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How much Uncertainty can be Dealt with by
Feedback?

Liang-Liang Xie and Lei Guo, Fellow, IEEE

Abstract—Feedback is used primarily for reducing the effects
of the plant uncertainty on the performance of control systems,
and as such understanding the following questions is of funda-
mental importance: How much uncertainty can be dealt with
by feedback? What are the limitations of feedback? How does
the feedback performance depend quantitatively on the system
uncertainty? How can the capability of feedback be enhanced
if a priori information about the system structure is available?
As a starting point toward answering these questions, a typical
class of first-order discrete-time dynamical control systems with
both unknown nonlinear structure and unknown disturbances
is selected for our investigation, and some concrete answers are
obtained in this paper. In particular, we find that in the space
of unknown nonlinear functions, the generalized Lipschitz norm
is a suitable measure for characterizing the size of the structure
uncertainty, and that the maximum uncertainty that can be dealt
with by the feedback mechanism is described by a ball with radius
3 2 + 2 in this normed function space.

Index Terms—Adaptive control, feedback, nonlinear, robust
control, stability, stochastic systems, uncertainty.

I. INTRODUCTION

FEEDBACK is a basic concept in automatic control. Its pri-
mary objective is to reduce the effects of the plant uncer-

tainty on the desired control performance (e.g., stability, opti-
mality of tracking, etc.). The uncertainty of a plant usually stems
from two sources: internal (structure) uncertainty and external
(disturbance) uncertainty. In general, the former is harder to
cope with than the latter. The understanding of the relationship
between parameter/structure uncertainty and feedback mecha-
nism is a longstanding fundamental issue in automatic control
(cf. e.g., [1]–[3]). Specific questions pointing to this issue in-
clude at least the following.

• How much uncertainty can be dealt with by feedback?
• What are the limitations of feedback?
• How does the feedback performance depend quantita-

tively on the plant uncertainty?
• How can the capability of feedback be enhanced ifa priori

information about the plant structure is available?
These are conundrums, on which only a few existing areas of

control theory can shed some light. Robust control and adaptive
control are two such areas where structure uncertainty of the
plant is the main concern in the controller design.
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Robust control and its related area of robustness analysis
usually require that the true plant lies in a (small) ball centered
at a known nominal model and often assume that the controllers
are either selected from certain given classes of systems or
simply fixed (e.g., [4]). Within such a framework, substantial
progress has been achieved in the understanding of the effect
of uncertainties, feedback robustness, optimal robustness radii,
and optimal control, via the development of various approaches
and theories including and theory, synthesis, small
gain theorems, and gap metrics (see, e.g., [5]–[17]). The need
of a nominal model with reliable model error bounds in robust
control methods motivated the extensive research activities in
an area called control-oriented worst case identification in the
1990s (e.g., [18]–[20]). During the same period, significant
progress in linking the theories of identification, feedback,
information, and complexity following the framework and
philosophy developed by Zames (cf. [3], [5], [21], [22]) has
also been made (see, e.g., [23]–[26]).

Adaptive control is a nonlinear feedback technique which
performs identification and control simultaneously in the same
feedback loop, and which is known to be a powerful tool in
dealing with systems with large uncertainties. Much progress
has been made in this area since the end of 1970s (cf. e.g.,
[27]–[30]). For linear finite-dimensional systems with uncer-
tain parameters, a well-developed theory of adaptive control ex-
ists today, both for stochastic systems (cf. [28], [31], [32]) and
for deterministic systems with small unmodeled dynamics (cf.
[29]). This theory can be generalized to nonlinear systems with
linear unknown parameters and with linearly growing nonlin-
earities (e.g., [33]). However, fundamental differences emerge
between adaptive control of continuous- and discrete-time sys-
tems when one allows the nonlinearities to have a nonlinear
growth rate: the design of (globally) stable adaptive control is
possible only for continuous-time systems (cf. [30]), and not for
discrete-time systems in general, as demonstrated rigorously in
the recent works [34] and [35]. Analogously, for sampled-data
control systems with uncertain nonparametric nonlinearities, it
has been shown that the design of stabilizing sampled-data feed-
back is possible if the sampling period is small enough (cf. [36],
[37]). However, if the sampling period is larger than a certain
value, then globally stabilizing sampled-data feedback does not
exist in general even if the nonlinearity has a linear growth rate
(see [38]). The fact that sampling usually destroys many helpful
properties is one of the reasons why most of the existing design
methods for nonlinear control remain in the continuous-time
even in the nonadaptive case (cf. [39]), albeit many results on
nonlinear systems in continuous-time have their discrete-time
counterparts (see, e.g., [40] and [41]).
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Fig. 1. Feedback control of uncertain systems.

