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Abstract—Under the standard random coding framework, the
conditional entropy rate of the channel output given the codebook
information is investigated. It is shown that there exists an
interesting dichotomy: with respect to the unconditional entropy
rate of the output, this conditional entropy rate is reduced
when the communication rate is below the channel capacity, but
remains the same when the communication rate is above the
channel capacity. Hence, the channel capacity plays a role of the
critical point. Shannon used the random codebook argument to
prove that any communication rate below the channel capacity
is achievable, i.e., the destination can successfully decode the
transmitted codeword based on the codebook used at the source.
However, this cannot be done when the communication rate is
above the channel capacity. In this case, our evaluation shows that
the codebook information cannot be used to reduce the output
entropy rate, and instead, the output entropy rate turns to be the
same as if a completely random, instead of a specific codebook,
was used at the source.

This characterization of the conditional entropy rate sheds
some light on the optimal design of the compress-and-forward
relay schemes, where a long standing question is whether the
source’s codebook information can be used for more effective
compressions at the relay. In this paper, specifically, we show
that if lossless compression is to be performed, then the codebook
information cannot be used to reduce the compression rate at the
relay.

I. INTRODUCTION

Consider a discrete memoryless channel (X , p(y|x),Y) with
the capacity C := maxp(x) I(X;Y ). Under the random coding
framework, a random codebook Cn with respect to p(x) with
the rate R and block length n is defined as

Cn :=
{
Xn(w) ∈ Xn, w = 1, . . . , 2nR

}
, (1)

where each codeword in Cn is an i.i.d. random sequence
generated according to some input distribution p(x). Shannon
[1] used such random codebooks to show that any communi-
cation rate less than the channel capacity is achievable. It is
interesting to note that with high probability, such randomly
generated codebooks will be “good” in the sense that the
decoding error probability will approach zero as n → ∞
when R < I(X;Y ). It is also well known that in the case
when R > I(X;Y ), the decoding error probability will not
be small, but instead, approach one as n→∞.

In this paper, we study the conditional entropy rate of
the channel output given the codebook information, namely
limn→∞

1
nH(Y n|Cn). Our main result is that this conditional

entropy rate is a piecewise linear function of the communica-
tion rate, given by

lim
n→∞

1
n
H(Y n|Cn) =

{
H(Y ) when R > I(X;Y ),
R+H(Y |X) when R < I(X;Y ),

(2)
where H(Y ), I(X;Y ) and H(Y |X) are all calculated accord-
ing to p(x, y) = p(x)p(y|x). In contrast, without the codebook
information, the unconditional entropy rate of the output,
namely limn→∞

1
nH(Y n), equals H(Y ) for any R > 0.

Interestingly, here we see a dichotomy: with the codebook
information, the conditional entropy rate reduces when R <
I(X;Y ) but remains the same when R > I(X;Y ), where
I(X;Y ) plays a role of the critical point.

In this paper, we are especially interested in the case
when R > I(X;Y ), so that the receiver cannot successfully
decode the message. This is motivated by investigating the
optimal compress-and-forward schemes for the relay channel.
For simplicity, consider the relay channel depicted in Fig. 1,
where the source’s input X is received by the relay Y and
the destination Z through a channel p(y, z|x), and the relay
can communicate to the destination via an error-free digital
link with rate R0. When the source is transmitting at a rate

Fig. 1. A relay channel model with a digital link.

higher than I(X;Y ), the relay cannot decode the message, but
it can help by compressing and forwarding its observations
to the destination via the digital link. The optimal design of
the compress-and-forward schemes at the relay is arguably
one of the most critical problems in the development of net-
work information theory, where ambiguity always arises when
decoding cannot be performed successfully. In the classical
compress-and-forward scheme [3] and some of its variants [4]-
[7], the relay simply treats its observation Y n as completely
randomly generated according to p(y) =

∑
x p(x)p(y|x), and



the compression scheme at the relay is only based on the
distribution used for generating the codebook at the source,
i.e., p(x), instead of the specific codebook used. While many
different codebooks can be generated according to the same
distribution, can the relay exploit the structure of the specific
codebook used and compress its observations more efficiently?

