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A Network Information Theory for Wireless
Communication: Scaling Laws and Optimal

Operation
Liang-Liang Xie, Member, IEEE, and P. R. Kumar, Fellow, IEEE

Abstract—How much information can be carried over a wireless
network with a multiplicity of nodes, and how should the nodes
cooperate to transfer information? To study these questions, we
formulate a model of wireless networks that particularly takes into
account the distances between nodes, and the resulting attenuation
of radio signals, and study a performance measure that weights
information by the distance over which it is transported.

Consider a network with the following features.
i) nodes located on a plane, with minimum separation dis-

tance min 0.
ii) A simplistic model of signal attenuation over a distance

, where 0 is the absorption constant (usually positive,
unless over a vacuum), and 0 is the path loss exponent.

iii) All receptions subject to additive Gaussian noise of variance
2.

The performance measure we mainly, but not exclusively, study
is the transport capacity := sup

=1
, where the

supremum is taken over , and vectors ( 1 2 . . . ) of fea-
sible rates for source–destination pairs, and is the distance
between the th source and its destination. It is the supremum dis-
tance-weighted sum of rates that the wireless network can deliver.

We show that there is a dichotomy between the cases of relatively
high and relatively low attenuation. When 0 or 3, the rel-
atively high attenuation case, the transport capacity is bounded by
a constant multiple of the sum of the transmit powers of the nodes
in the network. This shows that there is a positive lower bound
on the energy price in joules per bit-meter of information trans-
port. If the nodes are individually power limited, the transport ca-
pacity consequently scales as ( ). This order is, in fact, sharp,
i.e., the transport capacity is �( ), for regular planar networks
where the nodes are situated at integer lattice sites in a square. Con-
sider now the “multihop” strategy where packets are routed over
possibly multiple paths, and, along each path, packets are relayed
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from node to node with full decoding of each packet at each hop,
treating all interference as noise, i.e., employing only point-to-point
coding. This strategy is an order optimal strategy when the relaying
burden can be balanced across the nodes, with no hop being too
long. Or, in a randomly picked scenario, if nodes in a regular planar
network randomly choose destination nodes, then the maximum
common throughput that can be furnished to all nodes by multihop
transport is nearly order optimal with respect to the transport ca-
pacity, differing only by a factor 1 log . Hence, up to order,
there is no need for network coding or multiuser estimation. Thus,
information theory can shed some light on what is an order-optimal
architecture for wireless networks in situations where the load can
be nearly balanced across nodes. In particular, the order optimality
or near order optimality of multihop transport in such scenarios is
of interest because much protocol development activity currently
is actually aimed at realizing this strategy.

However, when = 0 and 3 2, the low-attenuation case,
we show that there exist networks that can provide unbounded
transport capacity for fixed total power, yielding zero energy
priced communication. When nodes lie on a straight line and

1 (a physical impossibility in the three-dimensional world,
but perhaps the examples can be generalized to a plane with
larger values of ), there are networks which can even attain
superlinear scaling �( ) for 2. Both these results are
achieved by a strategy of coherent multistage relaying with
interference subtraction. These examples show that nodes can
profitably cooperate over large distances using coherence and
multiuser estimation when the attenuation is low. These results
are established by developing a coding scheme and an achievable
rate for Gaussian multiple-relay channels, a result that may be of
interest in its own right.

Index Terms—Ad hoc networks, capacity of wireless networks,
multihop transport, multiuser information theory, network infor-
mation theory, scaling laws, transport capacity, wireless networks.

I. INTRODUCTION

THE focus of this paper is on wireless networks formed
by nodes with radios. This includes ad hoc networks,

currently the subject of great interest, the protocols for which
are under intense development [1]–[7]. Since wireless networks
may possibly play an important role in future communication
networks, sensor networks, and sensor-actuator networks, it
is important to understand what such networks are capable of
doing, and how to operate them to maximize their capabilities.
The goal of this paper is to develop an information theory for
wireless networks to guide us in this process.

The two fundamental questions of interest are as follows.

i) How much information can wireless networks transport?
ii) How should one operate wireless networks?
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Fig. 1. The broadcast channel.

Fig. 2. The multiple-access channel.

Fig. 3. A system with two transmitters and two receivers.

Fig. 4. The simplest relay channel.

A. Motivation and Background

It is a triumph of information theory that the capacity regions
for even some systems have been characterized. The two promi-
nent ones are the scalar Gaussian broadcast channel [10]–[13];
see Fig. 1, and the multiple-access channel [14], [15] shown in
Fig. 2. More recently, for a network with a single source–des-
tination pair, the asymptotic rate has been characterized as the
number of nodes in a bounded domain is increased, while ex-
cluding them from open neighborhoods of the source and desti-
nation; see [16].

However, little else is known. The capacity region of even the
simple four-node system with two sources and two receivers
shown in Fig. 3, the so-called interference channel originally
studied by Shannon (see [18], [19]), is unknown when the in-
terfering powers are moderate rather than large or small. Also,
unknown is the capacity of the simplest relay channel [20]–[22]
shown in Fig. 4, consisting of just three nodes, a source, a relay,
and a destination. Even in a simple four-node network with just
two parallel relays, shown in Fig. 5, strategies which are very
different in nature have to be considered for different parameter
values [23].

In fact, when one turns to networks with even a few nodes, the
possibilities for cooperation are very complex, and essentially

Fig. 5. A four-node network with two parallel relays.

nothing is known. Elementary modes of cooperation such as re-
laying, though already confounding efforts at a solution to date,
only scratch the surface, and do not come close to exhausting the
possibilities for interaction between a large number of nodes in
a network. For example, a node could attempt to actively cancel
the interference created by a second node at a third node. This
is a form of cooperation where the first node attempts to de-
crease the denominator in the signal to interference plus noise
ratio (SINR) of the third receiver rather than boosting the numer-
ator. Nodes can simultaneously serve several functions such as
relaying, broadcast, interference canceling, and other undreamt
of possibilities. As observed in [17], the union between informa-
tion theory and networks is not consummated, and in our view
the two have actually been somewhat estranged.

