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Abstract—Wireless networks with a minimum inter-node sep-
aration distance are studied where the signal attenuation grows
in magnitude as % with distance p. Two performance measures
of wireless networks are analyzed. The transport capacity is the
supremum of the total distance-rate products that can be sup-
ported by the network. The energy cost of information transport
is the infimum of the ratio of the transmission energies used by
all the nodes to the number of bit-meters of information thereby
transported.

If the phases of the attenuations between node pairs are uni-
formly and independently distributed, it is shown that the expected
transport capacity is upper-bounded by a multiple of the total of
the transmission powers of all the nodes, whenever 6 > 2 for
two-dimensional networks or § > % for one-dimensional net-
works, even if all the nodes have full knowledge of all the phases,
i.e., full channel state information. If all nodes have an individual
power constraint, the expected transport capacity grows at most
linearly in the number of nodes due to the linear growth of the
total power. This establishes the best case order of expected trans-
port capacity for these ranges of path-loss exponents since linear
scaling is also feasible.

If the phases of the attenuations are arbitrary, it is shown that
the transport capacity is upper-bounded by a multiple of the total
transmission power whenever 6 > g for two-dimensional net-
works or § > % for one-dimensional networks, even if all the
nodes have full channel state information. This shows that there is
indeed a positive energy cost which is no less than the reciprocal of
the above multiplicative constant. It narrows the transition regime
where the behavior is still open, since it is known that when § < %
for two-dimensional networks, or 6 < 1 for one-dimensional net-
works, the transport capacity cannot generally be bounded by any
multiple of the total transmit power.

Index Terms—Ad hoc networks, capacity of wireless networks,
cut-set bound, max-flow min-cut bound, multiuser information
theory, network information theory, scaling laws, transport ca-
pacity, wireless networks.
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1. INTRODUCTION

IRELESS networks formed by nodes with radios are a

subject of much topical interest, and may be at the cusp
of a takeoff. They are of interest not only in ad hoc wireless
networks [ 1], but also in mesh networks [2], [3], sensor networks
[4]-[6], and the emerging field of control over wireless networks
[7]. It is of importance to understand what such networks are
capable of supporting, and how to operate them to maximize
their capabilities.

For the communication functionality, a fundamental question
is: How much information can a wireless network transport? To
answer this question, one naturally turns to the field of Informa-
tion Theory. However, network information theory for commu-
nication channels with multiple users is an area where even sev-
eral simple scenarios, such as the relay channel and the interfer-
ence channel, have not been completely solved [8, Ch. 14], even
though there has been success with respect to the multiple-ac-
cess channel and the Gaussian broadcast channel.

In a previous paper [9], the capacity of wireless networks
was studied under technological models where interference
gives rise to collisions. It was shown that the capability of a
wireless network manifests itself not only in the information
transmission rate, but also in the information transmission
distance. To reflect this, the concept of transport capacity was
introduced to account for the total rate—distance product (in
the unit “bit-meters/time unit”) that a wireless network can
support. One key result obtained was that the transport capacity
of a wireless network grows at most like the square root of the
product of the area of the network and the number of the nodes.
Another was that if the node locations are random, and every
node chooses a random destination for its originating traffic,
then, as the number 7 of nodes increases, there is a sharp cutoff
of @(\/ﬁ) for the uniform rate that can be supported for

every such source—destination pair. The scaling laws obtained
in [9] were however not conclusive due to the restrictive models
studied, which do not cover technologies such as successive
interference cancellation (perhaps better called “subtraction”
rather than “cancellation” due to its liability for confusion
with the next possibility) or active interference cancellation,
or operational strategies such as amplifying and forwarding
without decoding, etc. To an information theorist, the ultimate
goal is to find out what is possible or impossible, without such
technological presumptions.

In a subsequent paper [10], general wireless networks were
therefore studied in an information-theoretic setting. Since “dis-
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tance” plays such a crucial role, as evidenced by the conserva-
tion laws for the transport capacity alluded to above, it was in-
corporated into the model not only through making explicit the
distances between nodes, but also through explicitly modeling
the attenuation of signals with distance p by the factor e;zp.
To reflect antenna considerations, a minimum separation dis-
tance between nodes was presumed, which also avoids singu-
larities at p = 0. A fundamental result established in [10] is that
the transport capacity is always upper-bounded by a multiple
of the total power used by the transmissions of all the nodes in
the network, provided that the signals are attenuated sufficiently
with distance. This multiple thus corresponds to the maximum
bit-meters of transport that a network can deliver per unit energy
consumed by transmissions. It was shown that either v > 0, or
v = 0 but 6 > 3, was sufficient for the existence of such an
energy cost per unit transport, while v > 0, ory = 0 but 6 > 2,
was sufficient for linear networks where the nodes are arranged
along a line. On the other hand, counterexamples were also pro-
vided of multiple relay networks to show thatif v = O but § < %
for two-dimensional networks, or v = 0 but § < 1 for one-di-
mensional networks, then the transport capacity can indeed be
unbounded even with bounded total transmission power.

