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How much Uncertainty can be Dealt with by
Feedback?

Liang-Liang Xie and Lei GupFellow, IEEE

Abstract—Feedback is used primarily for reducing the effects Robust control and its related area of robustness analysis
of the plant uncertainty on the performance of control systems, ysually require that the true plant lies in a (small) ball centered
and as such understanding the following questions is of funda- 4 5 known nominal model and often assume that the controllers

mental importance: How much uncertainty can be dealt with . L
by feedback? What are the limitations of feedback? How does are either selected from certain given classes of systems or

the feedback performance depend quantitatively on the system Simply fixed (e.g., [4]). Within such a framework, substantial
uncertainty? How can the capability of feedback be enhanced progress has been achieved in the understanding of the effect

if a priori information about the system structure is available? of uncertainties, feedback robustness, optimal robustness radii,
As a starting point toward answering these questions, a typical 4,4 ontimal control, via the development of various approaches

class of first-order discrete-time dynamical control systems with N R, 1 .
both unknown nonlinear structure and unknown disturbances and theories includingZ> and (" theory, 1. synthesis, small

is selected for our investigation, and some concrete answers aregain theorems, and gap metrics (see, e.g., [5]-[17]). The need
obtained in this paper. In particular, we find that in the space of a nominal model with reliable model error bounds in robust
of unknown nonlinear functions, the generalized Lipschitz norm  control methods motivated the extensive research activities in
is a suitable measure for characterizing the size of the structure an area called control-oriented worst case identification in the
uncertainty, and that the maximum uncertainty that can be dealt 1990 181-1201). During th iod. sianif t
with by the feedback mechanism is described by a ball with radius S (e'g" [ _]_[ D- uring thé same period, significan
3/2 + /2 in this normed function space. progress in linking the th_eones of. identification, feedback,
information, and complexity following the framework and
philosophy developed by Zames (cf. [3], [5], [21], [22]) has
also been made (see, e.g., [23]-[26]).

Adaptive control is a nonlinear feedback technique which
. INTRODUCTION performs identification and control simultaneously in the same

EEDBACK is a basic concept in automatic control. Its prifeedback loop, and which is known to be a powerful tool in
F mary objective is to reduce the effects of the plant uncef€aling with systems .Wlth Iargg uncertainties. Much progress
tainty on the desired control performance (e.g., stability, opfiaS been made in this area since the end of 1970s (cf. e.g.,
mality of tracking, etc.). The uncertainty of a plant usually stent 71-[30]). For linear finite-dimensional systems with uncer-
from two sources: internal (structure) uncertainty and exterr{@{n parameters, a well-developed theory of adaptive control ex-
(disturbance) uncertainty. In general, the former is harder ifJS today, both for stochastic systems (cf. [28], [31], [32]) and
cope with than the latter. The understanding of the relationsHff deterministic systems with small unmodeled dynamics (cf.
between parameter/structure uncertainty and feedback medi&l)- This theory can be generalized to nonlinear systems with
nism is a longstanding fundamental issue in automatic conttélear unknown parameters and with linearly growing nonlin-

(cf. e.g., [1]-[3]). Specific questions pointing to this issue inearities (e.g., [33]). However, fun_damental diff_erences_emerge
clude at least the following. between adaptive control of cont_muou.s.- and dlscrete-nmg sys-
tems when one allows the nonlinearities to have a nonlinear
growth rate: the design of (globally) stable adaptive control is
pqssible only for continuous-time systems (cf. [30]), and not for
(ﬁscrete-time systems in general, as demonstrated rigorously in
the recent works [34] and [35]. Analogously, for sampled-data
information about the plant structure is available? conttr)ol sys:]ems \tl\rqﬂ: tl;]ncc(jarta_lm n?nfzg_?rr_]etnc nonlhgegrlyefs ' ':j
These are conundrums, on which only a few existing areasfba}sk ieen S (i)t\)/;mif t? emeﬁlr?n 0 : a:j il 'Z'rr;g ﬁar::p € h- afasze )
control theory can shed some light. Robust control and adapt c Is—|p3vssv re i the samp”ng pe r? d?sl ? ?tﬁuﬁ (c .r[t ir]{
control are two such areas where structure uncertainty of - ﬂ? N Ieb I etsl?'l'p gpe ? dsd atl gfe dk? Ege a i
plant is the main concern in the controller design. value, then globally stabillzing sampled-data feedback does no
exist in general even if the nonlinearity has a linear growth rate
(see [38]). The fact that sampling usually destroys many helpful
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» How much uncertainty can be dealt with by feedback?

» What are the limitations of feedback?

* How does the feedback performance depend gquanti
tively on the plant uncertainty?

» How can the capability of feedback be enhanceddfiori
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Fig. 1. Feedback control of uncertain systems. ] ] ) ] )
Fig. 2. The maximum uncertainty that can be dealt with by feedback is a ball

in (F. 11 1D-
Up to now, almost all of the existing results in adaptive control

are not ((:joncerned W'th the gsslue of op:umalllrobulstness and BEbrought to our attention. However, the statistical nonpara-
restricted to parametric models, mostly to linearly par""me"ﬁ"ffetric estimation-based control strategy has been shown to be

ized Ones. Hence the L_J_nderstapd@ng_of the fundamental ql_JeSUngul only for a class of open-loop stable systems by now (see
concerning the capability and limitations of (generally defmei)B] and [44])

feedback is far from being complete, although it is hard to di

tinauish adantive feedback f di i feedback i All of the above facts and analyzes show that, to study the
Inguish adaptive feedback Irom ordinary honlinear 1eedback i oiions raised at the outset, we have to place ourselves in a

ge;eral (seg, e.g(.j, [|27’ . 1f])' | il situati Tframework that is somewhat beyond those of the classical ro-
arametric models are of course only a special situation. Gﬁst control and adaptive control. First, the system structure un-

more challenging problem is to control nonparametric uncert""d@rtainty may be nonlinear and nonparametric, and a useful or

systems, which will be discussed in a litle more detail be_l(?\'?’eliable ball containing the true plant and centered at a known
Let f(-) be an unknown nonparametric function characterizi

) . naracterizing, inal model may not be availabdepriori. Second, we need
the nonlinear dynamics of a control system, which lies in t

L 1 . ) '}8 study the full capability of the feedback mechanism which
space of al!3 — R mappings, denot(_ed by (see Fig. 1). includes all (nonlinear and time-varying) causal mappings, and
The traditional method is to approximate the unkno®)  4re not only restricted to a fixed feedback law or a set of specific

b)/ certain parametric mod_els. The existing approximation tec@:’edba\ck laws. We shall also work with discrete-time control
niques (e.g., Volterra series, fuzzy and neural nets, wavelgif, ge|s which can reflect the limitations of actuator and sensor
etc.) basically state that farin a compact setf(-) can be uni- i, 5 certain sense when implemented with digital computers. It
formly approximated by parametric functions of the form 5 ¢airy well known that in the present case, the high gain and
nonlinear damping approaches which are very powerful in the

continuous-time case are no longer effective now.
A To initiate a quantitative study of the relationships between
9(6,2) = > aio (b z) uncertainty and feedback in the framework delineated as above,

i=1 we shall in this paper select a special class of first-order dis-

whereo(-) is a known “basis” function, and;’s andb;’s are crete-ti.me dynamical cqntrol sys_,tems with matching conditions

' g v for our investigation. By introducing a suitable nojim|| (called

unknown parameters or weights. the generalized Lipschitz norm) in the space of all nonlinear