Up to now, almost all of the existing results in adaptive control
are not concerned with the issue of optimal robustness and are
restricted to parametric models, mostly to linearly parameter-
ized ones. Hence the understanding of the fundamental question
concerning the capability and limitations of (generally defined)
feedback is far from being complete, although it is hard to dis-
tinguish adaptive feedback from ordinary nonlinear feedback in
general (see, e.g., [27, p. 1]).

Parametric models are of course only a special situation. The
more challenging problem is to control nonparametric uncertain
systems, which will be discussed in a little more detail below.
Let be an unknown nonparametric function characterizing
the nonlinear dynamics of a control system, which lies in the
space of all mappings, denoted by (see Fig. 1).

The traditional method is to approximate the unknown
by certain parametric models. The existing approximation tech-
niques (e.g., Volterra series, fuzzy and neural nets, wavelets,
etc.) basically state that for in a compact set, can be uni-
formly approximated by parametric functions of the form

where is a known “basis” function, and ’s and ’s are
unknown parameters or weights.

Thus, one may conceive that the above explicit parametric
model can be used in adaptive control instead of using
the original nonparametric model . This natural idea has
some appealing features and has attracted considerable attention
from researchers in recent years (e.g., [42]), but it has also sev-
eral fundamental limitations/difficulties. First, in order to ensure
that (which usually represents the system state or output sig-
nals) lies in a compact set for reliable approximation, stability of
the system must be established first, and the parametric model
provides little (if any) help in this regard. Second, searching for
the optimal parameters ’s and ’s usually involves in global
nonlinear optimization, of which a general efficient way is still
lacking by now; moreover, the on-line combination of the es-
timation and control (adaptive control) will further complicate
the problem. Third, there always exists an approximation error
in the model and hence in the control performance. Thus, it
may be an advantage to consider the nonparametric model
directly, and the nonparametric estimation methods that have
been well-developed in mathematical statistics would naturally

Fig. 2. The maximum uncertainty that can be dealt with by feedback is a ball
in (F ; k � k).

be brought to our attention. However, the statistical nonpara-
metric estimation-based control strategy has been shown to be
useful only for a class of open-loop stable systems by now (see
[43] and [44]).

All of the above facts and analyzes show that, to study the
questions raised at the outset, we have to place ourselves in a
framework that is somewhat beyond those of the classical ro-
bust control and adaptive control. First, the system structure un-
certainty may be nonlinear and nonparametric, and a useful or
reliable ball containing the true plant and centered at a known
nominal model may not be availablea priori. Second, we need
to study the full capability of the feedback mechanism which
includes all (nonlinear and time-varying) causal mappings, and
are not only restricted to a fixed feedback law or a set of specific
feedback laws. We shall also work with discrete-time control
models which can reflect the limitations of actuator and sensor
in a certain sense when implemented with digital computers. It
is fairly well known that in the present case, the high gain and
nonlinear damping approaches which are very powerful in the
continuous-time case are no longer effective now.

To initiate a quantitative study of the relationships between
uncertainty and feedback in the framework delineated as above,
we shall in this paper select a special class of first-order dis-
crete-time dynamical control systems with matching conditions
for our investigation. By introducing a suitable norm (called
the generalized Lipschitz norm) in the space of all nonlinear
functions, we are able to give a complete characterization of the
capability and limitations of the feedback mechanism for con-
trolling this class of uncertain nonlinear systems. To be precise,
we will show that:

• the maximum uncertainty that can be dealt with by
feedback is a ball with radius in the
normed function space , centered at the zero
(see Fig. 2);

• if a certain “symmetric” information about the plant is
available, then the above radius can be raised to ;

• for either bounded noises or white noises, the feedback
performance is bounded by a quantity reflecting the dis-
continuity of the plant structure.