Given this ocean of ignorance, what can one then say about
much more complicated networks of the type shown later in
Figs. 6 or 8, where there are several source–destination pairs
among an arbitrarily large finite number of nodes, all cooper-
ating in whatever ways are imaginable to maximize information
transfer?

An attempt to address some of the issues raised above
was made in [8] under an assumption on how the technology
operates. However, to an information theorist, the answers are
not conclusive as to what are the ultimate limits to feasibility.
The reason is that, in [8], all interference is essentially re-
garded as noise, and models considered there presuppose that
signals or packets are correctly received only if either there
are no “collisions” with other packets being simultaneously
transmitted by other nodes in the vicinity of the receiver, or the
received signal-to-noise-plus-interference ratio is large enough,
or the received rate is related to the SINR (see [9] for details
on the latter), i.e., only point-to-point coding is considered.
However, assumptions and constructs such as “collision,” or
“signal-to-noise-plus-interference ratio,” are arbitrary. While
they may well model how current technology operates, e.g.,
current wireless cards, and thus tell us what is feasible with
such technology, they do not tell us what are the ultimate limits
to information transfer in future wireless networks. The reason
is simply that interference need not be interference—it can
carry information. For example, it is well known from even
the simple model of two transmitters and two receivers, see
Fig. 3, that if there is excessive interference from an interfering
transmitter, then that is in fact good, because the interfering
signal can first be decoded perfectly, and then subtracted from
the received signal, thus eliminating the interference.

Therefore, one wishes to study wireless networks without
making arbitrary and preconceived assumptions about how they
are to operate. Thus, it is that one turns to information theory for
answers to the questions: How much information can wireless
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networks transport, and how should they be operated? This is
the subject of the present paper.

B. Summary and Implications of the Results

To study these questions, we formulate an information-theo-
retic model of wireless networks which is somewhat richer than
is usual in network information theory. We explicitly model dis-
tances between nodes, and attenuations of radio signals. We con-
sider a model where nodes are located on a plane with a min-
imum separation distance between them, with each node having
an individual power constraint (or a total power constraint is
placed on all nodes). Attenuation of radio signals over a dis-
tance is simplistically modeled as . Distance also plays
an important role in the performance metric that we chiefly
(but not exclusively) study, the transport capacity, which is the
supremum distance weighted sum of rates that the network can
support.

Briefly, our results are the following (see Theorems 3.1–3.12
for precise details).

i) With denoting the number of nodes, the transport ca-
pacity grows like when or . In fact,
generally , i.e., there is absorption, unless transmis-
sion is over a vacuum; see [24]. So this situation may be
the commonly prevailing case, though may be small.

ii) The above is established by showing that the transport ca-
pacity is upper-bounded by a multiple of the total trans-
mission powers of all the nodes, when or .
Thus, there is a lower bound on the energy price in joules
per bit-meter of information transport. This result may
be of interest in its own right, since, given any traffic
demand to be carried by the network and the distances
between sources and destinations, it provides a lower
bound on the energy consumption necessary to fulfill
this communication demand. Such bounds may be useful
in the future for energy-limited communication applica-
tions such as sensor networks, and the preconstant in-
volved is worth sharpening.

iii) Currently, much protocol development activity is cen-
tered around realizing the following mode of operation,
which we will refer to as “multihop” for brevity: Traffic is
routed over possibly multiple paths, and, along each path,
packets are relayed from node to node after being fully
decoded and thus regenerated at each hop, treating all in-
terference as noise, i.e., employing only point-to-point
coding. The multihop mode is of interest because it is
relatively simple to implement in that it does not re-
quire multiuser estimation or network coding or coherent
cooperation. We show that this multihop strategy is an
order-optimal or nearly order-optimal strategy for infor-
mation transport, under some scenarios when or

. As one instance of such a scenario, if nodes are lo-
cated at integer lattice sites in a square, which we refer to
as a regular planar network, and nodes randomly choose
destinations, then multihop transport is nearly order op-
timal, differing at most by a factor from the op-

timal order. Alternatively, if traffic can be load balanced
across the network by multipath routing with bounded
distance traversed at each hop, then the scaling law in i)
is sharp, i.e., the transport capacity order is , and it
is achieved by multihop transport. Overall, the theme of
these results is to provide justification for the use of mul-
tihop in situations where the load is balanced, or nearly
balanceable across nodes by using multipath routing if
necessary. These information-theoretic results thus at-
tempt to shed some theoretical light on what is the ar-
chitecture for information transport, in an order-optimal
sense, for random or load-balanced scenarios. It should
be noted that the situations network information theory
has been successfully able to resolve in the past are the
two extreme bottlenecked cases of the multiple-access
channel and the scalar Gaussian broadcast channel. In
the former, the destination is the bottleneck, while in the
latter, it is the source. In contrast, in networks, one gen-
erally wishes to use all network-wide resources, and sup-
port traffic demands all over the network. Our results are
aimed at such situations, and attempt to connect infor-
mation theory to the world of networking by providing
some strategic guidance for such contexts, albeit only in
order-optimal sense with bounds on preconstants.

iv) There is a dichotomy between the relatively high and low
attenuation cases. When and , there are
networks where unbounded transport capacity can be ob-
tained for a fixed total power. In fact, for nodes on a line
with (an impossibility in the three-dimensional
world), there are networks where the transport capacity
scales superlinearly like for . These
results suggest that the low-attenuation regime may be
quite different from the high-attenuation regime.

v) The strategy achieving the results in iv) is coherent mul-
tistage relaying with interference subtraction (CRIS).
This result shows that nodes may be able to profitably
cooperate over long distances by using coherence and
multiuser estimation, when the attenuation is low. Thus,
other architectures for information transport, different
from multihop, arise as interesting candidates when the
attenuation is low. Thus, information theory provides
some strategic guidance.

vi) To exhibit the results in iv) and v) we provide a new
coding scheme and an achievable rate for Gaussian mul-
tiple-relay channels. This scheme and result may be of
interest in their own right.