There have been some discussions on this issue [7]-[11].
Particularly, in [9]-[11], we showed that for a single user
channel, if a randomly generated codebook with the rate
above capacity is used, then the output satisfies an asymptotic
equipartition property (AEP), irrespective of the specific code-
book used. Essentially, this insight demonstrates that although
each different codebook may have its own structure, this
structure will disappear from the output’s point of view as long
as the rate is above capacity. And this loss of structure suggests
that the observations at the relay are somehow independent of
the specific codebook used at the source, and only depend on
the distribution by which the codebook is generated, when the
source’s rate is above the capacity of the source-relay link.

As an application of our main result shown in (2), in this pa-
per, we will further explore on this issue. Specifically, we focus
on the case where lossless compression is to be performed at
the relay and ask the question: what is the minimum required
R0 in Fig. 1 when the relay wants to transfer Y n faithfully
to the destination? We will calculate this minimum required
R0 in two different scenarios: i) the relay uses the knowledge
of the source’s codebook to do the compression; ii) the relay
simply ignores this knowledge by treating Y n as randomly
generated according to p(y) =

∑
x p(x)p(y|x). Surprisingly,

it is shown that the minimum required R0 in both scenarios
are the same, no matter whether there exists side information
at the destination, which indicates that it is indeed optimal
for the relay to compress its observation without using the
source’s codebook information in the lossless case.

The remainder of the paper is organized as follows. First,
the main result of this paper is formally stated in Section II,
followed by its proof in Section III. Then, as an application
of the result, the optimal design of the compress-and-forward
schemes is discussed in Section IV.

II. MAIN RESULT

Theorem 1: Consider a discrete memoryless channel
(X , p(y|x),Y). Under the random coding framework, let Cn

be a random codebook i.i.d. generated according to some p(x)
with rate R and block length n. Then, the conditional output
entropy rate given the codebook information is

lim
n→∞

1
n
H(Y n|Cn) =

{
H(Y ) when R > I(X;Y ),
R+H(Y |X) when R < I(X;Y ),

(3)
where H(Y ), I(X;Y ) and H(Y |X) are all calculated accord-
ing to p(x, y) = p(x)p(y|x).

III. CONDITIONAL ENTROPY RATE OF OUTPUT GIVEN
CODEBOOK INFORMATION

The proof of Theorem 1 is based upon the results obtained in
[9]-[11], which essentially discussed the asymptotic equipar-

tition property (AEP) of the output when the rate is above
capacity. Thus, before presenting the proof of Theorem 1, we
first review some definitions on strong typical sequences, and
the useful results in [9]-[11], in III-A and III-B respectively.
Then, we characterize the conditional entropy rate of the
output given the codebook information in III-C.

A. Strong Typicality

We begin with some standard definitions on strong typicality
[12, Ch. 3].

Definition 1: The ε-strongly typical set with respect to p(x),
denoted by A

(n)
ε (X), is the set of sequences xn ∈ Xn

satisfying:
1. For all a ∈ X with p(a) > 0,∣∣∣∣ 1nN(a|xn)− p(a)

∣∣∣∣ < ε

|X |
,

2. For all a ∈ X with p(a) = 0, N(a|xn) = 0.
N(a|xn) is the number of occurrences of a in xn.
Similarly, we can define the ε-strongly typical set with

respect to p(y) and denote it by A(n)
ε (Y ).

Definition 2: The ε-strongly typical set with respect to
p(x, y), denoted by A

(n)
ε (X,Y ), is the set of sequences

(xn, yn) ∈ Xn × Yn satisfying:
1. For all (a, b) ∈ X × Y with p(a, b) > 0,∣∣∣∣ 1nN(a, b|xn, yn)− p(a, b)

∣∣∣∣ < ε

|X ||Y|
,

2. For all (a, b) ∈ X × Y with p(a, b) = 0,

N(a, b|xn, yn) = 0.

N(a, b|xn, yn) is the number of occurrences of the pair
(a, b) in the pair of sequences (xn, yn).

Definition 3: The ε-strongly conditionally typical set with
the sequence xn with respect to the conditional distribution
p(y|x), denoted by A(n)

ε (Y |xn), is the set of sequences yn ∈
Yn satisfying:

1. For all (a, b) ∈ X × Y with p(b|a) > 0,

1
n
|N(a, b|xn, yn)− p(b|a)N(a|xn)| ≤ ε(1 +

1
|Y|

), (4)

2. For all (a, b) ∈ X × Y with p(b|a) = 0,

N(a, b|xn, yn) = 0. (5)

B. AEP of Output when Rate is above Capacity

We summarize the key definition and results in [9]-[11] as
follows.