For wireless networks, where each node has the same con-
straint on its transmission power, the above result immediately
establishes a linear scaling law for the transport capacity, since
the total transmission power itself grows linearly in the number
of nodes. This is a slight sharpening of, but in essential con-
formity with, the O(\/A_n) scaling law established in [9], since
the area of the domain grows at least like n with a minimum
inter-node spacing. Since linear scaling is in fact achievable, as
constructively shown in [9], and that also using only simple de-
code-and-forward multiple hopping where at each hop all con-
current interference is treated as noise, the optimality of the
order of the best case transport capacity is thus established for
the range of attenuations where this linear scaling is established.
Note that this also proves that the above architecture for infor-
mation transport is optimal to within a constant factor.

Thus, interest centers on determining precisely for what range
of path loss exponents ¢ (with v = 0) linear scaling of transport
capacity can indeed be established. From the aforementioned
results of [10], there is a gap % < § < 3 for two-dimensional
networks, and 1 < § < 2 for one-dimensional networks, where
the scaling law behavior is unknown. In a subsequent work [11],
an improvement was made, and it was proved that § > % for
two-dimensional networks and § > % for one-dimensional net-
works were also sufficient for linear scaling to hold.

Instead of transport capacity, the average rate per communi-
cation pair was examined in [12]. It was shown that in a network
with sufficiently many randomly chosen communication pairs,
this average rate tends to zero as the number of nodes in the
network grows to infinity. For this result, the required attenu-
ation exponent 6 is much smaller (§ > 1 for two-dimensional
networks and § > % for one-dimensional networks) compared
with that needed for linear scaling of the transport capacity.

In all these works [10]—[12], the information-theoretical tool
used to prove the upper bounds is the cut-set bound, which is
also known as the max-flow min-cut bound; see [8, Sec. 14.10]
for a general formulation in terms of mutual informations. For
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the specific application to wireless networks, a formula in terms
of powers was presented in [10].

Essentially, the cut-set bound is an application of Fano’s in-
equality to the network scenario. It is known that Fano’s in-
equality provides a tight upper bound on the rate achievable
from one source to one destination. For a network with multiple
nodes, the idea is to dissect it into two sets, with one regarded
as the virtual “source” and the other as the virtual “destination.”
Then, by Fano’s inequality, one can bound the total rates achiev-
able from the nodes in the “source” set to the nodes in the “des-
tination” set. However, this bound is no longer tight, unless all
the nodes in the “source” set can cooperate in the encoding, and
also all the nodes in the “destination” set can cooperate in the
decoding, which are both generally not feasible.

However, up to now, the cut-set bound appears to be the only
general tool that can be used for establishing upper bounds on
the capacity of networks. Nevertheless, one can obtain sharper
bounds and thus tighter results by considering multiple cuts
through the network simultaneously. Since multiple single cuts
considered separately may not be all maximized simultaneously
with the same distribution of the inputs, such a cut-set bound
with multiple cuts is generally tighter than a simple combination
of multiple single cut-set bounds. In this paper, we will employ
such a cut-set bound with multiple cuts to get tighter bounds
on transport capacity. Besides, we will prove that for Gaussian
wireless networks, a joint Gaussian distribution of the inputs
achieves the maximum for the cut-set bound with multiple cuts.

Actually, a two-cut version of the cut-set bound with mul-
tiple cuts has appeared in [13], where it was used to prove the
converse for the capacity of physically degraded Gaussian relay
channels. Later, another two-cut version was applied in [14,
Ch. 2] to get tighter upper bounds on the capacity of Gaussian
parallel relay channels.