The remainder of this paper is organized as follows. In Sec-
tion II we will present the main theorems of the paper. Some
auxiliary lemmas are presented in Section III, which will be used
in Section IV in the proofs of the main theorems. Finally, some
concluding remarks will be given in Section V.
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II. M AIN RESULTS

To facilitate a theoretical study, we would like in this paper
to approach our problem as naked as possible, while keeping
the basic nature of the problem formulation as outlined in the
introduction. Thus, let us consider the following first-order dis-
crete-time nonlinear dynamical control system:

(1)

where and are the system output and input signals, re-
spectively. The nonlinear function is completely
unknown; is a sequence of “unknown but bounded noises”
with unknown bound , i.e.,

(2)

To investigate the capability and limitations of feedback, we
need to give a precise definition of it first.

Definition 2.1: A sequence is called a feedback control
law if at each step is a causal function of the observa-
tions , i.e.,

(3)

where can be an arbitrary (nonlinear and
time-varying) mapping at each step.

With the feedback mechanism defined as above, the main ob-
jective of this paper is to answer how much uncertainty in
can be dealt with by the feedback controlin (1). In order to
do this, we need to find a suitable measure of uncertainty first.
Such a measure should be able to enable us to capture precisely
the capability and limitation of feedback in dealing with struc-
ture uncertainty.

Let be the space of all mappings, i.e.,
. Introduce a functional on , which

is defined as

(4)

where the limit exists by the monotonicity in.
It is easy to see that the above functional is a quasi-norm on
, which may be called the generalized Lipschitz norm since it

is closely related to the generalized Lipschitz condition as will
be shown shortly. It is a true norm on the quotient space
defined by

(5)

where signifies the equivalent class

(6)

and is the zero in .
For convenience of presentation, we shall simply speak of

as a normed linear space, and regardas its zero in
the sequel.

For any define

(7)

Then is a ball in the space centered at with
radius .

Now, suppose thea priori information we have about the
system (1) is that we know . Then can be re-
garded as a measure of the size of uncertainty of our knowledge
about .

Theorem 2.1:The necessary and sufficient condition for the
existence of a stabilizing feedback control law for (1) with any

, is . To be precise, we have the
following.

i) If , then there exists a feedback control
law in (3) such that for any , the
corresponding closed-loop control system (1) with (3) is
globally stable in the sense that

ii) If , then for any feedback control law
in (3) and any , there always exists

some such that the corresponding closed-loop
system (1) with (3) is unstable, i.e.,

Remark 2.1:From Theorem 2.1, we know that
is a critical value of the measure of uncertainty for stabi-

lizing (1) with . If , then we can
design a concrete feedback control law (see Theorems 2.2 and
2.3 below) which stabilizes (1) for any . But if

, we cannot be sure of stabilizing (1) no matter how we
design the feedback control law in (3), because the plant
uncertainty is too large in this case. While it is natural to con-
sider the Lipschitz norm and the Lipschitz condition (see Re-
mark 2.3 below) from previous studies [34], [35], [43], [44], it
appears to be far from obvious why there exists a finite critical
value and why this value is precisely . One explanation
comes from our proof given in the next two sections, where it
can be seen that the stabilizability of (1) hinges on the asymp-
totic behavior of the solutions of the following second-order
linear difference equation:

(8)

To be specific, (1) is stabilizable if and only if all the solutions
of (8) either converge to zero or oscillate about zero, which
is precisely equivalent to the requirement by
[45, Th. 2.36]. Similar connections have been found previously
in [34] for the critical stabilizability of an uncertain parametric
model with polynomial growth nonlinearities.

Remark 2.2: It can be argued that (1) is a basic model (sim-
plest but nontrivial) for the study of our problem. The matching
condition enables us to focus our attention on uncertainty and
makes it possible for us to explore the full capability of feed-
back in dealing with uncertainty. It also prevents the capability
of feedback from being weakened at the outset by a weak con-
trol structure. While it is still necessary to investigate more gen-
eral nonlinear models in future works, it may be remarked that
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the limitation of feedback found in Theorem 2.1 may also be
regarded as a limitation of feedback in general model classes
which include the class (1) as a special case.