Definition 4: A codebook

Cn =
{
xn(w) ∈ Xn, w = 1, . . . , 2nR

}
is said to be ε-typical with respect to p(x) if

1) xn(w) ∈ A(n)
ε (X),∀w ∈ {1, . . . , 2nR},

2) sup
yn∈A(n)

ε (Y )

∣∣∣∣Nε(yn|Cn)2nR
− Pε(yn)

∣∣∣∣ ≤ n3R

2nR
.



In the above definition,

Pε(yn) := Pr(yn ∈ A(n)
ε (Y |X̃n)|X̃n ∈ A(n)

ε (X)),

Nε(yn|Cn) :=
2nR∑
w=1

I(yn ∈ A(n)
ε (Y |xn(w))),

where X̃n is drawn i.i.d. according to p(x), and I(A) is the
indicator function being 1 if A holds and 0 otherwise.

Proposition 1: Given that an ε-typical codebook Cn is used
and the noise is also ε-typical, i.e., Y n ∈ A

(n)
ε (Y |Xn), we

have1

p(yn|Cn)
.= 2−nH(Y ),∀yn ∈ A(n)

ε (Y ),

when R > I(X;Y ).
Proposition 2: Generate the codebook Cn at random ac-

cording to p(x) and reserve only the ε-strongly typical code-
words. Then, for any ε > 0,

Pr(Cn is ε-typical)→ 1 as n→∞.

C. Proof of Theorem 1

To prove Theorem 1, we extend the definition of typical
codebooks in [9]-[11] to the generalized typical codebooks.

Definition 5: A codebook

Cn =
{
xn(w) ∈ Xn, w = 1, . . . , 2nR

}
is said to be ε-generalized typical with respect to p(x) if

1) Cn,ε :=
{
xn(w) ∈ Cn : xn(w) ∈ A(n)

ε (X)
}

is an
ε-typical codebook,

2)
∣∣∣∣ |Cn,ε|2nR

− Pr(Xn ∈ A(n)
ε (X))

∣∣∣∣ ≤ n

2nR/2
.

where Cn,ε is a subcode of Cn containing only the ε-strongly
typical codewords and Xn is drawn i.i.d. according to p(x).

The following lemma states that a generalized typical code-
book still appears with high probability under the standard
random codebook construction schema.

Lemma 1: If the codebook Cn is i.i.d. generated according
to p(x), then for any ε > 0,

Pr(Cn is ε-generalized typical)→ 1 as n→∞.

Proof: By Proposition 2, a random codebook satisfies the
first condition in Definition 5 with high probability. Using
Chebyshev inequality, we can show that a random codebook
also satisfies the second condition with high probability and
the details are omitted in this version of the paper.

We are ready to prove Theorem 1.
Proof of Theorem 1: We prove Theorem 1 by charac-

terizing limn→∞
1
nH(Y n|Cn) in two different cases: when

R > I(X;Y ) and when R < I(X;Y ), respectively.
i) When R > I(X;Y )
Define an indicator random variable E as

E := I(Eε),

1Same as the notation in [12], we say an
.
= bn if limn→∞

1
n

log an
bn

= 0.

“
.
≥” and “

.
≤” have similar interpretations.

where Eε denotes the event Y n ∈ A(n)
ε (Y |Xn).

For any generalized typical codebook Cn and its subcode
Cn,ε, when R > I(X;Y ), we have

H(Y n|Cn)
≥H(Y n|E, Cn) (6)
=Pr(E = 1)H(Y n|E = 1, Cn) + Pr(E = 0)H(Y n|E = 0, Cn)
≥Pr(E = 1) ·H(Y n|E = 1, Cn)
=(1− o(1)) ·H(Y n|E = 1, Cn) (7)
≥(1− o(1)) ·H(Y n|Eε, Xn ∈ Cn,ε)Pr(Xn ∈ Cn,ε|Xn ∈ Cn)
=(1− o(1)) ·H(Y n|Eε, Xn ∈ Cn,ε) (8)

=(1− o(1)) ·
∑
yn

p(yn|Eε, Cn,ε) log
1

p(yn|Eε, Cn,ε)

≥(1− o(1)) ·
∑

yn∈A(n)
ε (Y )

p(yn|Eε, Cn,ε) log
1

p(yn|Eε, Cn,ε)

