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An Achievable Rate for the Multiple-Level
Relay Channel

Liang-Liang Xie, Member, IEEE, and P. R. Kumar, Fellow, IEEE

Abstract—For the multiple-level relay channel, an achievable
rate formula, and a simple coding scheme to achieve it, are pre-
sented. Generally, higher rates can be achieved with this coding
scheme in the multiple-level relay case than previously known.
For a class of degraded channels, this achievable rate is shown to
be the exact capacity. An application of the coding scheme to the
allcast problem is also discussed.

Index Terms—Channel with feedback, degraded channel, mul-
tiple-relay channel, multiuser information theory, network infor-
mation theory.

I. INTRODUCTION

THE relay channel was introduced by van der Meulen [1],
[2]. The simplest case, shown in Fig. 1, is the three-node

scenario where node 1 functions purely as a relay to help the
information transmission from node 0 to node 2. An immediate
application of this framework, for instance, is in wireless com-
munications, where a node is placed between the source node
and the destination node, in order to shorten the distance of a
hop, which has implications in terms of the amount of traffic
carried, interference, power consumption, etc. In [1], a special
discrete memoryless relay channel is even constructed for which
no reliable information transmission is possible without the help
of the relay node.

The simplest discrete memoryless one-relay channel is de-
picted in Fig. 1, where nodes 0, 1, and 2 are the source, the relay,
and the destination, respectively. This channel can be denoted
by , where , are the
transmitter alphabets of nodes 0 and 1, respectively, and
are the receiver alphabets of nodes 1 and 2, respectively, and a
collection of probability distributions on ,
one for each . The interpretation is that is
the input to the channel from the source node 0, is the output
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Fig. 1. The one-relay channel.

of the channel to the destination node 2, and is the output re-
ceived by the relay node 1. After processing , the relay node
1 sends the input chosen as a function of its past parameters

for every (1)

where can be any causal function. Note that a one-step time
delay is assumed in (1) to account for the signal processing time
by the relay.

For the one-relay channel described above, to date, the
highest achievable rates proved are still those obtained in [3],
where one most remarkable conclusion is that the following
rate is achievable:

(2)

It is worth noting that the coding scheme to achieve the above
rate is not simply multihop. At first, information goes from the
source to the relay, and then from the relay to the destination.
However, the destination needs to take into account both the in-
puts by the source and the relay in order to achieve (2). One can
imagine that in the wireless relay channel example mentioned
earlier, the destination node can make use of the signal coming
directly from the source node, even though it may be relatively
weaker than that from the relay node due perhaps to its greater
distance from the source.

Moreover, [3] also proved that if
forms a Markov chain, i.e.,

(3)

then the right-hand side (RHS) of (2) is the capacity of this
physically degraded relay channel. However, the capacity for
the general nondegraded case is still unknown. A recent study
[4] of the so-called Gaussian parallel relay channel showed an
interesting result: The asymptotically optimal coding scheme
dramatically depends on the relative locations of the nodes, or
equivalently, on the relative amplitudes of their signal-to-noise
ratios (SNRs). To some extent, this result excludes the possi-
bility of the existence of a unifying optimal coding scheme.

0018-9448/$20.00 © 2005 IEEE



XIE AND KUMAR: AN ACHIEVABLE RATE FOR THE MULTIPLE-LEVEL RELAY CHANNEL 1349

Up to now, at least three coding schemes have been devel-
oped that are capable of achieving (2). (The most recent survey
on relay channels can be found in [5].) The original coding
scheme designed in [3] uses several complex techniques: block
Markov superposition encoding, random partitioning (binning),
and successive decoding. This scheme even uses codebooks
of different sizes. Later on, a much simpler coding scheme
was developed by Carleial [6] in the study of multiple-access
channel with generalized feedback (MAC-GF), which includes
the one-relay channel as a special case. This new scheme still
uses block Markov superposition encoding, but avoids random
partitioning, and all codebooks are of the same size. The key
new idea lies in the decoding: Unlike the sequential manner
in [3], it is a simultaneous typicality check of two consecutive
blocks. But the paper [6] itself did not point out that this was a
new scheme for achieving (2). The third scheme achieving (2)
is the backward decoding introduced in [7]. When MAC-GF
is concerned, the backward decoding is more powerful in
achieving higher rates than Carleial’s scheme as was shown
in [8]. But for relay channels, they achieve the same rates.
Moreover, since the backward decoding starts the decoding
process only after all the blocks have been received, it incurs a
substantial decoding delay.1