Thus, one may conceive that the above explicit paramet?ﬁﬁctions, we are able to give a complete characterization of the

modelg(e,x) can e useq in adapiive cqntrol instegd of USin(‘:;lapability and limitations of the feedback mechanism for con-
the original nonparametric mod¢\(-). This natural idea has

. . trolling this class of uncertain nonlinear systems. To be precise,
some appealing features and has attracted considerable atten 9ill show that:

from researchers in recent years (e.g., [42]), but it has also sev- i ] ]

eral fundamental limitations/difficulties. First, in orderto ensure * the maximum  uncertainty that can be dealt with by
thatz (which usually represents the system state or output sig- €edback is a ball with radiué = 3/2 + V2 in the
nals) lies in a compact set for reliable approximation, stability of ~normed function spacg, || - [|), centered at the zeré

the system must be established first, and the parametric model (€€ Fig. 2); o _ _
provides little (if any) help in this regard. Second, searching for * if @ certain “symmetric” information about the plant is
the optimal parameters’s andb;’s usually involves in global available, then the above radius can be raisetl t04;
nonlinear optimization, of which a general efficient way is still * for €ither bounded noises or white noises, the feedback
lacking by now; moreover, the on-line combination of the es-  Performance is bounded by a quantity reflecting the dis-
timation and control (adaptive control) will further complicate ~ continuity of the plant structure.

the problem. Third, there always exists an approximation errorThe remainder of this paper is organized as follows. In Sec-
in the model and hence in the control performance. Thus.tibn 1l we will present the main theorems of the paper. Some
may be an advantage to consider the nonparametric nfgdel auxiliary lemmas are presented in Section Ill, which will be used
directly, and the nonparametric estimation methods that hamneSection IV in the proofs of the main theorems. Finally, some
been well-developed in mathematical statistics would naturabpncluding remarks will be given in Section V.
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II. MAIN RESULTS ThenF(L) is a ball in the spacéF, || - ||) centered a# with
erradiusL.

To facilitate a theoretical study, we would like in this pap o .
rﬁlow, suppose the priori information we have about the

to approach our problem as naked as possible, while keepi

the basic nature of the problem formulation as outlined in R ;er(rjl (1) is that we kfr;ﬁ\[ﬁ('.) < f]:(L)' :’hetancan ﬁe rel— d
introduction. Thus, let us consider the following first-order gigdarded as a measure ot the size ot uncertainty ot our knowiedge

. . . . aboutf(-).
crete-time nonlinear dynamical control system: i .
y y Theorem 2.1:The necessary and sufficient condition for the

Vi1 = Fue) + 1 4+ wips, t>0, yo e Rt (1) existence of a stabilizing feedback control law for (1) with any
f € F(L),is L < 3/2+ +/2. To be precise, we have the
where{y; } and{«,} are the system output and input signals, reellowing.
spectively. The nonlinear functiof(-): R* — R* iscompletely i) If L < 3/2 + /2, then there exists a feedback control
unknown{w, } is a sequence of “unknown but bounded noises” law R, (-), > 0 in (3) such that for any € F(L), the
with unknown boundv > 0, i.e., corresponding closed-loop control system (1) with (3) is
globally stable in the sense that
|wi| < w, vt>0. (2
1

To investigate the capability and limitations of feedback, we ?1211(’)){|yt| +lwl} <o,  Vyo €R
need to give a precise definition of it first.

Definition 2.1: A sequencdu, } is called a feedback control i) If L > 3/2 + v/2, then for any feedback control law
law if at each step > 0, u, is a causal function of the observa- he(-),t > 0in (3) and anyy, € R!, there always exists
tions {#:}, i.e., somef € F(L) such that the corresponding closed-loop

system (1) with (3) is unstable, i.e.,
Uy = ht(yOa"'ayt) (3)

whereh,(-): R**1 — R! can be an arbitrary (nonlinear and
time-varying) mapping at each stéep

With the feedback mechanism defined as above, the main o
jective of this paper is to answer how much uncertaintyin
can be dealt with by the feedback contrglin (1). In order to

do this, we need to find a suitable measure of uncertainty fir

Such a measure should be able to enable us to capture preci %pe\l;;xv) which stagilizes (1]2 forba}rrgﬁ € ]';(L)- But if LhZ
the capability and limitation of feedback in dealing with struc T 2, we cannotbe sure of sta ! izing (1) no matter how we
ture uncertainty. design the feedback control laky(-) in (3), because the plant

Let F be the space of alR! — R! mappings, i.e., u.ncertainty. is top large in this case. Whille itis n_a.tural to con-
A {f: R' — R'}. Introduce a functiona - | on , which sider the Lipschitz norm apd the Llpsch|tz condition (see Re—
is defined as ' mark 2.3 below) from previous studies [34], [35], [43], [44], it
appears to be far from obvious why there exists a finite critical
value and why this value is precisely2++/2. One explanation
comes from our proof given in the next two sections, where it
can be seen that the stabilizability of (1) hinges on the asymp-

where the limit exists by the monotonicity in totic behavior of the solutions of the following second-order
It is easy to see that the above functional is a quasi-norm pear difference equation:

F, which may be called the generalized Lipschitz norm since it

sup |y | = oo.
>0

Remark 2.1: From Theorem 2.1, we know thét = 3/2 +

2 is a critical value of the measure of uncertainty for stabi-
lizing (1) with f € F(L). If L < 3/2++/2, then we can
%@sign a concrete feedback control law (see Theorems 2.2 and

Hf” é lim sup M

; VieF (4)
a=oo (p yepe |0 — Y|+

is closely related to the generalized Lipschitz condition as will Uyt = <L + 1) an — La,_, n>1 @)
be shown shortly. It is a true norm on the quotient spagé 2 ’ -
defined by . . . . . .
To be specific, (1) is stabilizable if and only if all the solutions
A . of (8) either converge to zero or oscillate about zero, which
FIO=AUET ey ®) is precisely equivalent to the requiremdnt< 3/2 + /2 by
where[f] signifies the equivalent class [45, Th. 2.36]. Similar connections have been found previously
in [34] for the critical stabilizability of an uncertain parametric
(] 2 {g€ F: gl = I} (6) model with polynomial growth nonlinearities.
Remark 2.2:1t can be argued that (1) is a basic model (sim-
andg 2 {f € F:||f|| = 0} is the zero inF/é. plest but nontrivial) for the study of our problem. The matching

For convenience of presentation, we shall simply speak @fndition enables us to focus our attention on uncertainty and
(F,|l-1) as a normed linear space, and regaas its zero in makes it possible for us to explore the full capability of feed-
the sequel. back in dealing with uncertainty. It also prevents the capability

For anyL > 0 define of feedback from being weakened at the outset by a weak con-

trol structure. While it is still necessary to investigate more gen-
F(L) £ {feF|fl|£L} (7) eral nonlinear models in future works, it may be remarked that
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the limitation of feedback found in Theorem 2.1 may also b&s can be seen intuitively from (18). It is a natural one when
regarded as a limitation of feedback in general model classges only know the generalized Lipschitz continuity £f) and

which include the class (1) as a special case. the boundedness of the noiss, }. Better estimators may be

Remark 2.3: The norm defined by (4) is closely related to theonstructed if more information aboyi-) or {w } is available,
following generalized Lipschitz condition: as will be shown later in (31) or (26).