≥(1− o(1)) ·
∑

yn∈A(n)
ε (Y )

p(yn|Eε, Cn,ε) log 2n[H(Y )−ε∗] (9)

=n[H(Y )− ε∗] · (1− o(1)) ·
∑

yn∈A(n)
ε (Y )

p(yn|Eε, Cn,ε)

=n[H(Y )− ε∗] · (1− o(1)) · Pr(Y n ∈ A(n)
ε (Y )|Eε, Cn,ε)

=n[H(Y )− ε∗] · (1− o(1))

· Pr(Y n ∈ A(n)
ε (Y )|Eε, Cn, Xn ∈ A(n)

ε (X))

where (6) follows from the fact that conditioning reduces
entropy; (7) follows from the fact that Pr(Eε)→ 1 as n→∞,
for any ε > 0; (8) follows from the second condition in the
definition of generalized typical codebooks, which basically
states that |Cn,ε|/2nR → 1 as n→∞; (9) follows from Propo-
sition 1, which upper bounds p(yn|Eε, Cn,ε) by 2−n[H(Y )−ε∗]

for any yn ∈ A(n)
ε (Y ), where ε∗ → 0 as n→∞.

Therefore, when R > I(X;Y ), we have

H(Y n|Cn)

=
∑
Cn

p(Cn) ·H(Y n|Cn = Cn)

≥
∑

Cn is generalized typical

p(Cn) ·H(Y n|Cn = Cn)

≥n[H(Y )− ε∗] · (1− o(1))

·
∑
Cn is GT

p(Cn) · Pr(Y n ∈ A(n)
ε (Y )|Eε, Cn, Xn ∈ A(n)

ε (X))

≥n[H(Y )− ε∗] · (1− o(1))

·
∑
Cn is GT

p(Cn, Eε, Xn ∈ A(n)
ε (X))

· Pr(Y n ∈ A(n)
ε (Y )|Eε, Cn, Xn ∈ A(n)

ε (X))

≥n[H(Y )− ε∗] · (1− o(1)) · Pr(Eε, Xn ∈ A(n)
ε (X))

·
∑
Cn is GT

p(Cn|Eε, Xn ∈ A(n)
ε (X))

· Pr(Y n ∈ A(n)
ε (Y )|Eε, Cn, Xn ∈ A(n)

ε (X))
=n[H(Y )− ε∗] · (1− o(1))



· Pr(Y n ∈ A(n)
ε (Y ),Cn is GT|Eε, Xn ∈ A(n)

ε (X))
=n[H(Y )− ε∗] · (1− o(1)) · (1− o(1)) (10)
=n[H(Y )− ε∗] · (1− o(1)),

where ‘GT’ is short for ‘generalized typical’ and (10) follows
from Lemma 1, and

lim
n→∞

1
n
H(Y n|Cn)

≥ lim
n→∞

1
n

(n[H(Y )− ε∗] · (1− o(1)))

= lim
n→∞

[H(Y )− ε∗] · (1− o(1))

=H(Y ). (11)

Furthermore, it is obvious that

lim
n→∞

1
n
H(Y n|Cn) ≤ lim

n→∞

1
n
H(Y n) = H(Y ). (12)

Combining (11) and (12), we have that when R > I(X;Y ),

lim
n→∞

1
n
H(Y n|Cn) = H(Y ).

ii) When R < I(X;Y )
To find limn→∞

1
nH(Y n|Cn) when R < I(X;Y ), we

first introduce two lemmas, whose proofs are omitted in this
version of the paper.

Lemma 2: When R < I(X;Y ),
1
n
H(Xn|Cn, Y

n)→ 0, as n→∞.

Lemma 3:

lim
n→∞

1
n
H(Xn|Cn) = R.

Now, expanding H(Xn, Y n|Cn) in two different ways, we
have

H(Xn, Y n|Cn) =H(Xn|Cn) +H(Y n|Xn,Cn)
=H(Y n|Cn) +H(Xn|Cn, Y

n),

and thus

H(Y n|Cn) = H(Xn|Cn) +H(Y n|Xn,Cn)−H(Xn|Cn, Y
n).