The remainder of this paper is organized as follows. In Sec-
tion II, we detail the models considered, and in Section III the
main results, with nothing but proofs in Section IV. Some con-
cluding remarks are made in Section V.

II. MODEL OF WIRELESS NETWORKS

We consider the following model of a wireless network,
called a planar network (see Fig. 6).
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Fig. 6. A planar network: n nodes located on a two-dimensional plane, with
minimum separation distance � .

1) There is a finite set of nodes located on a plane.

2) There is a minimum positive separation distance be-
tween nodes, i.e., , where is
the distance between nodes .

3) Every node has a receiver and a transmitter. At time in-
stants , node sends , and receives

with

where , , are Gaussian indepen-
dent and identically distributed (i.i.d.) random variables
with mean zero and variance . The constant
will be called the path loss exponent, while will
be called the absorption constant. A positive generally
prevails except for transmission in a vacuum, and cor-
responds to a loss of decibel per meter; see
[24].

4) Denote by the power used by node . We will
study two separate constraints on :

Total Power Constraint

or

Individual Power Constraint

for

5) The network can have several source–destination pairs
, , where are nodes in with
, and for . If ,

then there is only a single source–destination pair, which
we will simply denote by .

Essentially, this is the network version of the classical addi-
tive white Gaussian noise (AWGN) channel, with signals attenu-
ated by distance, and possibly multiple source–destination pairs.
The model explicitly incorporates the distance between nodes,
and signal attenuation as a function of distance. This feature is
important for our results.

A special case is a regular planar network where the nodes
are located at the points for ; see Fig. 7.
This setting will be used mainly to exhibit achievability of some
capacities, i.e., inner bounds.

Another special case is a linear network where the nodes
are located on a straight line, again with minimum separation
distance ; see Fig. 8. The chief reason for considering linear

Fig. 7. A regular planar network: n nodes located on a plane at (i; j) with
1 � i; j � pn.

Fig. 8. A linear network: n nodes located on a line, with minimum separation
distance � .

Fig. 9. A regular linear network: n nodes located on a line at 1; 2; . . . ; n.

networks is that the proofs are easier to state and comprehend
than in the planar case, and can be generalized to the planar case.
Also, the linear case may have some utility for, say, networks of
cars on a highway, since its scaling laws are different.

A special case of a linear network is a regular linear network
where the nodes are located at the positions ; see
Fig. 9. This setting will also be used mainly to exhibit achiev-
ability results.

A. Definition of Feasible Rate Vectors

The following definition of feasible rates is standard. It cap-
tures the complicated interplays possible in a large number of
nodes with multiple source–destination pairs, and intrinsically
allows for all causal feedbacks, thus including all strategies for
information transport. The distances between nodes, the atten-
uations, and the signal and noise powers, are all known a priori
to all the nodes.

Definition 2.1: Consider a wireless network with multiple
source–destination pairs , , with ,
and for . Let
denote the set of source nodes. The number of nodes in may be
less than , since we allow a node to have originating traffic for
several destinations. Then a code
with total power constraint consists of the following.

1) independent random variables with
, for any , . For

any , let

and
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2) Functions

for the source nodes and
for all the other nodes , such that

such that the following total power constraint holds:

a.s. (1)

3) decoding functions

for the destination nodes of the source–destination
pairs , where is the
number of different values can take. Note that
may be empty.

4) The average probability of error:

(2)

where , with

Definition 2.2: A rate vector is said to be fea-
sible for the source–destination pairs ,
with total power constraint , if there exists a sequence of

codes satisfying the total power
constraint , such that as .

The preceding definitions are presented in the context of a
total power constraint . However, if an individual power
constraint is placed on each node, then one simply needs
to replace the constraint (1) by

a.s., for (3)

and correspondingly modify the rest of the definitions to define
the set of feasible rate vectors under an individual power con-
straint.

B. The Transport Capacity

It is traditional in information theory to study the capacity
region, which is the closure of the set of all such feasible vector
rates. We will, however, focus mainly on the distance-weighted
sum of rates introduced in [8].

Definition 2.3: The network’s transport capacity is

where for brevity denotes the distance between
and , and .

This is the supremum distance-weighted sum of rates that the
network can deliver. The units in which it is measured is bit-
meters per second, or bit-meters per slot. When one bit has been
successfully received by a destination at a distance of one meter
from the source of that bit, we say that the network has pumped
one bit-meter.

This transport capacity is of interest for three different rea-
sons. The first reason is that the transport capacity is indeed of
interest in its own right as a natural measure of the distance
hauling capacity of wireless networks. It is analogous to the
man-miles/year metric used, for example, by airlines. It pro-
vides a single number which summarizes what a network can
deliver, and is thus a useful quantity for designers to keep in
mind.

Second, we will show under conditions detailed in the sequel
that the transport capacity follows a scaling law. This is akin
to a conservation law and is thus a hard constraint on what the
wireless network can deliver, regardless of whether the transport
capacity is of prima facie interest in its own right. Thus, for
example, some rate vectors can be ruled out as impossible to
support if their corresponding distance-weighted sum of rates
exceeds the upper bound on the transport capacity.

Third, whenever a rate vector is feasible, and is such that its
distance-weighted sum of rates is close to the transport capacity,
then one can rest assured that the network is being operated
close to capacity. We will see that this situation actually holds,
up to order, for certain scenarios, and in such cases one is conse-
quently assured that the strategy which supports that rate vector
is order optimal. Thus we can provide some answers to what
are order optimal strategies for wireless networks, and thereby
attempt to bridge the gap between information theory and net-
working.

On the other hand, being a single number, the transport ca-
pacity does not provide full information on the complete set of
rate vectors that can be supported. However such a complete
characterization is difficult in general, and has certainly defied
attempts to date.

III. THE THEOREMS

Our main results can be grouped into four categories.

A. Upper bounds under high attenuation.
B. Multihop and feasible lower bounds under high atten-

uation.
C. The low-attenuation regime.
D. The Gaussian multiple-relay channel.