Remark 2.3:The norm defined by (4) is closely related to the
following generalized Lipschitz condition:

where , are constants.
It is called generalized Lipschitz condition because it includes

the standard Lipschitz condition as a special case . Note
that is a quantity reflecting the possible discontinuity of the
function . Denote

satisfies condition C1) (9)

Obviously, is nondecreasing with respect toand ,
i.e.,

for (10)

Also, for the ball defined by (7), it is easy to prove (see
Appendix A) that

(11)

and that for any

(12)

Hence for any and any , there exists some
such that

(13)

Next, we proceed to construct a concrete feedback law to sta-
bilize (1) with when , and at the same
time to make the system outputs track a bounded sequence
of reference signals with bound

(14)

Let us denote

(15)

and

i.e., (16)

At any time instant , the estimate of is defined as

(17)

which can be rewritten as

(18)

We remark that the estimator (16), (17) may be refered to as
the nearest neighbor (NN) estimator for (cf. e.g., [46], [47]),

as can be seen intuitively from (18). It is a natural one when
we only know the generalized Lipschitz continuity of and
the boundedness of the noises . Better estimators may be
constructed if more information about or is available,
as will be shown later in (31) or (26).

Denote

(19)

(20)

Then the feedback control law is defined as

if

if
(21)

where can be chosen arbitrarily.
Theorem 2.2:For any with ,

the feedback control (15)–(21) globally stabilizes the corre-
sponding system (1) with the following tracking performance:

where is defined in (13) with chosen to satisfy
, and is defined in (2).

Remark 2.4: In the feedback law (21), is designed mainly
for the purpose of stabilizing the system, andfor making the
output track when the estimation (prediction) of

is good enough in the sense that . However,
when , we are not sure of the goodness of the
NN estimator (17) for , and the stability issue becomes the
main concern. In this case, one will at least expect in the next
step to have not far from the past outputs , as
the accuracy of the NN estimate of depends on the dis-
tance . So conservatively, the best way is trying to
place at the center of the past outputs as in (19). In (21),

is a design parameter, which has no effect on the asymptotic
tracking performance bound as can be seen from Theorem 2.2.
This attributes to the fact that defined by (21) will be identical
to of (20) after some finite time, as long as the system sig-
nals are bounded (see Lemma 3.4 in the next section). However,
larger may cause larger variations in the transient response;
while smaller may make the transient response time longer.

Remark 2.5:The NN estimator-based stabilizing feedback
(15)–(21) appears to require infinite memory for implementa-
tion, which is not a desirable property from a practical point
of view. However, from a theoretical point of view, our results
show that at least the observed data carries enough informa-
tion about the uncertain function to be able to stabilize
the system. Moreover, thanks to the robustness of the controller
(15)–(21) with respect to bounded noises (and hence to
bounded estimation errors), it is possible to construct an easily
implementable controller to approximate (15)–(21) by making
a tradeoff between computational complexity and performance
accuracy. One way of doing this is to divide the output space
into sufficiently small intervals (depending on the performance
requirements), and on each of which keep only one datum and
discard others. This would only result in bounded estimation er-
rors, but at the same time significantly reduces the demand on
memory for implementation.
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As one would expect, if we further assume that the distur-
bance is a white noise sequence, then the tracking error
bound can be improved. To this end, we next assume that

is a martingale difference sequence, i.e.,

(22)

where is the -algebra generated by
. In order to make use of the property of martin-

gales, we next change the estimate defined by (17) into some
averaging form.

We first introduce some notations. Define

all integers (23)

where is the same as in (21). Then

and

(null set) for

For any , define the interval-valued function as

if (24)

Intuitively speaking, covers the “-neighborhood” of .
If for some , then by the definitions

above, we have

(25)

where, for any is the indicator function

if
otherwise.

Hence when , we may define the estimate of
as

(26)

and correspondingly change (20) into

(27)

We have the following theorem.
Theorem 2.3:Let be a bounded martingale difference

sequence. Then, for any with , the
corresponding closed-loop system defined by (1), (15)–(19),
(26)–(27), and (21) has the following tracking performance
bound:

(28)

where is defined in (13) with any satisfying
, and is defined in (21).

Remark 2.6:From an application point of view, it is also im-
portant to be able to verify or falsify the condition
with . We note that for this task it is not nec-
essary to require the full knowledge of the functional repre-
sentation, and that most of the practical systems are not re-
ally “black boxes”—some information, more or less, should be
availablea priori. An extreme yet common example is the class
of bounded functions, which we know will satisfy the above
condition without any knowledge of the functional representa-
tion (the Lipschitz norms are all zero for this class of functions).
Although the stability issue is trivial in this case, the feedback
laws of Theorems 2.2 and 3.3 are still valuable as they lead to
nontrivial closed-loop tracking performance bounds.