Therefore, when R < I(X;Y ),

lim
n→∞

1
n
H(Y n|Cn) = lim

n→∞

1
n
H(Xn|Cn) + lim

n→∞

1
n
H(Y n|Xn,Cn)

− lim
n→∞

1
n
H(Xn|Cn, Y

n)

=R+ lim
n→∞

1
n
H(Y n|Xn,Cn) (13)

=R+ lim
n→∞

1
n
H(Y n|Xn) (14)

=R+ lim
n→∞

1
n

[H(Xn, Y n)−H(Xn)]

=R+H(X,Y )−H(X)
=R+H(Y |X),

where (13) follows from Lemma 2 and 3, (14) follows from
the fact that Cn → Xn → Y n forms a Markov Chain. This
completes the proof of Theorem 1.

IV. RATE NEEDED TO COMPRESS RELAY’S OBSERVATION

To investigate the optimal compress-and-forward strategy,
in this section, we study the rate needed for the relay to
losslessly compress its observation. In the classical compress-
and-forward strategy [3] and some of its variants [4]-[7],
the compression scheme at the relay was only based on the
distribution used for generating the codebook at the source,
ignoring the specific source’s codebook generated. However,
since both the relay and destination in the relay channel
have the knowledge of the source’s codebook, it is natural
to ask whether it is beneficial for the relay to compress its
observation with source’s codebook information used. This
question motivates us to compare the rates needed to compress
the relay’s observation in two different scenarios: when the
relay uses the knowledge of the source’s codebook and when
the relay simply ignores this knowledge.

First, we consider the two compression problems shown
in Fig. 2, where the relay’s observation Y n is generated
from Xn through the channel (X , p(y|x),Y) and Cn is the
source’s codebook information available to both the relay
and destination. We show that to perfectly recover Y n, the
minimum required rates in both scenarios, denoted by R1 and
R2 respectively, are the same when the rate R of Cn is greater
than I(X;Y ), i.e., when the relay cannot decode the source’s
message.

Fig. 2. Two scenarios where the relay compresses its observation.

Then, we further consider the problems shown in Figure 3,
where the destination has access to the side information Zn,
and (Y n, Zn) are generated from Xn through the channel
(X , p(y, z|x),Y × Z). We show that the minimum required
rates to perfectly recover Y n in both scenarios, denoted by
R′1 and R′2 respectively, are still the same, when the rate R
of Cn satisfies

I(X;Z) < R < I(X;Y,Z). (15)

Note that (15) is a general assumption such that the discussion
on the compress-and-forward scheme is meaningful. So our
consideration under (15) will not lose any generality.

Formally, we have the following two theorems:



Fig. 3. Two scenarios where the relay compresses its observation when there
is the side information Zn

Theorem 2: For the compression problems depicted in Fig.
2, if the rate R of Cn is larger than I(X;Y ), then to perfectly
recover Y n at the destination, the minimum required rates in
both scenarios, denoted by R1 and R2 respectively, are the
same and equal to H(Y ).

Theorem 3: For the compression problems depicted in Fig.
3, if the rate R of Cn satisfies I(X;Z) < R < I(X;Y,Z),
then to perfectly recover Y n at the destination, the minimum
required rates in both scenarios, denoted by R′1 and R′2 respec-
tively, are the same and equal to R− I(X;Z) +H(Y |X,Z).

Remark 1: These two theorems imply that, in the lossless
case, we cannot compress the relay’s observation more effi-
ciently even if the source’s codebook information is used, no
matter whether there exsits side information at the destination
or not.

To prove Theorems 2 and 3, we need the following lemma.
Lemma 4: For the compression problem in Figure 2-(b), we

can encode Y n at rate R2 and recover it with the probability
of error P (n)

e → 0 only if

R2 ≥ lim
n→∞

1
n
H(Y n|Cn). (16)

Similarly, for the compression problem in Figure 3-(b), we
can encode Y n at rate R′2 and recover it with the probability
of error P (n)

e → 0 only if

R′2 ≥ lim
n→∞

1
n
H(Y n|Cn, Z

n). (17)

Proof of Lemma 4: The source code for Figure 2-
(b) consists of a encoder mapping f(Y n,Cn) and a de-
coder mapping g(f(Y n,Cn),Cn). Let I = f(Y n,Cn), then
P

(n)
e = Pr(g(I,Cn) 6= Y n). By Fano’s inequality, for any

source code with P (n)
e → 0, we have

H(Y n|I,Cn) ≤ P (n)
e log |Yn|+1 = P (n)

e n log |Y|+1 = nεn,
(18)

where εn → 0 as n→∞.
Therefore, for any source code with rate R2 and P (n)

e → 0,
we have the following chain of inequalities

nR2 ≥ H(I) (19)