Denote
Cl) |f(x)= f)| < Llz—yl+e  V(zy) €R? A - ) _
2 _ 1 >

whereL > 0,c > 0, are constants. “; N {it(yt) + 5(by + 0y), t>1 (19)

Itis called generalized Lipschitz condition because itincludes w = —fily) v yip, t2 L (20)

the standard Lipschitz condition as a special ¢ase 0). Note . , A
thatc is a quantity reflecting the possible discontinuity of thd "en the feedback control law is definedwas= 0

function f(-). Denote N (u, if —y | >
) A{t lye — i | > € £>1 1)

/ e = " R .
F(L,c) 2 {f € F: f satisfies condition C})  (9) uts i Jye — i < e
. . ) , wheree > 0 can be chosen arbitrarily.
Obviously, F(L, ¢) is nondecreasing with respect Inandec, Theorem 2.2:For any f € F(L) with L < 3/2 + v/2
€., the feedback control (15)—(21) globally stabilizes the corre-

F(Ly,¢1) € F(La, es) for Ly < La,ci < co.  (10) sponding system (1) with the following tracking performance:
Also, for the ballF(L) defined by (7), it is easy to prove (see thlgo e — il < e+ 2w

Appendix A) that A
wherecis defined in (13) withy > 0 chosen to satisf{,; = L+

F(L,c¢) C F(L), Ve>0 (11) ~ < 3/24 /2, andw is defined in (2).

Remark 2.4:In the feedback law (21); is designed mainly
for the purpose of stabilizing the system, arfdfor making the
F(L) © F(L+,0). 12 outpu_t{ytﬂ} track{y;}l} when the estimation (prediction) of

2 U L+ (12) f () is good enough in the sense that— v;,| < e. However,
when |y, — v;,| > ¢, we are not sure of the goodness of the
Hence for anyf € F(L) and anyy > 0, there exists some NN estimator (17) forf (. ), and the stability issue becomes the
¢ > 0 such that main concern. In this case, one will at least expect in the next

step to havey, 1 not far from the past outputyo, - - -, }, as
feF(L+0). (13)  the accuracy of the NN estimate ffy; ;) depends on the dis-

Next, we proceed to construct a concrete feedback law to SGRCE[Ut-+1 — Ui, |- So conservatively, the bestway is trying to
bilize (1) with f € F(L) whenL < 3/2 + v/2, and at the same placey:,1 at the center of the past outputs as in (19). In (21),

time to make the system outpui, } track a bounded sequence’ is a design parameter, which has no effect on the asymptotic
of reference signal§y; } with bounds tracking performance bound as can be seen from Theorem 2.2.
t

This attributes to the fact that defined by (21) will be identical

and that for anyy > 0

c€[0,00)

lyr] < 5 < o0, t>0. (14) tow} of (20) after some finite time, as long as the system sig-
nals are bounded (see Lemma 3.4 in the next section). However,
Let us denote largere may cause larger variations in the transient response;
B, A ax » while smallere may make th.e transient response .time longer.
0<i<t Remark 2.5: The NN estimator-based stabilizing feedback
b, A in v £>0 (15) (.15)—(21.) appears to require infinite memory for implemen.ta—
0<i<t tion, which is not a desirable property from a practical point
and of view. However, from a theoretical point of view, our results
i 2 arg min |y — ;| show that at least the observed data carries enough informa-
0<i<t—1 tion about the uncertain functiofi(-) to be able to stabilize
e, |lwm-—u,|= 0<1}1<i£1 ) lye — wil, t>1. (16) the system. Moreover, thanks to the robustness of the controller

(15)—(21) with respect to bounded noisgs; } (and hence to
At any time instant > 1, the estimate of (v, ) is defined as bounded estimation errors), it is possible to construct an easily
implementable controller to approximate (15)—(21) by making
~ A . :

Je(ye) = viy 41 — wi, (17) atradeoff between computational complexity and performance
accuracy. One way of doing this is to divide the output space
into sufficiently small intervals (depending on the performance

ft(yt) = f (i) + wi 41, £> 1. (18) re_quirements), anq on each of Which_keep only one_datqm and

discard others. This would only result in bounded estimation er-

We remark that the estimator (16), (17) may be refered to ems, but at the same time significantly reduces the demand on
the nearest neighbor (NN) estimator fir) (cf. e.g., [46], [47]), memory for implementation.

which can be rewritten as
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As one would expect, if we further assume that the distufherec is defined in (13) with any > 0 satisfyingL; 24
bance{w:} is a white noise sequence, then the tracking errgr< 3/2 + /2, ande is defined in (21).
bound can be improved. To this end, we next assume thaRemark 2.6: From an application point of view, it is also im-
{w:,t > 0} is a martingale difference sequence, i.e., portant to be able to verify or falsify the conditighe F(L)
with L < 3/2 + /2. We note that for this task it is not nec-
Elwiy1 | B] =0, t20 essary to require the full knowledge of the functional repre-
A i sentation, and that most of the practical systems are not re-
where B, = o{wo,---,w.} is the o-algebra generated Dy 5, spjack hoxes’—some information, more or less, should be

{wo, -, w,}. In order to make use of the property of marting, qijapiea priori. An extreme yet common example is the class

gales, we next change the estimate defined by (17) into SOg}€,,nded functions, which we know will satisfy the above
averaging _form. ) i condition without any knowledge of the functional representa-

We first introduce some notations. Define tion (the Lipschitz norms are all zero for this class of functions).
(23) Although the stability issue is trivial in this case, the feedback

A . . . A .
6 =le U+ Dl j € Z = {allintegerg laws of Theorems 2.2 and 3.3 are still valuable as they lead to

wheree is the same as in (21). Then nontrivial closed-loop tracking performance bounds.
As one would also expect, if we have additional restriction

U 8; = (—00, +00) (or a priori information) on f(-), then the critical value ol

i€z would increase. As an example illustrating this, we suppose that
and the value off(—x) would be known if we know the value of

5 ﬂ 8; = 0 (null set) fori # j. f(x) for anyx € R!. Typical examples include functions like
) f(z) = f(—=z),andf(x) = —f(—=), etc. For simplicity, we

For anyy € R, define the interval-valued functioh(-) as only consider the casgxz) = f(—=) in the sequel. Other cases

can be treated analogously. In this case, the system uncertainty
INOED R U 8; U Si41  ifyes;, jez.  (24) setF(L)will shrink to

Intuitively speaking A(y) covers the ¢-neighborhood” ofy. A L
If for somet > 1,|y: — vi,| < ¢ then by the definitions G(L) ={f e F(L): f(2) = f(—w), Ve € R°}. (29)

above, we have - .
Similar to Theorem 2.1, we have the following result.