As one would also expect, if we have additional restriction
(or a priori information) on , then the critical value of
would increase. As an example illustrating this, we suppose that
the value of would be known if we know the value of

for any . Typical examples include functions like
, and , etc. For simplicity, we

only consider the case in the sequel. Other cases
can be treated analogously. In this case, the system uncertainty
set will shrink to

(29)

Similar to Theorem 2.1, we have the following result.
Theorem 2.4:The necessary and sufficient condition for the

existence of a stabilizing feedback control law for (1) with arbi-
trary , is . To be precise, we have the following.

i) If , then there exists a feedback control law
in (3) such that for any , the

corresponding closed-loop control system (1) with (3) is
globally stable in the sense that

ii) If , then for any feedback control law in
(3) and any , there always exists some
such that the corresponding closed-loop system (1) with
(3) is unstable, i.e.,

Theorem 2.4 shows that the critical value of the capability of
feedback for stabilizing unknown systems lying in the set
is , higher than for ,
thanks to the additional condition (ora priori information) on
the unknown function .

Similar to the previous case, we can also design a concrete
feedback law to stabilize (1) with . Again,
our objective is to make the system outputs track a de-
sired bounded sequence of reference signals which satis-
fies (14).
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For (1) with , because of the “symmetry” of the
information provided by (29), we replacedefined in (16) by

(30)

We still adopt the estimate of defined by (17), i.e.,

(31)

but here is defined by (30).
If we define the control law as

(32)

then it can be shown that this feedback law is globally stabilizing
and the tracking error bound is the same as that in Theorem 2.2
[see the proof of Theorem 2.4 i) in Section IV].

III. SOME AUXILIARY LEMMAS

In this section, we present some auxiliary lemmas which will
be needed in the proofs of the main theorems stated in the last
section.

Lemma 3.1:Let and be two
constants. If a sequence satisfies

(33)

with and , then there exists some , such
that if , there exists some such that

and (34)

Proof: We adopt the contradiction argument and follow
some proof ideas in oscillation theory (cf. [45]). Suppose that

(35)

Then it is obvious that and .
Hence, dividing both sides of (33) by , we have

Now, if we denote , then we have

From this, it is easy to see that provided that .
Futhermore, the above inequality can be rewritten as

(36)

Now, by the elementary method in calculus, it can be shown
that

Hence, for any there exists a constant small
enough such that whenever

Consequently, by (36)

From this we will get a contradiction if we taketo be any
(fixed) value in the interval . Hence, (35)
is not true and the proof of the lemma is completed.

Lemma 3.2:Let be a constant. If a sequence
satisfies

(37)

with , then is strictly increasing and tends
to infinity, i.e.,

and (38)

Moreover

(39)

Proof: Since for
, the following quadratic equation:

has two real roots, which are denoted byand . Then we
have

(40)

(41)

From (40) and (41), it is clear that and . Now
we prove that and . Otherwise, if, for example,

, then by (41). Hence by (40), .
Consequently, by (40) again and , we have

which contradicts to (41). Hence and .
By (40) and (41) we rewrite (37) as

Iterating this inequality gives

So by , we have

and (42)

Hence by , (38) holds.
Now by the symmetry of and in (40), we may assume

. Then by (42) and the fact that

for
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we have

which is (39). Hence the proof of Lemma 3.2 is completed.
Lemma 3.3:Let and be

constants. If a nonnegative sequence satisfies

(43)

where , then

(44)

Proof: We adopt the contradiction argument. Suppose that

(45)

We first show that

(46)

Actually, if (46) were not hold for some , then by (43)
we would have . Hence (46) does not hold for
too. Repeating this argument, we see that (46) does not hold for
any and that for any . This contradicts
our supposition (45). Hence (46) holds.