≥ H(I|Cn)
= H(Y n, I|Cn)−H(Y n|I,Cn)
= H(Y n|Cn) +H(I|Y n,Cn)−H(Y n|I,Cn)
= H(Y n|Cn)−H(Y n|I,Cn) (20)

≥ H(Y n|Cn)− nεn (21)

where (19) follows from the fact that I ∈ {1, 2, . . . , 2nR2},
(20) follows from the fact that I is a function of Y n and Cn,
and (21) follows from (18). Dividing the inequality nR2 ≥
H(Y n|Cn) − nεn by n and taking the limit as n → ∞, we
establish (16).

Similarly, the source code for Figure 3-(b) consists of a
encoder mapping f ′(Y n,Cn) := I ′ and a decoder mapping
g′(f ′(Y n,Cn),Cn, Z

n), and P
(n)
e = Pr(g′(I ′,Cn, Z

n) 6=
Y n). By Fano’s inequality, for any source code with P (n)

e → 0,
we have

H(Y n|I ′,Cn, Z
n) ≤ P (n)

e log |Yn|+1 = P (n)
e n log |Y|+1 = nε′n,

(22)
where ε′n → 0 as n→∞.

Therefore, for any source code with rate R′2 and P (n)
e → 0,

we have the following chain of inequalities

nR′2 ≥ H(I ′)

≥ H(I ′|Cn, Z
n)

= H(Y n|Cn, Z
n) +H(I ′|Y n,Cn, Z

n)−H(Y n|I ′,Cn, Z
n)

= H(Y n|Cn, Z
n)−H(Y n|I ′,Cn, Z

n)

≥ H(Y n|Cn, Z
n)− nε′n

Again, dividing the inequality nR′2 ≥ H(Y n|Cn, Z
n)−nε′n

by n and taking the limit as n→∞, we establish (17).
Proof of Theorem 2: It is obvious that the minimum

required rate R1 in Fig. 2-(a) and the minimum required
rate R2 in Fig. 2-(b) satisfy that R1 ≥ R2. By treating
Y n as a random outcome generated according to p(y) =∑
x p(x)p(y|x) in Fig. 2-(a), we know that the rate H(Y )

is achievable and hence R1 ≤ H(Y ). Besides, by Lemma
4, R2 ≥ limn→∞

1
nH(Y n|Cn). When the rate R of the

codebook Cn is larger than I(X;Y ), we have

H(Y ) ≥ R1 ≥ R2 ≥ lim
n→∞

1
n
H(Y n|Cn) = H(Y ),

and thus R1 = R2 = H(Y ), which proves the theorem.
Proof of Theorem 3:

It has been shown in [4]-[7] that if the destination exploits
the structure of the codebook while the relay ignores this
structure, then the compression rate R−I(X;Z)+H(Y |X,Z)
is achievable, where R is the rate of the source’s codebook.
Thus, we have R′1 ≤ R − I(X;Z) +H(Y |X,Z), where R′1
is the minimum required rate in Fig. 3-(a). Then, noting that
R′1 ≥ R′2, to show R′1 = R′2, it suffices to show that R′2 ≥
R−I(X;Z)+H(Y |X,Z), when I(X;Z) < R < I(X;Y,Z).

By Lemma 4, the minimum required rate R′2 in Fig. 3-(b)
should satisfy

R′2 ≥ lim
n→∞

1
n
H(Y n|Cn, Z

n).



Applying the result in Theorem 1 for the channel
(X , p(y|x),Y) to the channel (X , p(y, z|x),Y × Z), we
have limn→∞

1
nH(Y n, Zn|Cn) = R + H(Y,Z|X) when

R < I(X;Y,Z). Again, applying Theorem 1 to the channel
(X , p(z|x),Z), we have limn→∞

1
nH(Zn|Cn) = H(Z) when

R > I(X;Z). Therefore, if I(X;Z) < R < I(X;Y,Z), we
have

lim
n→∞

1
n
H(Y n|Cn, Z

n) = lim
n→∞

1
n
H(Y n, Zn|Cn)

− lim
n→∞

1
n
H(Zn|Cn)

=R+H(Y,Z|X)−H(Z)
=R− I(X;Z) +H(Y |X,Z),

which concludes the proof of Theorem 3.
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