=1 Theorem 2.4:The necessary and sufficient condition for the
Z Ingyy(y:) >0 (25)  existence of a stabilizing feedback control law for (1) with arbi-
i=0 trary f € G(L), is L < 4. To be precise, we have the following.
where, for anyd ¢ R, 1,(-) is the indicator function i) If L < 4, then there exists a feedback control law
hi(-),t > 0in (3) such that for anyf € G(L), the
Lu(z) 2 { L ifexecA corresponding closed-loop control system (1) with (3) is
0, otherwise. globally stable in the sense that
Hence wherjy: — w;,| < ¢, we may define the estimate of
f(ye) as ?ggﬂyﬂ + |ue|} < o0, Vyo € R
t—1 B
Z (Yir1 — wi)lagy,) (i) ii) If L > 4,then for any feedback control laky(-),¢ > 0in
T.(u) A =0 (26) (3) and anyy, € R!, there always exists sonfec G(L)
‘ =1 such that the corresponding closed-loop system (1) with
> Ingu) (i) (3) is unstable, i.e.,
=0

and correspondingly change (20) into sup |y:| = oc.
t>0

w = =) v, 2L (27) 5 y
Theorem 2.4 shows that the critical value of the capability of
We have the following theorem. feedback for stabilizing unknown systems lying in theGgt )
Theorem 2.3:Let {w;} be a bounded martingale differencds L = 4, higher thanL = 3/2 + v/2 ~ 2.914 for F(L),
sequence. Then, for any € F(L) with L < 3/2 + /2, the thanks to the additional condition (arpriori information) on
corresponding closed-loop system defined by (1), (15)—(19he unknown functiory(-).
(26)—(27), and (21) has the following tracking performance Similar to the previous case, we can also design a concrete
bound: feedback law to stabilize (1) withf € G(L),L < 4. Again,
T our objective is to make the system outpdiis} track a de-
m 1 Z (s — oy —w)? < 2Lie+ ) (28) s:ired bounded sequence of reference sigfigil$ which satis-
] fies (14).



2208 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000

For (1) with f € G(L), because of the “symmetry” of theHence, for any > 0 there exists a constady < (0,1/2) small
information provided by (29), we replagedefined in (16) by enough such that whenevére [0, do]

A ) b — b —db
Jt = argmmHytl—lyil ) t>1 (30) min 27>§+\/§—6.
0<i<t—1 1<b<oo b—1 2
We still adopt the estimate of(y, ) defined by (17), i.e., Consequently, by (36)
. L>32+V2-c
Filun) = wpeer — g, (31) ?
- , From this we will get a contradiction if we taketo be any
but herej; is defined by (30). (fixed) value in the interval0,3/2 + v/2 — L). Hence, (35)
If we define the control law ago = 0 is not true and the proof of the lemma is completed. O
a Lemma3.2:LetL > 3/2+ V2 be a constant. If a sequence
w=—foly) +yip,  t21 (32) {a,,n > 0} satisfies
then it can be shown that this feedback law is globally stabilizing ant1 > L{an, — an_1) + La,, n>1 37)
and the tracking error bound is the same as that in Theorem 2.2 ) ) ) )
[see the proof of Theorem 2.4 i) in Section IV]. \tNIt'h fqo_t: Q, a; > 1, then{a, } is strictly increasing and tends
o infinity, i.e.,

I1l. SOME AUXILIARY LEMMAS Gng1 — an > 0, Vn>1 and lim a, =occ. (38)

In this section, we present some auxiliary lemmas which will
be needed in the proofs of the main theorems stated in the [¥&treover
section.

Lemma 3.1:Let L € (0,3/2 + v/2) andd > 0 be two
constants. If a sequende,,,n > 0} satisfies

L{a, — an-1) — %an >0, Vn > 1. (39)

Proof: SinceA 2 (L+(1/2))2—4L > 0for L > 3/2+

a1 < L{an — ap_1) + %an 4 n>1 (33) V2, the following quadratic equation:

. ) xQ—(L—I—%)a:—i—L:O
with ag = 0 anda; = 1, then there exists som& > 0, such

that if d € [0, do], there exists som& > 1 such that has two real roots, which are denoted Joyyand \». Then we
have
Gn 2 Gn—1, 1<n <N and ang1 < an. (34)
MAXo=L+3 (40)
Proof: We adopt the contradiction argument and follow A Ao = L. (41)

some proof ideas in oscillation theory (cf. [45]). Suppose that
From (40) and (41), itis clear thag > 0 andA; > 0. Now
Un > Gp_1, Vn 2> 1. (35) we prove that\; > 1 andX, > 1. Otherwise, if, for example,
N A1 < 1,thenA; > L by (41). Hence by (40)A; < 1/2.
Thenitis obviousthat, > 1,Vn > landz, = a,/a,—1 > 1. Consequently, by (40) again add> 3/2 + /2, we have
Hence, dividing both sides of (33) ly,, we have
A<t <i(L+i)=3L+i<L

1 1
ZTpt1 S L <1 - x—> t5+ d. which contradicts to (41). Hence > 1 and); > 1.
" By (40) and (41) we rewrite (37) as
Now, if we denoté 2 lim,, 00 T > 1, then we have (Gng1 — Man) > Aa(an — Aian_1) n> 1.
b< L <1 _ %) + % +d Iterating this inequality gives
(an+1 — Alan) 2 )\g(al — )\1@0) 2 )\TQL, n 2 1.
From this, itis easy to see thiat# 1 provided that! € [0,1/2).
Futhermore, the above inequality can be rewritten as So by, > 1, we havevn > 1
B2 i ab Unt1 — A1an, >0 and (a, — Aja,—1) — oo. (42)

- bl Hence by); > 1, (38) holds.

Now, by the elementary method in calculus, it can be shownNow by the symmetry ok; andX; in (40), we may assume
that A1 > 1/2(L 4 (1/2)). Then by (42) and the fact that
¥—-3b 3 1 1

L 3
i - = — | L+ = _— forL > — 2
1231<noo - 2—1—\/5. 2( +2>>L—1/2’ _2+\/_
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we have Letag 20, anda; 2 (1/h,,) S0_, huyj > 1, thena,y, —
1 1 = (1/hn, )hn,,, and hence by (50)
L(a, — a, 1)—§a :<L—§>an—Lan1 . g
1 I aj_H—ajSL(aj—aj_l)—Qaj—i—h—, 7 =>1.
= (1-3) (=~ ““) N
) B Thus, we haveyy = 0,a; = 1, and
> <L — —) (an — Alanfl) >0 1 d
2 .
ajy1 < L(aj —aj1) +5a;+ 53—, j=1L
n1

which is (39). Hence the proof of Lemma 3.2 is completéd. ]
Lemma 3.3:Let L € (0,3/2 4+ v/2),d > 0 andno > 0 be From this, by Lemma 3.1 and (48), we have for sose>
constants. If a nonnegative sequeag,n > 0} satisfies 1,a541 < ay. Then we must have

Lo + hp, <0 (51)
hpt1 < <L joax. h; — 5 Z hi + d) ) Vn >mng (43)

P which contradicts,, > 0,¥n > 0.

Hence the supposition (45) is incorrect and Lemma 3.3

where(z)* 2 max{z,0},Vz € R, then holds. ) m
Lemma 3.4:1f a sequence{z,,n > 0} is bounded, i.e.,

i 2n| £ M < 0o,¥n > 0, then
lim S hy < . agy = ST =
TS0 lim |2, — 2, | =0 (52)
Proof: We adopt the contradiction argument. Suppose thah
Where
Z h; — oo. (45) 1 2 argmin |z, — z]. (53)
‘ 0<i<n—1
We first show that Proof: We adopt the contradiction argument. Suppose that
lim |z, — 2, |=¢>0. (54)

LOIEZaxnh - —Zh +d>0  ¥Yn>ng. (46)
Then there exists a subsequefeg,,j > 1} such that

Actually, if (46) were not hold for some; > ng, then by (43)
we would havé:,,, -1 = 0. Hence (46) does not hold fas + 1
too. Repeating this argument, we see that (46) does not hold
anyn > ni andthat:,, = 0foranyn > ni+1. This contradicts
our supposition (45). Hence (46) holds.