A. Upper Bounds Under High Attenuation

i) The transport capacity is bounded by the network’s
total transmission power in media with or .
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It is well known from Shannon’s work that for a single link
, the rate is bounded by the received power at . What

is interesting in wireless networks is that the transport capacity
is upper-bounded by the total transmitted power used by
the entire network.

Theorem 3.1: In any planar network, with either positive ab-
sorption, i.e., , or with path loss exponent

where (4)

if

if and .

(5)

ii) The transport capacity follows an scaling law
under the individual power constraint, in media with
or .1

A corollary of the above theorem is as follows.

Theorem 3.2: Consider any planar network under the indi-
vidual power constraint . Suppose that either there is some
absorption in the medium, i.e., , or there is no absorption
at all but the path loss exponent . Then its transport ca-
pacity is upper-bounded as follows:

(6)

where is as in (5).

For nodes located in an area of square meters, it is shown
in [8] that the transport capacity is of order under a
noninformation theoretic protocol model. If itself grows like

, i.e., , then the scaling law is ,
which coincides with the information-theoretic scaling law here.
In fact, must grow at least this rate since nodes are separated
by a minimum distance , i.e., , and so the

result here is slightly stronger than the result in
[8].

iii) The following are the corresponding results for linear
networks.

Theorem 3.3: If either or in any linear network,
then

where (7)

if ,

if and .

(8)

1We use Knuth’s notation: f = O(g) if lim sup < +1; f =


(g) if g = O(f); f = �(g) if f = O(g) as well as g = O(f). Thus, all
O(�) results are upper bounds, all 
(�) results are lower bounds, and all �(�)
results are sharp order estimates for the transport capacity.

Theorem 3.4: For any linear network, if either or
, then the transport capacity is upper-bounded as follows:

where is as in (8).

B. Multihop and Feasible Lower Bounds Under High
Attenuation

iv) The upper bound on transport capacity is tight
for regular planar networks in media with or ,
and it is achieved by multihop.

By a “multihop strategy” we mean the following. Let de-
note the set of all paths from source to destination , where
by such a path we mean a sequence

with for . The total traffic rate to be provided
to the source destination pair is split over the paths in

in such a way that if traffic rate is to be carried over
path , then . On each path , packets are re-
layed from node to next node. On each such hop, each packet
is fully decoded, treating all interference as noise. Thus, only
point-to-point coding is used, and no network coding or mul-
tiuser estimation is employed. Such a strategy is of great interest
and it is currently the object of much protocol development ac-
tivity.

The following result implies that when or , the
sharp order of the transport capacity for a regular planar network
is , and that it can be attained by multihop.

Theorem 3.5: In a regular planar network with either
or , and individual power constraint

where

if ,

if and

and denotes the Shannon function

This order of distance weighted sum of rates is achievable by
multihop.

v) Multihop is order optimal in a random scenario over a
regular planar network in media with or , pro-
viding some theoretical justification for its use in situations
where traffic is diffused over the network.

Theorem 3.6: Consider a regular planar network with either
or , and individual power constraint . The

source–destination pairs are randomly chosen as follows: Every
source is chosen as the node nearest to a randomly (uniformly
i.i.d.) chosen point in the domain, and similarly for every desti-
nation . Then

is feasible

for every
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for some . Consequently, a distance weighted sum of rates

is supported with probability approaching one as . This
is within a factor of the transport capacity possible

when .

vi) A vector of rates can be supported
by multihop in a planar network in media with or

, if the traffic can be load balanced such that no node
is overloaded and no hop is too long.

This is a fairly straightforward result saying nothing about
order optimality, and is provided only in support of the above
theme that multihop is an appropriate architecture for balance-
able scenarios.

Theorem 3.7: A set of rates for a planar
network can be supported by multihop if no hop is longer than
a distance , and for every , the traffic to be relayed
by node

is less than

where

if

if and .

C. The Low-Attenuation Regime

We now turn to situations where there is absolutely no ab-
sorption, i.e., , and the path loss exponent is small. (The
precise low values for which the results below hold vary, and
are specified in the theorem statements.)

The following strategy for information transport, which we
call coherent relaying with interference subtraction (CRIS),
emerges as interesting in the scenarios that follow. For a
source–destination pair , the nodes are divided into
groups, with the first group containing only the source , and
the last group containing only the destination . Call the higher
numbered groups as “downstream” groups, though they need
not actually be closer to the destination. Nodes in group ,
for , dedicate a portion of their power to
coherently transmit for the benefit of node and its downstream
nodes. Each node employs interference subtraction during
decoding to subtract out the known portion of its received
signal being transmitted by its downstream nodes.

vii) In media with low attenuation, and ,
unbounded transport capacity can sometimes be obtained
for bounded total power, by using CRIS.

The following theorem shows that in some scenarios, zero en-
ergy priced communication can be provided by CRIS in regular
planar networks. This is in contrast with the high attenuation
regime.

Theorem 3.8:
i) If there is no absorption, i.e., , and the path loss ex-

ponent , then even with a fixed total power ,
any arbitrarily large transport capacity can be supported
by CRIS in a regular planar network with a large enough
number of nodes .

ii) If and , then even with a fixed total power
, CRIS can support a fixed rate for any

single source–destination pair in any regular planar net-
work, irrespective of the distance between them.

The following is the corresponding result for regular linear
networks.

Theorem 3.9:
i) If and , then even with a fixed total power

, any arbitrarily large transport capacity can be sup-
ported by CRIS in a regular linear network with a large
enough number of nodes .

ii) If and , then even with a fixed total power
, CRIS can support a fixed rate for any

single source–destination pair in any regular linear net-
work, irrespective of the distance between them.

viii) A superlinear scaling law with is
feasible for some linear networks when and .

Theorem 3.10: Consider and individual power con-
straint . For every ,2 and , there is a
family of linear networks for which the transport capacity is

(9)

This order optimal transport capacity is attained in these net-
works by CRIS.