Actually, in wireless networks there can be more than one
relay node. For instance, the Gaussian parallel relay channel
considered in [4] consists of two-relay nodes. The general
framework would be that there are multiple levels of relays
and each level consists of one or more nodes. This general
multiple-level relay channel was studied in [9], where the
coding scheme of [3] was extended, and an achievable rate
formula in a recursive constraint form was proved. The same
coding scheme was applied to a special physically degraded
Gaussian multiple-relay channel in [10], where a specific
formula was obtained and was shown to achieve the capacity
for that channel.

In [11], we proposed a new coding scheme for the Gaussian
multiple-level relay channel and obtained a new achievable
rate formula. Although it coincides with [3] in giving the same
achievable rate formula for the one-relay case, it is easier to
extend to the multiple-level relay case and generally achieves
higher rates than those proved in [9]. It was discovered later that
this scheme is similar to Carleial’s scheme. In the decoding,
they both employ simultaneous typicality check of multiple
blocks. But the encoding part of our scheme in [11] is sub-
stantially simpler due to the special character of the Gaussian
framework.

In the current paper, we present the corresponding results for
the discrete memoryless case. Without the additive property of
Gaussian channels, the scheme we develop here is more com-
plex and is essentially an extension of Carleial’s scheme to a
multistage format. The new achievable rate formula proved is
neat (see (9)) and seems a natural extension of (2) to the mul-
tiple-relay case. Also, it is generally higher than that proved
in [9].

1We are grateful to G. Kramer for keeping us abreast of a thorough historical
search on coding schemes for relay channels, leading to the above categorization
of three coding schemes including Carleial’s.

The advantages of the new coding scheme of [11] for the
multiple-level relay channels have also been recognized in [12],
where the corresponding achievable rate formula for the discrete
memoryless case is also stated. The paper [12] also goes on to
obtain the capacity of some relay channels under fading, which
is the first significant capacity result for such channels, and one
which may possibly constitute a breakthrough in the field.

The coding scheme for the discrete memoryless case pre-
sented in this paper follows in a similar style to that of the
Gaussian case presented in [11], although it is more complex
in the construction of codebooks as previously noted. Actu-
ally, as is well known ([13, Ch. 7]), we can always use the
coding scheme presented here for the Gaussian case. But due
to the special character of the Gaussian framework, a simpler
coding scheme could be chosen as was done in [11]. For ex-
ample, for a Gaussian channel with relays, we only need
generate random matrices of size for codebooks
as shown in [11]; but here for the discrete memoryless case,

random matrices of the same size are needed.
Another feature in our coding scheme worth emphasizing is

that for the -level relay channel, the codebooks of any
consecutive blocks should be independent of each other, so

that in the decoding process when the simultaneous typicality
check of consecutive blocks is carried out, the decoding er-
rors arising from different blocks are independent of each other.
The necessity for this independence can be better understood
with the following observation. Consider the following two ad-
ditive white Gaussian noise (AWGN) channels with the same
capacity :

where inputs and are of the same power constraint ,
and noise and are of the same variance . The efficient
usage of these two channels together is to let them transmit in-
dependently and then combine the rates afterward. In this way,
we can achieve any rate up to . But if we
use the same codebook for them and set , the best we
can achieve is only up to .

In this paper, we focus our discussion on discrete memoryless
channels. Besides proving a new achievable rate formula, we
also discuss relay systems with feedback and degraded versions
of these systems. Some corresponding results for the Gaussian
case have been proved in [11, Theorems 3.11–3.12], which in-
clude the formula in [10] as a special case.

II. MODELS OF MULTIPLE-LEVEL RELAY CHANNELS

We begin with a definition of the discrete memoryless mul-
tiple-level relay channel. Consider a channel with nodes.
Let the source node be denoted by , the destination node by

, and let the other nodes be denoted sequentially
as in arbitrary order. Assume each node

sends at time , and each node
receives at time , where the

finite sets and are the corresponding input and output al-
phabets for the corresponding nodes. The channel dynamics is
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Fig. 2. The multiple-level relay channel.

described by the following conditional probability mass func-
tion:

(4)

for all

and

Finally, we assume a one-step time delay at every relay node
to account for the signal processing time, so that for all

for all

where can be any causal function. Fig. 2 depicts this sce-
nario.