Now, by (46), we can rewrite (43) as

£ .
Zn, — 27;(713_)‘ > > Vj=>1.
& by definition (53), we have

— 2

>%, V0 <i<n,

Therefore|z,, — z, | > €/2,VEk < j, orforanyz, , z,, . k #
host < L max hi — - Zh +d,  Yn>mne. (47) J,wehavelz,, — 2, | > /2, which means thatz,, j > 1}

i—o0 has no convergence points, and hence obviously contradicts to
|2n,| < M,V j > 1. Therefore (54) is incorrect and Lemma 3.4
By (45), (47), andh,, > 0, we know thainaxg<;<n h; — 0. holjds 0

Hence, there exists somg > no such that The above four lemmas will be used in the proofs of Theo-

rems 2.1 and 2.2, while the following three lemmas are needed
in the proof of Theorem 2.4. Since the proof ideas of the fol-

lowing Lemmas 3.5-3.7 are similar to those given above, we
Wheredo is defined in Lemma 3.1. Moreover, we can Choo%ace the proof details in Appendix B.

a strictly increasing subsequenth,,j > 2} from {h,,,n > Lemma 3.5:Let0 < L < 4,d > 0. If a sequencéa,,,n >

hn, > max h; and h,, > —
0<i<ni —1 do

(48)

n1} suchthath,, > h,, and 0} satisfies
hn < hpyy  Vny<n<ngyr, j > 1 (49) ans1 < L(an —an_1)+d, n>1 (55)
Then by (47)—(49), we have fgr> 1 with ag = 0 anda; = 1, then there exists somg > 0, such
it that for anyd € [0, do], there exists som#& > 1 such that
Py < Logigif}i ) ; hi +d an > an_1, 1<n<N and any <an. (56)

Lemma 3.6:Let L > 4. If a sequencéa,,,n > 0} satisfies

1 J
= Lhnj A hn, + d (50)
2 kz_;l ’ An 41 Z L(an - an—l)v n Z 1 (57)
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with ag < 1,a; > L + 1, then{a, } is strictly increasing and By (9), we have

tends to infinity, i.e., _ .
F(L,0) ={f: f satisfies condition C2) (66)

ntl — Gn > 0, Yn>1 and i n = 58 . . .
Bl = Gn > "= oo < (58 We divide the following proof into four steps.
and moreover Step 1: First, for anyy, and f € F(L,0), f(yo) could be
any value on(—oo, +00), so we have
L{ap — ap—1) —an > 0, Vn > 1. (59) A
{f f(yO):]-vfe]:(LaO)}#(b (67)
Lemma 3.7:Let0 < L < 4,d > 0, and{z,,n > 0} be FU A S{f: flyo) = —1; f € F(L,0)} # 0
any bounded sequence. If a nonnegative sequfiacer > 0}
satisfies wheref) denotes the null set. Then, for afy € F, [ € Fy,
we have
[Png1 — Znt1] < L mln |hn — hi| +d, n>1 (60)
Sisn f'(yo) =1 and f"(yo) = —1. (68)
with anyho, hy > 0, then Then,|f’(y0)—f1//(yo)| — 2. Hence, for anyi = hO(yO) cRL
T | — 2| < d. (61) andanyw; € R
d(f'(yo) +uo + wi, £ (o) + 1o +wi) = 2.
IV. PROOFS OF THETHEOREMS From this, it is obvious that
Proof of Theorem 2.1 max{d(f' (o) + o + w1, ¥o),
First, we introduce some notation, which will also be used in d(F" (yo) + wo + wi, o)} > 1. (69)
the proof of Theorem 2.2. Denote ’ -
A - Now define
Bt = [Qta bt]7 ABt Bt Bt—l (62) A (/)’ if d(f’(yo) +ugp + w1,yo) Z 1
and Fo= . .
A= A FY, otherwise.
|Be| = by — b |ABy| = |By| = [Byi] (63)

By (67), (68), we haveFy # # and for allf € Fq

whereABy = By, b, andb, are defined in (15). Since by the .
definition ?15) 0= ! (15) y f(yo) = const.(eitherl or — 1). (70)

- = - Also for any f € Fy, by (1) and (69) we have
by > b1, by <bior and (by —bp_1)(by —0:—1) =0 2 0. by (1) (69)
AB{|=|Bi| =d
we know that the interval sequenéd3;,¢ > 0} is nonde- [AB:] =B (1, 90)
creasing and thaf\ B, is also an interval (can be a null gt = d(f(yo) + uo + w1,90) > 1 (71)
and where| B, | and|AB; | are defined as in (63).

¢ Obviously,|AB;| = |y1 — wo| = | f(wo) + uo + w1 — yo| is
= U AB; and AB; ﬂABj =, i#j. (64) constant for anyf € J-"o

i=0 Let by 2 1. Thenzy = f(bo) = f(yo) is constant for all
For any pointz € R* and any seB C R!, define a distance f € Fo.
functiond(-, -) as _ Under condition C2), foif € Fu, f(y1) could be any value
in the following interval by (71):
A
d(a,B)= inf |[a — b 65
(a.8) = jnf =¥ (65) [£(s0) — LIABy, f(wo) + LIAB,]

= [zo — LIAB,|, %o + L|AB1|].
and if B = {b}, we rewrited(a, B) asd(a, b) |a — bl. o 5], @0 A5

Then it is clear thatAB,| = d(y;, By—1),t > 1. Step 2: Next, we define
The first conclusion i) follows naturally from Theorem 2.2 A
whose proof will be given later. Here we only give the proof for 71 = {f: f(y1) = zo + L|AB:|; f € Fo} #0 (72)
the second conclusion ii). F 2 {f: fly1)) =20 — LIAB,|; f € Fo} # 0.
We will show that if. > 3/2 + /2, then for any given feed- , , . .
back control law{w, }, there always exists sonfec F(L,0) c Foranyf’ € #j andf” € 7y, we have
tJ;I(S gus;l;clz Lhna;t;hb?ecorrespondmg closed-loop system (1) WItJh (1) = 20 + LIAB:| and f'(s) = xo — L|AB;|. (73)
For the sake of convenience, the standard Lipschitz conditi®hen | f/(y,) — f”(y1)| = 2L|ABy|. Hence, for anyu; =
is stated explicitly as hi(yo,y1) € R! and anyw, € R!

C2) |f(x)-fWI<Llz—yl, VayeR. |[(F' (o) + ua + w2) = (F(y1) + ua + wa)| = 2L|AB,|.
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fln)+utwe o BB ) b+ wg

‘ '<—H;3ﬂ—" |

2L|AB,|
lllustration of (74).

Fig. 3.

From this, it is obvious that

max{d(f (y1) + w1 + w2, 5(b1 +b1))
d(f"(y1) +u1 +wa, 2(by +b1)) } > LIAB, |

whereb, , b; are defined in (15). Furthermore, by the definitiort: =

(65), we have (see, e.g., Fig. 3)

max{d(f'(y1) +u1 + w2, B1),d(f"(y1) + v1 + w2, B1)}
> L|AB:| - 5|Bil. (74)

Now define

i

A 1
F 2

11

1>

It follows from (72), (73) thatF; # ¢ and for allf € F;

if d(f' (y1) + w1 + w2, By)
> LIABy| - §|Bu;

otherwise.
f(y1) = const. (75)

Moreover, for anyf € Fi, by (1) and (74) we have

|ABy| = d(y2, By) = d(f(y1) + v1 + w2, By)

> LIABy| — 4|B1| >0 (76)

where the last inequality follows frofd\B, | = |B;| andL >

2211

with z;_; 2 f(b;—1) and |AB;| being constants for alf €
Fi_1. Also, define

if d(f'(yi) +wi + wits, Bi)
> L|ABi| - §|Bil

otherwise.