D. The Gaussian Multiple-Relay Channel

The results for the low-attenuation regime rely on the
following results for the Gaussian multiple-relay channel.
Consider a network of nodes with the attenuation from
node to node (the nodes need not lie on a plane, and in fact
there need not even be a notion of distance), and i.i.d. additive

noise at each receiver. Each node has an upper bound
on the power available to it, which may differ from node to
node. Suppose there is a single source–destination pair .
We call this the Gaussian multiple relay channel.

ix) A new coding scheme and an explicit achievable rate
for the Gaussian multiple relay channel.

2Any value of � < 1 is impossible in the three-dimensional world, since � =
1 corresponds to the ideal inverse square law. In this case, however, the nodes lie
along a one-dimensional line, and perhaps the example here can be generalized
to a planar network with a larger value of �. One related issue to consider is
Olber’s paradox [25] on why the night sky is not bright. For a linear network
with individual power constraints, even if there is no absorption ( = 0), and
even if there are an infinite number of nodes, the total received power is finite at
every node if � > 1, or even if only � > provided the sources are incoherent.
That is, the night sky is not bright for these path loss parameters.
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These results may be of independent interest.
The first theorem addresses the case where each relaying

group consists of only one node. The strategy used is CRIS.

Theorem 3.11: Consider the Gaussian multiple-relay
channel with coherent multistage relaying and interference
subtraction. Consider nodes, sequentially denoted by

, with as the source, as the destination, and the
other nodes serving as stages of relaying. Then
any rate satisfying the following inequality is achievable
from to :

(10)

where satisfies .

Remark 3.1: For the network setting in Theorem 3.11, The-
orem 3.1 in [26] shows that a rate is achievable if there exist
some such that

and

for each , where

From the above, recursively for , it
is easy to prove that

For , this inequality is exactly (10), showing that we get
a higher achievable rate in Theorem 3.11.

Remark 3.2: The right-hand side (RHS) in (10) can be maxi-
mized over the choice of order of the intermediate nodes.

The relaying can also be done by groups, and the next result
addresses this. As above, maximization can be done over the
assignment of nodes to the groups.

Theorem 3.12: Consider again the Gaussian multiple-relay
channel using coherent multistage relaying with interference
subtraction. Consider any groups of nodes sequentially
denoted by with as the source,

as the destination, and the other groups as
stages of relay. Let be the number of nodes in Group

, . Let the power constraint for each node

in Group be . Then any rate satisfying the fol-
lowing inequality is achievable from to :

(11)
where satisfies , and

IV. NOTHING BUT PROOFS

We begin with a max-flow min-cut bound.

A. A Max-Flow Min-Cut Lemma

This lemma has a similar spirit to that of Theorem 14.10.1 in
[22]. But there are differences. First, here the bound (RHS of
(12)) is in terms of received power instead of mutual informa-
tion. Second, more importantly, there is an average over time in
the bound here, which better takes care of the dynamic nature of
the model we consider in this paper. When this lemma is applied
later in proving the upper bounds in Theorems 3.1–3.3, we will
see that this type of max-flow min-cut lemma is better suited for
Gaussian wireless networks without resorting to mutual infor-
mation terms.

Definition 4.1: Let . A source–destination pair
is said to cut if but .

Lemma 4.1: Let be any subset of . If is
a feasible rate vector with a sequence of

codes with as , then

(12)

where is the average power received by , from out-

side , for the code , i.e.,

(13)

Proof: First we introduce some notation

(14)

(15)

Denote

- cuts

We adopt the notation

and, similarly, for , , , and .
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Now we prove that the following forms a Markov chain:

- (16)

by showing that any element in is a deterministic function
of . This can be easily seen since for any

,

and for

Hence, by Fano’s lemma and (16), we have

-

where as .
Thus, we have the following chain of inequalities:

-

-

-

-

-

-

-

-

with

-

-

-

where the last two (in)equalities follow from the following two
Markov chains:

-

Hence, we have

Finally, letting in the above, and noticing , we
have (12).

B. The Total Power Bound and Linear Scaling Law Under
High Attenuation

We begin with the case of linear networks since the proof is
easiest in that case.

Proof of Theorem 3.3: First we consider the case
and .

Let denote the coordinate of the node . Apply Lemma
4.1 to the following subsets:

(17)

and we have for any

(18)
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(19)

Above, is the sum of the rates of all the pairs which cut
. is similarly defined.

Now, any source–destination pair with distance
between and cuts at least subsets

among . For example, if and
(the case where being analyzed

similarly), then cuts the subsets

By definition, is a summand in every

Hence, we have (noting )

(20)

Now we prove that

(21)

By (18), we only need to show that

(22)

with satisfying the total power constraint

a.s. (23)

The intuition behind the inequality (22) is that the summation
of the received powers is upper-bounded by the total transmitted
power.

We now establish (22) for the case where , as follows.
By (23), for , we only need to prove that for any

(24)

where

(25)

First, we observe that the left-hand side (LHS) of (24) is a
summation of infinite terms of the basic form ,
where is the appropriate coefficient. If every
is replaced with the larger value , it is easy
to see that

LHS of (24)

This, together with (25), would imply (24), as long as for any

(26)

For , (26) is established by the following chain of inequali-
ties: Letting , and noting that

we have

LHS of (26)

(27)

(28)

where we have used the fact that for any real and

(29)

Hence, (24) is established.
Thus, (21) follows. Similarly, we can prove

(30)

Finally, (7) follows from (20), (21) and (30).
Next we consider the case . It is easy to see from the

above that we only need to prove
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which can be easily established since for any

This completes the proof of Theorem 3.3.

Now we turn to the planar case.

Proof of Theorem 3.1: The proof is similar to that of The-
orem 3.3. Hence, we only mention the differences here.

Consider first the case and .
Let denote the coordinates of node . First,

Lemma 4.1 is applied to the following four classes of subsets:
for any

(31)

For example, for the class (31), we have

(32)

where is defined similarly to in the proof of The-
orem 3.3. , , and are also similarly defined.