Remark 2.1: Note that for simplicity in the above channel
formulation we have not allowed any output from the channel
to the source node 0, or any input to the channel from the
destination node . The involvement of and is equiv-
alent to allowing feedback in the channel since it allows the
modeling of systems where all nodes can both hear as well
as transmit. Both these seemingly more general formulations
are, however, actually covered by our formulation where node
0 cannot hear, and node cannot transmit. To see this, simply
consider a situation where node serves as a surrogate for
node in that node simply hears .
Then nodes and have exactly the same informa-
tion. Thus, serves as a transmission-capable surrogate
for node , which is simply a dummy node. In the same vein,
suppose that node 1 is a surrogate for node 0 in that node 0 can
transmit directly (or close to that through a high-bandwidth
link) which only node 1 can hear, but none of the other nodes.
Then node 1 serves as listening-capable surrogate for node 0,
which is the only outlet that node 0 has to the rest of the nodes,
and node 0 simply becomes a dummy. Thus, the system with
nodes where node 0 cannot
hear and node cannot transmit, is simply the same as the
system with nodes , where node 1 is
the source which is also hearing capable, and node is the
destination which is transmission capable.

The following definitions of codes and achievable rates are
standard.

Definition 2.1: A code for a discrete memory-
less multiple-level relay channel consists of the following.

1) A random variable with , for every
.

2) An encoding function for
the source node 0, and relay functions ,

for all the relay nodes ,
such that

(5)

with any element in (6)

3) A decoding function for the
destination node .

4) The maximal probability of error

(7)

where .

Definition 2.2: A rate is said to be achievable if there
exists a sequence of codes such that the maximal
probability of error tends to zero as .

We will also consider the degraded version of our channel.

Definition 2.3: A discrete memoryless multiple-level relay
channel is said to be degraded if

for (8)

Equivalently, (8) means that

forms a Markov chain for every . In the case
of , (8) reduces to (3).

Remark 2.2: If node can transmit, then we simply extend
the conditioning on both sides of (8) to include . We note
then that a degraded system remains degraded under the embed-
ding procedure of Remark 2.1, and conversely. So our formula-
tion allows the treatment of degraded systems with feedback.

III. MAIN RESULTS

We state the main theorem of this paper.

Theorem 3.1: For the discrete memoryless multiple-level
relay channel defined above, the following rate is achievable:

(9)

Remark 3.1: Generally, (9) achieves higher rates than the re-
sults given in [9]. To see this, first consider the two-level relay
channel example given in [9], which shows that a rate
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is achievable if there exist , , and some
such that

and

and

It is easy to check that this will reduce to (9) if and only if
, which generally does not hold.

The same reasoning applies to the general case in [9, Theorem
2.1].

For the degraded discrete memoryless multiple level relay
channel, the following theorem shows that the RHS of (9) is
actually the capacity.

Theorem 3.2: The capacity of the degraded discrete memo-
ryless multiple-level relay channel is

(10)

Remark 3.2: In the case of one relay, i.e., , Theorem
3.2 reduces to [3, Theorem 1].

To illustrate the case of feedback, we now turn to the more
general setting where the destination node also has an input

to the channel. Then it follows immediately from
Theorem 3.1 that the following rate is achievable:

(11)

However, we can achieve higher rates than the RHS of (11) as
stated in the following theorem.

Theorem 3.3: For the discrete memoryless multiple-level
relay channel defined above with an additional input
from the destination node , the following rate is achievable:

(12)

Remark 3.3: Noting the embedding procedure of Remark 2.1,
and the preservation of the degraded property under embedding
as noted in Remark 2.2, it follows that (12) also achieves the
capacity for the degraded case where node can also transmit,
i.e., also exists.

TABLE I
THE CHANNEL DYNAMICS p(y ; y jx ; x ; x ) OF THE ONE-RELAY

CHANNEL IN EXAMPLE 1

Next, we show that (12) generally achieves larger rates than
(11). First, it is obvious that (12) is at least as large as (11),
since we can always choose for any

. Second, the following example shows that the RHS
of (12) can indeed be larger.