F!
F 2
F
Similar to (75) and (76), we know that for atfye 7, f(y;) is
constant and

|AB; 1] = d(yiv1, Bi) = d(f(yi) + i +wigr, By)
> LIABi| - 5|Bi| >0,  i>2 (78)
where the last inequality follows from Lemma 3.2 [by setting
|B;] in (39)]. )
Since|AB; 41| > 0, we havey; 1 € B; = [b;, b;]. Similar to
(77), we denote
A Eia
bi B {Qza

then|ABi+1| = |yi+l — bz| = |f(yz) + Uy + w1 — bz|, which
is also constant for alf € F;.
Letxz; 2 f(b;). Then obviouslyg; is constant for allf € F;.
Consequently, under condition C2), fbie F, f(y;1) could

be any value on the interval

if yipr > b;

if g1 < b (79)

[f(bi) — LIABiy1|, f(bi) + LIAB;1.1]]
= [-Tz — L|ABZ‘+1|,J}Z‘ + L|ABZ+1|]

Step 4: Finally, we prove thatim; . ..|y:| = oc.
If this were not true, then both., = lim; ...5; and
boo 2 lim;_ .., b; would be finite. Introduce a set

Foo 2{f € F(L,0): f(yi) = filw) for fi € Fy,i > 0}

which is well-defined sincg, 1 ¢ B;, V¢ > 0 impliesy; # y;

3/2 + /2, and wherd A B, | is defined as in (63). By (75) and o ; # j and sincef;(1;) is independent of the particular choice

(76), |AB:| is constant for allf € F;. ~
Since|AB;| > 0, we havey, € By = [b1,b1]. Now, denote
A by, ifye >0
b= {Ql, if y2 < br. (77

we then haveABs| = |y2 — by].

Letz, 2 f(b1). By (70), (75), andF, C Fop, we know that
f(yo) and f(y,) are constant for alf € 7. Hence by the

of fz c F;.
Now, define a functiory,, as
boos 7 < beo
Foolz) = linear interpolation of ~
R (s, fi(ya)) with fi € Fiy boo < < boo
beo, T > beo

Note that for any) < ¢ < j < o0, by F; € F; C F(L,0),

definitions ofby, b1, andbs, we know thatr, is also constant we have forf; € 7 andf; € F;

forall f € Fi.
Consequently, for any € Fi, under condition C2)f(y2)
could be any value in the interval

[f(b1) — LIABs|, f(b1) + L|ABs]]
= [.7}1 — L|AB2|,$1 + L|AB2|]

Step 3: Continue the above procedure and recursively define

fori > 2

Fi = {f: flyi) = i1 + LIAB;|; f € Fio1} }
FU2A{f: f(y) = wier — LIAB;|; f € Fiot}

| foo (i) — Foolui)| = | filwi) — fius)l
=fi(y:) — fi(y)| < Llyi — 1.
Hence it is easy to see thaf, € F., and thusF,, # 0.

Also it is obvious thatF., ¢ F;,V4 > 0. Consequently, for
any f € F.., by (71), (76), and (78), we hay& B, | > 1, and

|AB;11| = LIAB;| — %|B,;|, i>1
which can be rewritten as
|Biy1] > L(|Bi| — |Bi—1]) + 5| Bil, i>1
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b, Qt';bt B Yer1(=ber1) and if |y — 4, < ¢, then
i ' i i g verr = f(ye) — f (i) + g1 — wi41 Fwepr. (83)
B {
B Now, if for somet > 1, |ys — w:,| > ¢, then by (80) and (82),
| B 1]
| Bt 1]
Fig. 4. lllustration ofy; ;. &€ B. = max{|f(yt) = f (i) — wip41 + W] + %|Bt|v |Bt|} .
Hence by (2) and the definition , we have
by using Yy (2) OB
, | Bt| <[Bral
|ABij1| = [Biyi| = |Bi|,  i20

< max{| fw) — f (4] + 2w+ 3|B.L.[Bi]}

with |Bo| =0 |Bl| > 1. .
! — , _ . Furthermore, sinc¢ € F(L) andL < 3/2 + /2, by (13) we
Therefore, by Lemma 3.2, we halien, .o |B| = oo, i€, _know that there exist somk, satisfyingL < L; < 3/2 + /2

E‘Iljletﬂoo|yt| = oo. Hence the conclusion of Theorem 2.1 ii) IS nd some: > 0, such thaf € F(L1, ). Hence, by (9) we have

|Bt| <|Biy1l

Proof of Theorem 2.2
< max{Li |ys — v;,| + ¢+ 2w + %|Bt|, |Bt|}. (84)

We divide the proof into five steps.
Step 1: We analyze some properties of the notations (62§0nsequently, by (63), we have
(63).

1 +
First, it is clear that (see, e.g., Fig. 4) 0<|ABu] < (Lilye —wi | + e+ 2w—3|B) "

{ |Biy1| = |Bil, if 11 € By Therefore, by (63) and (81), we have
|Bes1| = |yt+1 - %(bt +Et)| + %|Bt|7 if 141 & Bs. 0 < |ABiy1]
+
, B . 1L
Then sincdy, 41 — (1/2)(by + b;)| > 1/2|B;| <= 4141 & B, < [ Ly max |ABi| + ¢+ 20 — = Z IAB| (85)
we have 0<i<t 2 prd

|Bit1| = max {|ye11 — 2(be + b)| + 2| Bi],|Be|} . (80) which holds for any > 1 with |y, — 1;,| > .

Step 3: We now prove that for any > 0, there exists some
Now we proceed to prove that 7 > s such that

lye —vi.| < max [AB|, V=1 (81) lyr| € Lie+c+ S+ 2w (86)
wherei; is defined in (16). We consider two cases separatelyVheres is defined in (14).

Case (1): If 4 & B,_., then by definitions (15), (16), (62), First,.ther.e must exist some > s such thaty —y; _,| < e.
and (63), we have (see Fig. 4 with+ 1 replaced by) Otherwise, if

|yt_y7‘,,|:|Bt|_|Bt—1|:|ABt|- |yt_yi,|>€7 Vit> s (87)

then by (85) V¢
Case (2): If y» € B, 1, then by (64), we know; € AB; en by (85)V¢ > s

for some0 < i < ¢t — 1. Then by (16) we have 0 <|AByy|
. f +
lve = wi| < |ABi] for the same. < | L1 max |AB<|+c+2w—EZ|AB<| .

= 0<i<t k 2 !

