLE III
A MULTIPLE-ACCESS ENCODING SCHEME FOR CASE 2

Node Block b− 2 Block b− 1 Block b

1 x1(w1,b−2) x1(w1,b−1) x1(w1,b)

2 x2(w1,b−3, w4,b−3) x2(w1,b−2, w4,b−2) x2

(
w1,b−1, w4,b−1)

3 x3(w1,b−4, w4,b−4) x3(w1,b−3, w4,b−3) x3(w1,b−2, w4,b−2)

4 x4(w4,b−2) x4(w4,b−1) x4(w4,b)

where the combination of the three mutual informations

leads to (11).

Observe that node 2 decodes both source messages

(w1,b, w4,b) before node 3, which is consistent with the

practical interpretation of case 2. Now from the definition

of this case we know that (R1, R4) satisfies the following

inequalities:

R1 ≥ I(X1; Y2|X2, X3) (30)

R4 ≥ I(X4; Y3|X2, X3) (31)

R1 + R4 < I(X1, X4; Y2|X2, X3) (32)

The constraints (30)-(32) are sufficient to obtain the region

defined by (11)-(18) using the third coding scheme. This

statement is proved by observing that (30) and (32) imply (25),

(18) and (31) imply (27), and (17) implies (28). Furthermore,

if either (30) or (31) does not hold, then the rate pair will be

included in case 1.

Therefore it follows from symmetry and the achievable rate

regions in case 1 and 2, that one of the constraints (19)-(21)

is sufficient to obtain the region defined by (11)-(18). Thus

theorem 2.1 is proved.

IV. CONCLUDING REMARKS

We have obtained an achievable rate region for the two-way

two-relay channel. Moreover, the deadlock problem caused by

(11)-(18) was resolved by an additional constraint (19)-(21).

This constraint ensures that some relay will be able to decode

at least one source before the other relay.
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