Example 1: Consider a simple channel with , and

The corresponding ’s are shown in Table I.
It is easy to check that

and

Hence, for every , and
for every . Therefore,

(13)

Moreover, it is easy to check that
and . Hence,

Therefore, we get (14) at the bottom of the page, where the
equality in (14) can be achieved by letting

and

Finally, from (13) and (14), (12) is seen to be strictly larger
than (11) in this example.

An intuitive interpretation of (9) or (12) comes directly
from the coding scheme used in the achievability proof of

(14)
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Theorem 3.1. We can imagine that there is an information flow
from the source node 0 to the destination node along the
path . Each node decodes the information
one-step (actually one time block in the coding) before the next
node . Hence, by the time the information reaches node ,
all the upstream nodes (i.e., nodes with smaller index than )
have already obtained the same information and can therefore
cooperate. This results in the achievability of any rate

where the conditioning is due to the same reason: the down-
stream nodes (with larger index than ) get no more informa-
tion than node , and therefore their inputs are predictable by
node .

Since the order of the nodes, except the source, can be arbi-
trarily chosen, by the above interpretation of the coding scheme,
it follows that to increase (9) one should assign a smaller index
to nodes with better “receiving capability.” (Note that it is even
not necessary to set the destination to be node .) However,
generally, receiving capability is not easily comparable (unless
in the degraded case). Of course, we can always try all the per-
mutations to maximize (9) or (12).

What makes the maximization problem even more compli-
cated is the following possibility. We can arrange the nodes into
groups, with each group consisting of one or more nodes. The
information flow then is along a path formed out of the groups,
but in any one group all the nodes have the same level (i.e., they
decode the information at the same time). Put into mathematical
terms, we have the following theorem.

Theorem 3.4: For a discrete memoryless multiple-level relay
channel with source node 0, destination node , and the other
nodes arranged into groups with each group consisting
of nodes, , the following rate is achievable:

(15)

where boldface characters are used to denote vectors for each
group: e.g., , ,
with denoting the input of the th node in group . Note that
we have set group node and group node .

For an application of this group relaying in the Gaussian
channel case, we refer the reader to [11, Theorem 3.12], where
it is used to study wireless networks under low attenuation.

Finally, a remark on the allcast problem: Suppose the task is
for the source node 0 to send the same information to all the
other nodes . As we will see in the proof of The-
orem 3.1 in Section IV, this task is implicitly achieved by the
following relaying scheme. The upstream nodes decode the in-
formation before the downstream nodes. Once the final node

gets the information, all the other nodes have already ob-
tained the information. Hence, the rate (9), (12), or (15) is also
an achievable rate for the allcast problem.

IV. PROOF OF THEOREM 3.1

We will use the now standard “typical sequences” argument
to prove achievability. First we summarize some basic proper-

ties of typical sequences that will be used later. For more details,
see [14, Secs. 8.6 and 14.2].

Let denote a finite collection of dis-
crete random variables with some fixed joint distribution

for

Definition 4.1: The set of -typical -sequences
is defined by

where each is a -vector,
, and is defined as follows: If
, then and

Lemma 4.1: For any , the following hold for suffi-
ciently large .

i) Let a -sequence be generated ac-
cording to

Then

ii) Let a -sequence be generated ac-
cording to

Then

Lemma 4.1 i) and ii) follow immediately from [14, Theorems
14.2.1 and 14.2.3], respectively.

The coding scheme used here is different from that of [3].
For example, the Slepian–Wolf partitioning is no longer used.
This new coding scheme is easier to extend to the multiple-relay
case, and generally achieves larger rates (compared with [9]),
although it coincides with [3] in the one relay case.

To make the proof easier to follow and allow a better com-
parison with the coding scheme in [3], first we give the proof
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for the one-relay case , which contains all the essen-
tial ideas. Then we present the straightforward extension to the
general case .

1. One-relay case
We consider any fixed . Throughout the proof, we

will use the following marginal or conditional probability mass
functions obtained from and :

where, for simplicity, the subscripts to distinguish these func-
tions are omitted since the exact meaning is obvious from the
arguments.