Combining the two cases above, we see that (81) is true. =0

Step 2:We proceed to find a recursive inequality onhen by Lemma 3.3])im; .o EZ=0|AB7¢| < o0, e,

{IAB:].t = 0F. limy .o |B;| < oo. Thus by the definition of B,|, we have
By (1) and (19)—(21), we have sup,so || < oo. Consequently, by Lemma 3.4, we have
- L _ lim; oo |y+ — vi,| = 0, which contradicts to (87). Hence, there
Flue) = felye) + 5(be +be) + wiga, existst’ > s such thajy.. — y; ,| < e. Therefore by (83), we
Yas = it |y — i | > ¢ have forf € F(Ly,¢) ‘
F) = 5] + 480 o, et S [F0m) = £ () + 95| +20
o —wicl <. S Ly|yr =i | +c+ S+ 2w
Hence by (18), we know that jix — v;,| > ¢, then <Lie+c+ S+ 2w. (88)

Yerr = fye) — [ (vi,) + 3(be + by) — wi 41 +weyr  (82)  From which we arrive at (86) by setting= 7/ + 1.
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Step 4: We prove the boundedness of the whole sequentben by (24), we have

{ytvt Z 0} .
Define Aly)=25; foryed;, jez (93)
to 2 ing{t: lys| < Lie +c+ S + 2w} Next, for anyj € Z, defineN,(0) 20,
>
AL t—1
= f {t < Lqe S+2 >1. (89 /
oho S hever Sramh, - m2 1 69 NO2Y L, tzL (@)
Then by (86), we have, < oo,V n > 0. =0
Let z, 2 ¥, . By (89), we have Then for anyj € Z, recursively definey;(¢),t > 1 as
2p| < Lie+c+ S+ 2w, Vn > 0. aj(t—1) - Nj(t — 1)+ (g — we—1)Ia; (1e—1)
/ N,(t
Then by Lemma 3.4 withi, defined as in (53), we have «;(t) 2 i NS(t) > 0 i)
lim,,— oo |2, — 2:,| = 0. Thus there exists somg, > 0 such I
that for alln > ng 0, otherwise.
(95)
|z — 2z, | <€, e, min |z, — 2| < e

Osisn—1 wherea;(0) 2.

Consequently, for any > ng By simple manipulations, it is easy to see that if for some
t > 1,N,(t) > 0, then

Yt, — Yig,| = min |y, — 1l
e = | = o200
= 0<itn—1 Ve, — vl < € a;(t) = NiH(t) Z (Wit1 — wi)ln, (yi). (96)
1=0
. A .
wherei(, ) = argminge; <y, 1 [Ys, — ¥il- Now, when|y; — v, | < ¢, by (25), (93), and (94), we have
Hence by (83) we have for anye F(L;,c)
. N;(t) >0 fory, € 6;, j € Z. (97)
e, +1] < |F e,) = (Wig,,) + 45 4| +2w ’ ’
< Lie+c+ S+ 2w, Yn > no. Hence by (96), we can rewrite (26) as
So by (89) Filye) = a;(t), if y, €6, j € Z. (98)
tart =ta +1, Vn>ng Fory, € é6; andy; € Ay, by the definitions of; and A,
S we havely: — y;| < 2e. Furthermore, sincg € F(L) with
which implies that L < 3/2 4 /2, by (13) we know that there exist sonig
lye| < Lic +c+ S + 2w, Vi >t (90) satisfyingL < L1 < 3/2+ v/2 and some: > 0, such that
Step 5: Finally, we give an upper bound for the asymptotic feF(Ly, o).

tracking error.

From (90), by Lemma 3.4 again, we have Hence, by the definition (9) we have for € ¢; andy,; € A;
(91) |f(ye) = fy)| < Lilye — il + ¢ < 2L1e +c.

Therefore, whety, —y;,| < eandy; € §;,7 € Z, by (96)—(98)
and (1) we have
lyr — i, | <€, Vi>T. _

|f Q) = folwe)l
= ‘f(yt) — NN D Wirr —wi)la, (u)

lim |y —w,| = 0.
t—oo

Hence there exists sonfé > 0 such that

Finally, by (83) and (91), we have for> T

lye+1 — yip | < () — f (ya)| + 2w =0
<Lylye —yi,| + ¢+ 2w — ¢+ 2w, 1 =t
< |NITH(t — A (y;
st s <|N; ();[f(yt) Fa, (u)
. . . —1
which is a tantamount of Theorem 2.2. Hence the proof is 1 :
completed. O + N () ; wit1la, (vi)
Proof of Theorem 2.3 <2Liet+etw. (99)
First, we rewrite (26) into a recursive form. Note that wheny; — ;.| < ¢ by (1), (21), and (27) the
Define closed-loop equation is

A . _
Dy =81 U o5 U Oj+1, JjeZz. (92) Ye+1 = f(ye) — fo(ye) + ¥ip1 + wegr. (100)
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Comparing this with (83) and going through the proof of TheFhen by (102) (104), and (105) we have
orem 2.2, we see that the first four steps of the proof there are

also applicablenutatis mutandiso the present case. Hence, by Z ft Yt) =7 Z Z ft Yt)
the conclusion of Step 4 there, we have for sae> 0 Z?fgijT J&Jz o SlT
<M, t>0. 101
|ye| < _ (101) < MLy 40+ M Z 1 Z
Therefore, by Lemma 3.4 we know that there exists styme 0 = T Wty
such that © e
2
lye — vi | < e, Vit > to. (102) . N]fl(t) ZwiﬂIAj (1)
To get the desired result (28) we introduce some notations: )
< Ai(2Lie+ )" +o(1). (106)
A .
N; = lim Nj(t) = lim ZIA vi), J€Z Consequently, by (100), (102), (103), and (106), we have
N T
Ji N {1 €Z:0< N; < 0} - Z(yH—l g — wesr)?
Jy2{j € Z:N; = +oo} =
A 1 — *
by = U 8 =7 (Y41 — Yip1 — weg1)?
jehy t=0
and 1 _
6n2 | 6 o L) = Flw)l
JEJ2 t=to
By these definitions we kgow that € 65, U és,,Yt > 0. Also =o(1)+ % Z ff(yt) + % Z ff(yt)
by (101), we know that = J; | J- is a finite set. toStsT tastsT
We first analyze the casg € 6. A e
Denoting/ (4:) 2 f()— f,(u2), by (99) and (102), we have o)+ A (ZLae + )" (107)
fort > to Finally, sinceA; > 1 is arbitrary, by (107) we have
fy <2lie+cH+w. — 1 ) .
i) Jm 2> (e — v — wein)® < 2Lie+o)?
Hence by t=0
e e which is the desired conclusion (28). O
ZI(SJI (y) = Z Zféj (ye) < o0
t=0 jEJ t=0 Proof of Theorem 2.4
we have 1 o i) Sufficiency: We need only to show that jf € G(L) with
T Z fi(ye) — 0 asT — oo. (103) L < 4, then the feedback law defined by (32) is stabilizing.
viery By (1) we have
s Next, lety, € 65, then there is somg € J, such thaty, € If (5,) — (W, 41 — u5,)| = |wj, 1] < w.
Similar to (99), wherjy, — v;,| < ¢, we know that for any 'hen by (31), we have
A 1, there exists som&, > 1 such that 2
PR > 1) = Fow)] = 1) = @iosr =)
|f(we) = Folwo)] . , < |Fye) = F (gl +w. (108)
<A NS YD) — fwila, () Now, denote
= A
0 ) G(L,c) 2 {f € F(L,¢): f(x) = f(—z),Ya}.  (109)
+ X |N Z wit1dn; (Yi) It easy to verify (cf., Appendix A) that fof (L) defined by (29)
B 5 G(L,c) C G(L), Ye>0 (110)
< )\1(2L16 + 6)2 + A2 |V ! t) Z wi+1IAj (yz) and that for anyy > 0,
1=0
(104) gryc |J gL+ro0. (111)

For anyj € J», by the law of large numbers for martingales, c€[0.e0)

we have from (22) andv; = oc that Hence for anyf € G(L) and anyy > 0, there exists some
c > 0, such that

S w s La () — 0. 0
(B> witla,(y:) =0, ast—oo.  (105) FeG(L+y,0). (112)
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Sincef € G(L) with L < 4, by (112) we know that there sampled-data feedback controllers witkescribedsampling pe-
existL; € (L,4) andc > 0 such thatf € G(L1, ¢). Hence, by riod. Some progress has been made in this direction recently