Now, by (46), we can rewrite (43) as

(47)

By (45), (47), and , we know that .
Hence, there exists some such that

and (48)

where is defined in Lemma 3.1. Moreover, we can choose
a strictly increasing subsequence from

such that and

(49)

Then by (47)–(49), we have for

(50)

Let , and , then
and hence by (50)

Thus, we have , and

From this, by Lemma 3.1 and (48), we have for some
. Then we must have

(51)

which contradicts .
Hence the supposition (45) is incorrect and Lemma 3.3

holds.
Lemma 3.4: If a sequence is bounded, i.e.,

, then

(52)

where

(53)

Proof: We adopt the contradiction argument. Suppose that

(54)

Then there exists a subsequence such that

So by definition (53), we have

Therefore , or for any
, we have , which means that

has no convergence points, and hence obviously contradicts to
. Therefore (54) is incorrect and Lemma 3.4

holds.
The above four lemmas will be used in the proofs of Theo-

rems 2.1 and 2.2, while the following three lemmas are needed
in the proof of Theorem 2.4. Since the proof ideas of the fol-
lowing Lemmas 3.5–3.7 are similar to those given above, we
place the proof details in Appendix B.

Lemma 3.5:Let . If a sequence
satisfies

(55)

with and , then there exists some , such
that for any , there exists some such that

and (56)

Lemma 3.6:Let . If a sequence satisfies

(57)
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with , then is strictly increasing and
tends to infinity, i.e.,

and (58)

and moreover

(59)

Lemma 3.7:Let , and be
any bounded sequence. If a nonnegative sequence
satisfies

(60)

with any , then

(61)

IV. PROOFS OF THETHEOREMS

Proof of Theorem 2.1

First, we introduce some notation, which will also be used in
the proof of Theorem 2.2. Denote

(62)

and

(63)

where and are defined in (15). Since by the
definition (15)

and

we know that the interval sequence is nonde-
creasing and that is also an interval (can be a null set)
and

and (64)

For any point and any set , define a distance
function as

(65)

and if , we rewrite as .
Then it is clear that .
The first conclusion i) follows naturally from Theorem 2.2

whose proof will be given later. Here we only give the proof for
the second conclusion ii).

We will show that if , then for any given feed-
back control law , there always exists some

such that the corresponding closed-loop system (1) with
this is unstable.

For the sake of convenience, the standard Lipschitz condition
is stated explicitly as

By (9), we have

satisfies condition C2) (66)

We divide the following proof into four steps.
Step 1: First, for any and could be

any value on , so we have

(67)

where denotes the null set. Then, for any ,
we have

and (68)

Then, . Hence, for any
and any

From this, it is obvious that

(69)

Now define

if

otherwise.

By (67), (68), we have and for all

const. either or (70)

Also for any , by (1) and (69) we have

(71)

where and are defined as in (63).
Obviously, is

constant for any .
Let . Then is constant for all

.
Under condition C2), for could be any value

in the following interval by (71):

Step 2: Next, we define

(72)

For any and , we have

and (73)

Then . Hence, for any
and any
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Fig. 3. Illustration of (74).

From this, it is obvious that

where are defined in (15). Furthermore, by the definition
(65), we have (see, e.g., Fig. 3)

(74)

Now define

if

otherwise.

It follows from (72), (73) that and for all

const. (75)

Moreover, for any , by (1) and (74) we have

(76)

where the last inequality follows from and
, and where is defined as in (63). By (75) and

(76), is constant for all .
Since , we have . Now, denote

if
if

(77)

we then have .

Let . By (70), (75), and , we know that
and are constant for all . Hence by the

definitions of and , we know that is also constant
for all .

Consequently, for any , under condition C2),
could be any value in the interval

Step 3: Continue the above procedure and recursively define
for

with and being constants for all
. Also, define

if

otherwise.

Similar to (75) and (76), we know that for any is
constant and

(78)

where the last inequality follows from Lemma 3.2 [by setting
in (39)].

Since , we have . Similar to
(77), we denote

if
if

(79)

then , which
is also constant for all .

Let . Then obviously, is constant for all .
Consequently, under condition C2), for could

be any value on the interval

Step 4: Finally, we prove that .

If this were not true, then both and
would be finite. Introduce a set

for

which is well-defined since implies
for and since is independent of the particular choice
of .

Now, define a function as

linear interpolation of
with

Note that for any , by ,
we have for and

Hence it is easy to see that and thus .
Also it is obvious that . Consequently, for

any , by (71), (76), and (78), we have , and

which can be rewritten as
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Fig. 4. Illustration ofy 62 B .

by using

with .
Therefore, by Lemma 3.2, we have , i.e.,

. Hence the conclusion of Theorem 2.1 ii) is
true.