We still use a block coding argument. We consider blocks
of transmission, each of transmission slots. A sequence of

indices, , will
be sent over in transmission slots. (Note that as ,
the rate is arbitrarily close to for any .)

Generation of Codebooks: The joint codebook is still gener-
ated in a backward manner. But here one significant difference
is that all the codebooks are of the same length . (No more

as in the proof of [3].)

1) Generate at random independent and identically dis-
tributed (i.i.d.) -sequences in , each drawn according
to

Index them as , . This is the
random codebook for node 1.

2) For each , generate conditionally independent
-sequences , , drawn

independently according to

This defines the joint codebook for nodes 0, 1 as

(16)

It is apparent from [3] that the reason for this kind of back-
ward codebook generation is that the upstream nodes (with
smaller index) know what the downstream nodes are going
to transmit, and therefore can adjust their own transmission
accordingly. The converse is not true because of the unique
direction of information flow.

Repeating the above process 1)–2) independently once more,
we generate another random codebook similar to in (16).
We will use these two codebooks alternately as follows: In block

, the codebook is used. Hence, in any
two consecutive blocks, codewords from different blocks are
independent. This is a property we will use in the analysis of
the probability of error (see (30)).

Before the transmission, the joint codebooks , are re-
vealed to all the nodes 0, 1, 2.

Encoding: At the beginning of each block ,
node 1 has an estimate (see the decoding section) of

TABLE II
THE ENCODING PROCESS FOR THE ONE-RELAY CHANNEL

, and sends the following -sequence from the code-
book in the block:

(17)

Also, in the same block, node 0 sends the following -sequence
from the same codebook :

(18)

where, obviously, the estimate for every
, since node 0 is the source. Moreover, for the syn-

chronization of all the nodes at the initial time, we set
for every , . The encoding process

is depicted in Table II.
Every node thus receives a -sequence

(19)

with probability

where is the th element of the vector , and similar
definitions hold for , .

Decoding: At the end of each block , decod-
ings at node 1 and node 2 happen simultaneously, but indepen-
dently.

i) Node 1 declares that if is the unique value
in such that in the block

(20)

Otherwise, if no unique as above exists, an error is de-
clared with .

ii) Node 2 declares that if is the unique
value in such that in both the blocks and

and (21a)

(21b)

Otherwise, if no unique as above exists, an error is de-
clared with . The above scheme implies that
the decoding at node 2 has no intention to estimate
at the end of block .

Analysis of Probability of Error: Denote the event that no
decoding error is made in the first blocks by

for all and
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and let its probability be

with .
Then the probability that some decoding error is made at

some node in some block is

for some

for some

(22)

where

Hence, is the probability that a decoding error happens
at node in block , conditioned on the event that no decoding
error was made in the previous blocks.

Next, we calculate , . Since is
presumed to hold, for every node we have

for

Hence, by (17)–(19), the decoding rule (20) is equivalent to

(23)

and the decoding rule (21a) and (21b) is equivalent to

(24a)

and

(24b)

Now, let

satisfies (23)

satisfies (24a)

satisfies (24b)

Then, is the probability that ,
or some but , conditioned on
the event that no decoding error was made in the previous
blocks. Thus, we get the equation at the bottom of the page.
Hence, by (22)

some but (25)

Now, for node 1 with (23), for sufficiently enough, applying
Lemma 4.1 i) with , we have

(26)

and for any , applying Lemma 4.1 ii), we have

And also for node 2 with (24a) and (24b), for sufficiently
enough, applying Lemma 4.1, we have for

and for any

(27)

(28)

Hence,

(29)

and

some but

(30)

(31)

where (30) follows from the independence between the code-
books of any two consecutive blocks, and (31) follows from
(27), (28), and the following equation:

For any satisfying (9), by choosing small enough, we can
make large enough such that for any , we get (32) at
the bottom of the following page.

or some but

some but

some but
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TABLE III
THE ENCODING PROCESS FOR THE TWO-RELAY CHANNEL

Hence, by (25), (26), (29), and (32),

which can be made arbitrarily small by letting .
Finally, the argument on choosing one good codebook from

many random codebooks and throwing away the worse half of
its codewords is standard.

2. Multiple-relay case
We consider blocks of transmission, each of

transmission slots. A sequence of indices,
, will be sent

over in transmission slots. (Note that as , the rate
is arbitrarily close to for any .)