(109), (108), we have in [38], but more efforts are still needed. Finally, a more chal-
2 lenging problem is to find a suitable framework within which
£ () = Felwol < Lale] = lyi]] + ¢+ w. the issue of establishing a quantitative relationship amsmng
Furthermore, by (1), (30), and (32), we have priori information, feedback performance and computational

. 2 complexity can be addressed adequately and rigorously.
Y1 — Yrpa| = ‘f(yt) — ft(ye) +wt+1‘

< Ly |lyel = luj, || 4+ ¢+ 2w APPENDIX A
=Ly auin [lyel = loil| + ¢+ 2. Proof of (11) and (12)
Then by Lemma 3.7 (settin, = |y:| andz = sgn(y:) - ¥)), Foranyf € F(L,¢), by condition C1), we have
we have @) = F@I S Lle =yl e, V(wy) € R
tm lye —yi| < c+ 2w Then by (4), it is easy to verify thatf|| < L, i.e., f € F(L).

Hence, (11) holds.
which proves the stability part of Theorem 2.4 and also estab-To prove (12), letf € F(L), we then havd|f|| < L. Then

lishes the tracking error bound. by (4), for any~y > 0, there exists some, > 0 such that
ii) Necessity:We will show that if L > 4, then for any If (@) = ()

given feedback control lawu.}, there always exists some D =yt a0 <L+~

f € G(L,0) C G(L) such that the corresponding closed-loop (m.)eR 4 0

system (1) with thigx, } is unstable. Hence, we have
Tofind sucharf € G(L,0) (depending ofw, }), our method |f(z) = F)| < (L + )|z — y| + ao(L +7),

is to construct a sequence of nonincreasing nonemptgsets Y (z,y) € R%.

G(L,0),t=0,1,2,---(depending oRu, }) such thaf |y;|,0 <
i < t+1}is strictly increasing for any € G,. The construction Denotecy = ao(L + v), thenf € F(L + v, ), and (12)

techniques are similar to those in the proof of Theorem 2.1 iholds. O
save that Lemma 3.2 there is replaced by Lemma 3.6 and that
instead of (67) we start with the following initial sets: APPENDIX B
A
Gl N {f: flwo) = (L + Dlyol; f € G(L,0)} #0 } _ Proof of Lemmas 3.5-3.7
Go =1f: flwo) = =(L 4+ Dlyol; f € G(L,0)} # ¥ Proof of Lemma 3.5:The proof idea is similar to that of

(113)
The details will be not repeated. O Lemma 3.1. Suppose that

Gp = A1, Vn>1. (114)
V. CONCLUDING REMARKS A
. . . Thenitis obviousthat, > 1,¥n > 1andz, = a,/a, 1 > 1.
Feedback and uncertainty are two basic concepts in automafic . dividing both sides of (55) lay,, we have
control. To explore both the full capability and the potential lim- ' B

itations of feedback in controlling nonlinear systems with large
structural uncertainty is not only of fundamental importance in
feedback theory, but also instrumental in understanding how in-

L

1

telligent a control system can be. Now, if we denoteh = lim,, .., > 1, then we have
In this contribution, a quantitative study on the relationship
between these two concepts (defined in the most general way) b<L <1 - —) +d.

has been initiated for the benchmark system (1) where the func-

tion f(-) is assumed to be completely unknown. By introducingrom this, it is easy to see thate (1,o0) provided thatd e

a suitable norm in the space of &t — R! mappings, we have [0, 1). Futhermore, the above inequality can be rewritten as

established a series concrete results concerning the capability, 5

limitation and performance of feedback. In particular, we have L> - db,

found and demonstrated that the maximum uncertainty that can b—1

be dealt with by feedback is a ball with radi&g2 + /2 in this  Now, similar to the proof of Lemma 3.1, it can be shown by

normed function space. using4 > L that there exists a positive constalgtdepending
There are many problems remain open in this vital field. Firatpon L such that whenevet € [0, do]

itis desirable to study uncertain nonlinear control systems more B db

complicated than the basic model (1), for example, high-order min

systems with uncertainties coupled with the input. Second, it L<b<oo b—1

would also be of considerable importance to study hybrid cowhich obviously contradicts to (115), and hence (114) is not true

trol systems consisting of continuous-time nonlinear plants aadd the proof of the lemma is completed. O

(115)

> L
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Proof of Lemma 3.6:SinceA = L2 — 4L > 0for L > 4, Where,hnH) 2. Also we havei;;1 —1 # n;, which implies
the quadratic equation? — Lz + L = 0 has two real roots, thatn;,; — 2 > n;. By this and (122), we have
which are denoted by; andAs. Then

min |h(nj+1_1) - hi|
M+d=L (116) Oéfn"“._Q , X
AL A= L. (117) - ogﬁigﬂ (njp=1) = "'v|
. . < - < - = H, .
It is obvious from (116) and (117) that > 0 and\; > 0. < [P =1) = Py | S |y 1y = Py | = Hig

Now we prove that\; > 1 andX, > 1. Otherwise, ifA; < 1,

D hin, =hp.. i yby 1 gy —
then\, > L by (117), which contradicts to (116). Henae > Case (2): hn;,,—1) = hn,- INthis case, by, 1 < nj

= 2, we have
1. Similarly, A, > 1.
By (116) and (117) we rewrite (57) as ogé%iﬁlq |h(nj+171) _ hi| < |h(nj+171) _ hnj,1|
(Gng1 — A1an) 2> Aa2(an — Aran_1), n > 1 = |hnj — hnj71| =H;.
Then Combining Case (1) and Case (2), we see that (121) holds.
Now, by (60) and the boundedness{ef, }, we have for some
(@nt1 — Aran) > Aj(ar — Arag) > A3, n>1 M>0
So by A; > 1, we have hn+1§L0<n§n 1|hn—hi|+d+M, n> 1.
Unt1 — Aan >0 and (a, — Ara,—1) T (118) Then we have
Hence by\; > 1, (58) holds. Pnjoy L min  |hg,,, 1) — hi| +d+ M.
Now by (116), we may assumg > L/2 (otherwise\, > Osisn;pr—2

L/2, and the arguments are similar). Then by (118) and the fagknce by (121), we have
thatL/2 > L/(L — 1), for L > 4, we have

hp,.y L max Hy +d+ M.
L{a, — an-1) — ap =(L — Da, — La,—1 0<k<y
=(L-1) <an — L]: . an_1> Therefore, by, = f;:o Hy + Hjy1, we have
> (L — 1)(an — )\1an_1) >0 J
Hjsy < L max H — S Hy+d+ M.
which is precisely (59). O 0<k< k=0

Proof of Lemma 3.7:First we prove that From this, by using the same arguments as (47)—(51) in the

Tm A < oo (119) proof of Lemma 3.3 and by Lemma 3.5, we have for sofnd,,
nooo ) H; < 0, which contradicts to our definition @ ;. Hence (119)

— holds.
We adopt the contradiction argument. Suppasg . ..h, =

: X X Consequently, by Lemma 3.4, we havgno<;<,—1 |hn —
oo, then we could choose a strictly increasing subseque%ﬁ! —. 0. Hence (61) follows from (60), and the proof of

{n;,j 2 O} from {hn,n = 0} such thathn, = ho, and | emma 3.7 is completed. O
Yi>0
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