Proof of Theorem 2.2

We divide the proof into five steps.
Step 1: We analyze some properties of the notations (62),

(63).
First, it is clear that (see, e.g., Fig. 4)

if

if

Then since ,
we have

(80)

Now we proceed to prove that

(81)

where is defined in (16). We consider two cases separately.
Case (1): If , then by definitions (15), (16), (62),

and (63), we have (see Fig. 4 with replaced by)

Case (2): If , then by (64), we know
for some . Then by (16) we have

for the same

Combining the two cases above, we see that (81) is true.
Step 2: We proceed to find a recursive inequality on

.
By (1) and (19)–(21), we have

if

if

Hence by (18), we know that if , then

(82)

and if , then

(83)

Now, if for some , then by (80) and (82),

Hence by (2) and the definition of , we have

Furthermore, since and , by (13) we
know that there exist some satisfying
and some , such that . Hence, by (9) we have

(84)

Consequently, by (63), we have

Therefore, by (63) and (81), we have

(85)

which holds for any with .
Step 3: We now prove that for any , there exists some

such that

(86)

where is defined in (14).
First, there must exist some such that .

Otherwise, if

(87)

then by (85),

Then by Lemma 3.3, , i.e.,
. Thus by the definition of , we have
. Consequently, by Lemma 3.4, we have

, which contradicts to (87). Hence, there
exists such that . Therefore by (83), we
have for

(88)

From which we arrive at (86) by setting .
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Step 4: We prove the boundedness of the whole sequence
.

Define

(89)

Then by (86), we have .
Let . By (89), we have

Then by Lemma 3.4 with defined as in (53), we have
. Thus there exists some such

that for all

i.e.,

Consequently, for any

where .
Hence by (83) we have for any

So by (89)

which implies that

(90)

Step 5: Finally, we give an upper bound for the asymptotic
tracking error.

From (90), by Lemma 3.4 again, we have

(91)

Hence there exists some such that

Finally, by (83) and (91), we have for

as

which is a tantamount of Theorem 2.2. Hence the proof is
completed.

Proof of Theorem 2.3

First, we rewrite (26) into a recursive form.
Define

(92)

Then by (24), we have

for (93)

Next, for any , define

(94)

Then for any , recursively define as

if

otherwise.
(95)

where .
By simple manipulations, it is easy to see that if for some

, then

(96)

Now, when , by (25), (93), and (94), we have

for (97)

Hence by (96), we can rewrite (26) as

if (98)

For and , by the definitions of and ,
we have . Furthermore, since with

, by (13) we know that there exist some
satisfying and some , such that

Hence, by the definition (9) we have for and

Therefore, when and , by (96)–(98)
and (1) we have

(99)

Note that when , by (1), (21), and (27) the
closed-loop equation is

(100)
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Comparing this with (83) and going through the proof of The-
orem 2.2, we see that the first four steps of the proof there are
also applicablemutatis mutandisto the present case. Hence, by
the conclusion of Step 4 there, we have for some

(101)

Therefore, by Lemma 3.4 we know that there exists some
such that

(102)

To get the desired result (28), we introduce some notations:

and

By these definitions we know that . Also
by (101), we know that is a finite set.

We first analyze the case .

Denoting , by (99) and (102), we have
for

Hence by

we have

as (103)

Next, let , then there is some such that
.
Similar to (99), when , we know that for any

, there exists some such that

(104)

For any , by the law of large numbers for martingales,
we have from (22) and that

as (105)

Then by (102), (104), and (105), we have

(106)

Consequently, by (100), (102), (103), and (106), we have

(107)

Finally, since is arbitrary, by (107) we have

which is the desired conclusion (28).

Proof of Theorem 2.4

i) Sufficiency: We need only to show that if with
, then the feedback law defined by (32) is stabilizing.

By (1) we have

Then by (31), we have

(108)

Now, denote

(109)

It easy to verify (cf., Appendix A) that for defined by (29)

(110)

and that for any

(111)

Hence for any and any , there exists some
, such that

(112)
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Since with , by (112) we know that there
exist and such that . Hence, by
(109), (108), we have

Furthermore, by (1), (30), and (32), we have

Then by Lemma 3.7 (setting and ),
we have

which proves the stability part of Theorem 2.4 and also estab-
lishes the tracking error bound.

ii) Necessity:We will show that if , then for any
given feedback control law , there always exists some

such that the corresponding closed-loop
system (1) with this is unstable.