Generation of codebooks.

1) Generate at random i.i.d. -sequences in ,
each drawn according to

Index them as , .
This is the random codebook for node .

2) For each , generate condition-
ally independent -sequences ,

, drawn independently ac-
cording to

This defines the joint codebook for nodes , :
.

3) Continue the process 2) sequentially for nodes
, as follows: For each

generate conditionally independent -sequence
, drawn independently ac-

cording to

Finally, we get a joint codebook for all the transmitter nodes
as

with each , for .
Repeating the above process 1)–3) independently

times, we generate another random codebooks
similar to . We will use these code-

books in a sequential way as follows: In block ,
the codebook is used. Hence, in any consecutive
blocks, codewords from different blocks are independent. This
is a property we will use in the analysis of the probability of
error (see (41)).

Before the transmission, all the joint codebooks
are revealed to all the nodes .

Encoding: At the beginning of each block ,
every node has estimates (see the decoding
section) of , (with

for ), and sends the following
-sequence from the codebook in the block

(33)

where we set for every . As
an example, the encoding process for two relays is
depicted in Table III.

Every node thus receives a -sequence

(34)

with probability

some but
some but

(32)
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where is the th element of the vector , and similar
definitions hold for , .

Decoding: At the end of each block , every
node (for ) declares

if is the unique value in such that in all the
blocks , we get (35) at the bottom of
the page. Otherwise, if no unique as above exists, an error is
declared with .

Analysis of Probability of Error: Denote the event that no
decoding error is made in the first blocks by

for all and

and let its probability be

with .
Then the probability that some decoding error is made at

some node in some block is

for some

for some

(36)

where

Hence, is the probability that a decoding error happens
at node in block , conditioned on the event that no decoding
error was made in the previous blocks.

Next, we calculate , . Since
is presumed to hold, for every node we have

for

Hence, by (33) and (34), the decoding rule (35) is equivalent
to the following. Each node (when

) declares if is the unique value
in such that the joint typicality check (37) holds
simultaneously for all the blocks , for

(37)

Let

satisfies (37)

Then, is the probability that ,
or some but , conditioned on
the event that no decoding error was made in the previous
blocks. Thus,

or some

but

some

but

some but

Hence, by (36)

some but (38)

Now, by Lemma 4.1 with

for large enough, we have for

(35)
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and for any

(39)
Hence,

(40)

and

(41)

(42)

where (41) follows from the independence among the code-
books of any consecutive blocks, and (42) follows from (39)
and the following equation:

For any satisfying (9), by choosing small enough, we
can make large enough such that for any and all

some but

(43)

Hence, by (38), (40), and (43),

which can be made arbitrarily small by letting .
Finally, the argument on choosing one good codebook from

many random codebooks and throwing away the worse half of
the codewords is standard.

V. PROOF OF THEOREM 3.2

The achievability is proved in Theorem 3.1. The con-
verse follows immediately from the max-flow min-cut
theorem for general multiple-node networks stated in [14,
Theorem 14.10.1], where the node set is chosen to be

sequentially, and with the
following equations:

for

where the last equation follows from

for

with the last equation following immediately from (8) and the
definition of conditional entropy.

VI. PROOF OF THEOREM 3.3

We add a “virtual” node to the channel with output
, but with no input. Hence, this node will not affect

the dynamics of the channel in any way. Then by Theorem 3.1,
the following rate is achievable from node 0 to node :

(44)
By the coding scheme stated in the proof of Theorem 3.1, the
rate above is also achieved from node 0 to node . (This is also
obvious since and there is no .)

Now by (44), to prove Theorem 3.1, we only need to show
that the following inequality always holds:

Fortunately, by the construction that , it follows
immediately that

Finally, the proof of Theorem 3.4 is similar to that of The-
orem 3.1 and is omitted.
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VII. CONCLUDING REMARKS

We have developed a simple coding scheme for the mul-
tiple-level relay problem. This allows us to develop a simple ex-
pression for an achievable rate that is generally higher than that
in [9]. For degraded channels, our result achieves the capacity.
Also, we generalize this result to the case where the destination
is allowed to transmit. The achievable rate that is established is
higher than that established when the destination simply “facil-
itates” the channel by sending a constant signal.
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