In the planar case, for any source–destination pair
with distance between and , it is easy to see that it cuts
at least subsets among , , , ,

. Hence, we have the following inequality:

(33)

Now, we prove that

(34)

By (32), we only need to show that

(35)

or equivalently

(36)

with satisfying the total power constraint

a.s. (37)

The intuition behind the inequality (36) is that the summation of
the received powers is upper-bounded by the transmitted power.

We now establish (36) for the case where . By (37), for
, we only need to prove that for any

(38)

where

(39)

After replacing each by in the
LHS of (38), we only need to prove that the coefficient of any

is bounded by , i.e., for any

(40)

Using the fact3 that for any

(41)

since

we have for any ,

3Consider a triangle with d and r as the lengths of two sides with an angle �

between them. Then the third side has a length of (d +r �2rd cos �) by
the triangle formula. When d � 2, � 2 [� ; ] and 0 � r � 1, the length
of the third side is no more than d .
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where

and

Then we have for

LHS of (40)

Hence, (38) is proved. Thus, (34) follows. The remaining ar-
guments are similar to the proof of Theorem 3.3.

Next we consider the case . Similar to the linear case,
we only need to show that for any

This holds for

This completes the proof of Theorem 3.1.

The scaling law then follows.

Proofs of Theorems 3.2 and 3.4: The results for the case
of individual power follow directly from the case of
in Theorems 3.3 and 3.1 by noting that is also a
constraint.

C. Multihop and Feasible Rates Under High Attenuation

First we show that is a feasible transport capacity in
regular planar networks.

Proof of Theorem 3.5: We consider a regular planar net-
work where every node is a source, with its destination
chosen as one of its four nearest neighbors.

Each node independently generates its codebook with
Gaussian distribution with variance , where

. Every destination looks for the signals transmitted by its
source, treating all the other transmissions as Gaussian noise.
Hence, any rate satisfying the following is achievable for
every source–destination pair

provided is an upper bound on the interference, i.e.,

(42)

We now show this bound to be true irrespective of the number
of nodes in .

For the case and , this follows from the summa-
bility of the RHS of (42) for , since, irrespective of the
number of nodes in

Next consider the case . Then

Hence, the total achievable transport capacity is

for every , establishing the result of Theorem 3.5.
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The feasibility of a rate vector under multipath routing which
can load balance, without requiring too long hops, is fairly
straightforward.

Proof of Theorem 3.7: Note that the maximum distance
that a signal has to travel on any hop is . This can used to lower
bound the received signal strength. Moreover, we can prove that
the total interference at any node is bounded as follows:

Using the fact (similar to (41)) that for any

we have for and

and for

The rest of the proof follows as in the proof of Theorem 3.5.

Now we turn to the random case for regular planar networks.

Proof of Theorem 3.6: Suppose that source–destination
pairs are randomly chosen as follows: Choose points,

and , randomly (uniformly
i.i.d.) in the domain of the regular planar network, which is
a square of side . Now let and be the nodes
(which are located only at integral coordinates with

) nearest to and , respectively. Then the
source–destination pairs are .

To route the traffic, we follow the scheme of [8]. Construct an
axis parallel mini-square of side length centered around each
node. These mini-squares will play the role of the “cells” con-
sidered in [8]. Packets for a source–destination pair will
be relayed from node to node in the order that the straight line
joining and intersects the mini-squares. (Diagonal hops
occur with probability zero). Thus, each straight line
passing through a mini-square means that the node in the mini-
square (which by construction has exactly one node in it) has to
relay that route’s traffic to one of its four nearest neighbors.

Note that the straight lines are i.i.d.
(indeed, this is the reason for resorting to this construction of
source–destination pairs). Also, the probability that a straight

line passes through a given mini-square is less than ,
for some constant . Using the dimension bounds in [8] (since
each square can be enclosed in a circumscribing circle) in the

Fig. 10. The single-relay channel.

uniform weak law of large numbers of Vapnik–Chervonenkis
[27], it follows that

Every mini-square has no more than

straight lines passing through it as

Now suppose that every source–destination pair carries a traffic
of rate less than . Then

Every node needs to send no more than rate

to one of its four nearest neighbors as

However, as already shown in the proof of Theorem 3.5, in
a regular planar network, every node can indeed send at a fixed
positive rate to any one of its four nearest neighbors.

Thus, a rate of can indeed be supported for all the

source–destination pairs simultaneously, with probability ap-
proaching one as .

Finally, since there are sources, and the mean distance be-
tween a source and its destination is , it follows that a
transport capacity of is supported, again with proba-

bility approaching as .

D. The Gaussian Multiple-Relay Channel and Coherent
Relaying With Interference Subtraction

We now address the channel considered in Theorems 3.11 and
3.12, featuring a multitude of relays. Each stage of relay can be
either one node or a group of nodes.

To see the basic idea of our coding scheme, it is enough to
consider the simplest single-relay channel consisting of a source
node , relay node , and destination node , as in Fig. 10. Let

, , and denote the corresponding signal attenuation
factors.

The whole transmission time is divided equally into a se-
quence of blocks. In each block (except the first and the last),
node divides its power into two parts: and ,

, for different purposes. The part , used to inform
node of its intention for the next block, can achieve any rate

(by Shannon’s formula) satisfying

(43)

The other part is used to cooperate with the total
power of the relay node to coherently transmit signals to
node . This cooperation is possible since node has gotten to
know the intention of node from the previous block. Then what
node receives is the addition of three components: i) the signal
consisting of the coherent cooperation of and with power

; ii) the signal sent by intended
mainly for , with power ; iii) the noise with power .
Now, for the decoding at node , the following procedure is used
(the rigorous decoding argument uses jointly typical sequences;
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here, we only provide the intuition): Node decodes at the end
of each block simultaneously taking the first part in this block
and the second part in the previous block as signal (note that
they represent the same information), with the first part in the
previous block deducted (this is done after the decoding at the
end of the previous block). Then the following rate is achiev-
able:

Together with the constraint (43), this leads to the following
achievable rate:

(44)

We should remark that the above coding–decoding scheme is
different from that of [21], though we still use a block-coding
argument. Unlike earlier, see [22], we do not partition the
messages into cells, where the destination first decides in
which cell the message lies, and then determines which exact
message it is based on the help from the relay in the next block.
We combine these two steps into one: The destination waits and
does the decoding only when it has received all the related sig-
nals, and determines the message directly once and for all. We
will see that our scheme is simpler and avoids some inconve-
nient techniques (e.g., Slepian–Wolf partitioning), although it
coincides with [21] in giving the same achievable rate formula
for the one-relay case. More importantly, we will also see that
this new coding scheme is easier to extend to the multilevel relay
case and generally achieves higher rates than those proved in
[26].