To find such an (depending on ), our method
is to construct a sequence of nonincreasing nonempty sets

(depending on ) such that
is strictly increasing for any . The construction

techniques are similar to those in the proof of Theorem 2.1 ii),
save that Lemma 3.2 there is replaced by Lemma 3.6 and that
instead of (67) we start with the following initial sets:

(113)
The details will be not repeated.

V. CONCLUDING REMARKS

Feedback and uncertainty are two basic concepts in automatic
control. To explore both the full capability and the potential lim-
itations of feedback in controlling nonlinear systems with large
structural uncertainty is not only of fundamental importance in
feedback theory, but also instrumental in understanding how in-
telligent a control system can be.

In this contribution, a quantitative study on the relationship
between these two concepts (defined in the most general way)
has been initiated for the benchmark system (1) where the func-
tion is assumed to be completely unknown. By introducing
a suitable norm in the space of all mappings, we have
established a series concrete results concerning the capability,
limitation and performance of feedback. In particular, we have
found and demonstrated that the maximum uncertainty that can
be dealt with by feedback is a ball with radius in this
normed function space.

There are many problems remain open in this vital field. First,
it is desirable to study uncertain nonlinear control systems more
complicated than the basic model (1), for example, high-order
systems with uncertainties coupled with the input. Second, it
would also be of considerable importance to study hybrid con-
trol systems consisting of continuous-time nonlinear plants and

sampled-data feedback controllers withprescribedsampling pe-
riod. Some progress has been made in this direction recently
in [38], but more efforts are still needed. Finally, a more chal-
lenging problem is to find a suitable framework within which
the issue of establishing a quantitative relationship amonga
priori information, feedback performance and computational
complexity can be addressed adequately and rigorously.

APPENDIX A

Proof of (11) and (12)

For any , by condition C1), we have

Then by (4), it is easy to verify that , i.e., .
Hence, (11) holds.

To prove (12), let , we then have . Then
by (4), for any , there exists some such that

Hence, we have

Denote , then , and (12)
holds.

APPENDIX B

Proof of Lemmas 3.5–3.7

Proof of Lemma 3.5:The proof idea is similar to that of
Lemma 3.1. Suppose that

(114)

Then it is obvious that and .
Hence, dividing both sides of (55) by , we have

Now, if we denote , then we have

From this, it is easy to see that provided that
. Futhermore, the above inequality can be rewritten as

(115)

Now, similar to the proof of Lemma 3.1, it can be shown by
using that there exists a positive constantdepending
upon such that whenever

which obviously contradicts to (115), and hence (114) is not true
and the proof of the lemma is completed.
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Proof of Lemma 3.6:Since for ,
the quadratic equation has two real roots,
which are denoted by and . Then

(116)

(117)

It is obvious from (116) and (117) that and .
Now we prove that and . Otherwise, if ,
then by (117), which contradicts to (116). Hence
. Similarly, .
By (116) and (117) we rewrite (57) as

Then

So by , we have

and (118)

Hence by , (58) holds.
Now by (116), we may assume (otherwise,

, and the arguments are similar). Then by (118) and the fact
that , for , we have

which is precisely (59).
Proof of Lemma 3.7:First we prove that

(119)

We adopt the contradiction argument. Suppose
, then we could choose a strictly increasing subsequence

from such that , and

and

for (120)

Let . We now show
that

(121)

By (120), we have . So we need only to
consider the following two cases:

Case (1): . In this case, there exists some
such that

(122)

where, . Also we have , which implies
that . By this and (122), we have

Case (2): . In this case, by
, we have

Combining Case (1) and Case (2), we see that (121) holds.
Now, by (60) and the boundedness of , we have for some

Then we have

Hence by (121), we have

Therefore, by , we have

From this, by using the same arguments as (47)–(51) in the
proof of Lemma 3.3 and by Lemma 3.5, we have for some ,

, which contradicts to our definition of . Hence (119)
holds.

Consequently, by Lemma 3.4, we have
. Hence (61) follows from (60), and the proof of

Lemma 3.7 is completed.
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