We use some standard results for jointly typical sequences
which we gather together here; see [22, Secs. 8.6, 9.2, and 10.1].

Definition 4.2: The set of jointly typical sequences
with respect to the joint density function is

the set of sequences with empirical entropies close to the
true entropies, i.e.,

where

Definition 4.3: denotes the set with re-
spect to the joint density function

Lemma 4.2: Let be sequences of length drawn
i.i.d. according to

Then

1) as .
2)

where denotes the differential entropy.
3) If

i.e., and are independent with the same marginals
as , then

Also, for sufficiently large

Proof of Theorem 3.11: We consider blocks of trans-
mission, each of transmission slots. A sequence of
indexes, , will be
sent over in transmission slots. (Note that as , the
rate is arbitrarily close to for any .)

Generation of Codebooks: Randomly generate matrices
for , and , each of size

, with every element independently chosen with
Gaussian distribution . These are the randomly
generated codebooks. In the same block, different nodes need
use independent codewords from different codebooks. Since it
takes blocks to transmit one complete message, every node
is assigned independent codebooks. The total number of
codebooks needed is since there are nodes. The
matrices are revealed to all the nodes. Let

Denote by the th row of the matrix , for
. It denotes the th codeword.

Encoding: At the beginning of each block ,
every node has estimates (see the sequel)
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of , (with ) and
sends the following vector of length in the block:

We set

for any and (45)

Every node thus receives the vector

(46)

Let

(47)
As we show in the sequel, this will serve as an estimate by node

of

Decoding: At the end of each block , every
node (for ) declares

if is the unique value in such that in all the
blocks

(48)

where

Otherwise, if a unique as above does not exist, an error is
declared and is set to .

Analysis of Probability of Error: Denote the event that no
decoding error is made in the first blocks by

for all

and

and let its probability be , with .
Then the probability that some decoding error is made at

some node in some block is

for some

for some

(49)

where

Hence, is the probability that a decoding error happens
at node in block , conditioned on the event that no decoding
error was made in the former blocks.

Next, we calculate . Since is presumed to
hold, for any node we have

for

Hence, noting (45), whenever . Then,
by (46) and (47), for all with

and

So
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Hence, under the condition , the decoding rule (48) is
equivalent to the following: Each node (when

) declares if is the unique
value in such that in all the blocks , for

(50)

Let

satisfies (50)

Then, is the probability that , or some
, conditioned on the event that no de-

coding error was made in the former blocks. Thus,

or

for some

for some

for some

Hence, by (49)

for some (51)

Now, by Lemma 4.2, for large enough, we have for

and for any

Hence,

(52)

and

for some

(53)

The equality (53) follows from the independence of the rows
and also the transmissions , the fact that

as well as

For any satisfying (10), by choosing large enough, we can
make and small enough such that for any

for some

(54)

Hence, by (51), (52), and (54)

which can be made arbitrarily small by letting .

Next we address the case of relaying by groups.

Proof of Theorem 3.12: The proof follows similarly to that
of Theorem 3.11. The only difference is that now all the nodes
in each group equally share the same power and transmit
coherently. We take the maximum attenuation to ensure
that every node in each group can successfully do the decoding.

E. The Low-Attenuation Regime

First we show how unbounded transport capacity can be ob-
tained for fixed total power in linear networks.

Proof of Theorem 3.9: We consider one source–destina-
tion pair where the source node is located at , and the destina-
tion node is located at . Let the nodes in between, located
at be the stages of relay. Then, by Theorem
3.11, the following rate is achievable:

(55)
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with the total power constraint

The intuitive interpretation of is the part of the power used
by node intended directly for node .

We specifically choose

(56)

where are two constants to be determined later,
and

(57)

Using (29), it is easy to check that the total power constraint
holds.

For , we now establish the following lower
bound usable in the RHS of (55):

(58)
For , we have

for

where . This establishes (58).
Now we proceed by analyzing two cases.
Case 1. : In this case, we specifically choose

and such that

(59)

Then by (58) and (59), there exists some such that for
any

Thus, by (55), for any , any is achievable. Without
loss of generality, this means that any is achievable
with power constraint for any single source–destination
pair. Furthermore, since , is an achievable network
transport with power constraint , which tends to infinity as

.
Case 2. : In this case, we specifically choose

and such that

(60)

Note that . Hence, the minimum of (58) over
is attained at . So by (60), we have

as

This means that an arbitrarily large transport capacity is achiev-
able with a fixed total power constraint .

Now we show that unbounded transport capacity can be ob-
tained for fixed total power in planar networks.

Proof of Theorem 3.8: The idea of the proof is similar to
that of the linear case in Theorem 3.9. The only difference is
that in the planar case there are more nodes to help.

We still consider one source–destination pair where the
source node is located at and the destination node is
located at , with a positive integer to be determined.

We need the cooperation of groups of relay nodes: Group
consists of nodes in a neighborhood of the node ,

for , with , . Each Group
corresponds to the node in the linear case: The nodes equally
share the power defined in (56) and coherently transmit.

Then by Theorem 3.12, the following rate is achievable:

(61)

where is the maximum distance between any node in
Group and any node in Group .

For any , we specifically choose Group
to be the set of nodes:

It is easy to check that these groups are disjoint from each other
and . Furthermore, for any

Hence, by (61), the following rate is achievable:

(62)
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Similarly to the linear case, for , we can
prove the following lower bound usable in the RHS of (62):

(63)
For , we have

for

(64)

(65)

where

Note that the inequality in (64) holds for any value of .
This establishes (63).

Now we proceed with two cases.
Case 1. : In this case, we choose such that

(66)

Then by (63) and (66), there exists some such that for
any

Then by (62), for any , any is achievable. Without
loss of generality, this means that any is achievable
with power constraint for any single source–destination
pair. Furthermore, is an achievable network transport with
power constraint , which tends to infinity as .

Case 2. : In this case, we choose such that

(67)

Then by (63) and (67), we have

as

This means that an arbitrarily large transport capacity is achiev-
able with a fixed total power constraint .

We now exhibit networks that allow a scaling law
under low attenuation.

Proof of Theorem 3.10: We consider the case of one
source–destination pair, where the source node is located at
and the destination node is located at . Let the relay
nodes be located at , . Then by The-
orem 3.11, the following rate is achievable:

(68)

with

where is some constant and
is such that the power constraint for every node is satisfied.

Similarly to (58), we can prove the following lower bound on
the RHS of (68):

If , then the minimum over occurs
at , and is positive. Thus, a positive rate is achievable
provided one can satisfy , as well as .

To satisfy the above inequalities, we simply choose any small
, and consider a network with . Then we choose

. Such a network can provide a fixed positive rate
from source to destination , irrespective of . Since the dis-
tance between source and destination is , it yields a transport
capacity of .

To show the optimality of this order, we now prove that
is also an upper bound. First, we note that the total power re-
ceived by all the other nodes, from any candidate source node
, is bounded

Hence, if we take the cut-set around the candidate source node
and apply Lemma 4.1, it follows that the achievable rate is

bounded above. Noting that the source–destination distance is
at most , we have as an upper bound on the optimal
scaling law for this one source case.
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Hence, is the optimal scaling law. It is achieved by co-
herent multistage relaying with interference subtraction, which
is therefore the order optimal strategy for information transmis-
sion in the networks.

V. CONCLUDING REMARKS

We have examined the problem of how much information
can be transported over wireless networks, and what are the
order optimal strategies for doing so. In the tradition of infor-
mation theory, one wishes to determine the ultimate limit to
what is achievable without presupposing that packets destruc-
tively “collide” if they are from nearby transmitters, or that they
can be received only if signal-to-interference ratio is large, etc.
The difficulty is that a multitude of nodes can cooperate in very
complicated and sophisticated ways, and standard modes of co-
operation such as broadcast, multiple access, or relaying do not
begin to exhaust the realm of the possible. Worse still, even
simple networks, such as the three-node relay channel, or the
two-by-two interference channel, are unsolved to date.

Given this state of affairs, we make progress by first en-
riching the model to explicitly take into account distances
between nodes, and by formulating simple models of atten-
uation as a function of distance. Second, we make progress
by asking for less. Instead of studying the capacity region,
which is the closure of the set of all vectors of feasible rates,
we study a scalar, the supremal distance-weighted sum of
rates , which we have called the transport capacity.
There is another sense in which we ask for less. Instead of
studying the exact transport capacity, we study the scaling laws
for it as the number of nodes in the network grows. Our
contention is that any time there is a scaling law, one needs
to first characterize the rate of growth. The preconstant in the
scaling law is also important, though it is secondary to the rate
of growth, and we provide bounds for it. Through this process
we shed light on what wireless networks can achieve in terms
of their information transport capacity for every , at least in
some load balanced scenarios.

There is a dichotomy between the cases of relatively high
and relatively low attenuation. When either there is absorption

, or the path loss exponent , the transport capacity
is bounded by a multiple of the total transmission powers of all
the nodes. This allows us to obtain energy upper bounds for in-
formation transport across distances in networks. From this it
follows that is an upper bound on the transport capacity
of all planar networks when each node has an individual power
constraint. In some random scenarios over regular planar net-
works, this order of the upper bound can be nearly realized by
multihop operation, which is consequently the order optimal
strategy for the nodes to cooperate. In some other scenarios,
the multihop transport strategy attains this order, proving not
only that it is order optimal, but also that is a sharp es-
timate of the transport capacity. The thrust here is that while
network information theory has successfully resolved the two
extremes of the bottlenecked scenarios, the multiple-access and
scalar Gaussian broadcast channels, in the past, the operating
regime where one uses all network resources and supports traffic
demands diffused across the network has been open. Our results

provide scaling laws addressed to such situations, and provide
some justification for the multihop mode of operation in situa-
tions where the load can be nearly balanced across the nodes.
These results are of interest because the multihop mode of op-
eration is currently the subject of much attention in the protocol
development community, using only point-to-point coding, and
making no use of network coding or multiuser estimation. Thus,
they attempt to bridge the gap between information theory and
the area of networking.

In contrast, when there is absolutely no absorption
and the attenuation is low with , we show that there
are networks which can attain unbounded transport capacity for
fixed total power. We also show that when nodes are on a line
and , a physical impossibility in the three-dimensional
world, there are networks where the transport capacity scales su-
perlinearly as for . The strategy which realizes this,
and which is consequently an order optimal strategy, is coherent
multistage relaying with interference subtraction: At each stage
of relaying, all upstream nodes coherently transmit, and all re-
ceivers use interference subtraction at each stage. What these
results indicate is that when attenuation is low, nodes can profit
from long-distance cooperation in manners different from mul-
tihop transport, and thus one needs to consider different archi-
tectures for information transport. These latter results are ob-
tained by developing a new coding scheme and establishing an
achievable rate, superior to earlier results, for the Gaussian mul-
tiple-relay channel, a result that may be of interest in its own
right.

Open questions abound. An important one is to study the tran-
sition regime and characterize what happens for intermediate
values of the path loss exponent, when there is absolutely no ab-
sorption. Our channel model is simplistic. The constants need to
be sharpened. Much remains to be done.
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