In this paper, we will first present a general formula for the
cut-set bound with multiple cuts in Section III, where, more im-
portantly for the treatment of Gaussian wireless networks, we
will prove the optimality of a joint Gaussian distribution of the
inputs. Applications of the cut-set bound with multiple cuts to
one- and two-dimensional networks are made in Sections IV and
V, respectively. Two cases are treated. Assuming random phases
of the signal attenuations (but assuming that they are known to
all the transmitters and receivers, i.e., full channel state informa-
tion available at all nodes), we prove that § > 2 for two-dimen-
sional networks, and 6 > % for one-dimensional networks, are
sufficient for establishing that the expected transport capacity is
upper-bounded by a multiple of the total of the transmissions of
all the nodes. If nodes are each subject to an individual power
constraint, then it follows that the expected transport capacity
scales at best linearly in the number of nodes. This is sharp in
the best case since linear scaling is indeed feasible for the trans-
port capacity. In the case that the phases are arbitrary, then uni-
formly for all realizations of the phases, the transport capacity
is upper-bounded by a multiple of the total of the transmission
powers if § > 3 for two-dimensional networks or § > 3 for
one-dimensional networks, even if all nodes have full informa-
tion on the states of all the channels. Thus, there is indeed a min-
imal positive energy cost per bit-meter of information transport.
This narrows the attenuation regime where the behavior is still
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unknown, to the interval of path loss exponents % <6< % for
two-dimensional networks, andto 1 < § < % for one-dimen-
sional networks, since for values of § below these ranges it has
been shown that there are networks whose infimum of energy
costs per bit-meter of transport is indeed zero. We also show that
unless one can improve on the bound following from the mul-
tiple cuts, one cannot establish linear scaling in this unknown
region.

II. MODEL AND DEFINITIONS

Consider a wireless network consisting of n nodes N' =
{1,2,...,n}. Let X;(t) € C* or Y;(t) € C!, respectively, de-
note the signal sent or received by Node ¢ € N at the time
instant ¢ = 1,2,.... Each node receives a measurement that is
an attenuated and superposed combination of all the other trans-
missions and white Gaussian noise

Yi(t) =Y g Xa(t) + Zi(1),
1EN
i

VieN, t=1,2,....

ey
Here {¢g;; € C' : i # j} denote the signal attenuation
gains, and Z;(t) are zero-mean complex Gaussian noise with
independent, equal variance real and imaginary parts. For each
i, {Zi(t),t = 1,2,...} are independent and identically dis-
tributed (i.i.d.), and for different ¢ or ¢, { Z;(¢)} are independent
of each other.

It is convenient to define the gain matrix

91,1 91,2 J1in

92,1 92,2 92.n
G = . . . ()

gn,l gn,Z gn,n
with g;; = O forall ¢ = 1,...,n, and to define vectors
X: (X17X27"'7Xn)T’X: (Y17Y27"'7Yn)Ts andZ:

(Z1,Z9,...,Zy,)T. Then (1) can be put into a compact form

Y(t)=G"X(t)+Z(t), t=12,.... ?3)

Next, we recall the definition of the transport capacity of a
wireless network [10]. For this, we gather together the by now
pro-forma standard definitions of information theory including
codes with power constraint, the probability of error, achievable
rates, etc., for wireless networks.

Definition 2.1: Consider a wireless network of m nodes.
Let {(s¢,d¢), £ = 1,...,n(n — 1)} be a listing of
the n(n — 1) possible source-destination pairs. Then a
(TR, 2TRn(-) T, PE(T)) code with power constraints
{P;, i € N'} consists of the following.

1) Independent random variables {W, : 1 < ¢ < n(n—1)}

with
1
P(We = k) = 57z,
for every k, € {1,2,...,27R} Let

Wi = {Wg: Sg:i}
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and

Ei = Z R@.

{€:sp=1}

(Note that W; = () and R; = 0 if no traffic originates at
node j.)
2) Functions

fir: CVx {12, 2"Fy ¢l t=1.2,....T

fornode ¢ = 1,2,...,n, such that

Xi(t) = fip(YVi(1),...,Yi(t=1),W;), t=1,2,....T

with
X;(1) = 0 for nodes with R; = 0

such that the following power constraints hold:
1 X
T SIXi@)I* < Py oas.,  forieN. 4)
t=1

3) Decoding functions
g0 CT x {1,2,...,2TRacy 5 (1,2,... 2Tk

ford =1,2,...,n(n—1).

4) The average probability of error:

PP(T) = PI‘Ob((Wl,WQ, .. ,Wm)

where W[ = g (Y(};,Wd[), with

qu; = (Y‘ié (1)7 de (2)7 s 7de (T))

Definition 2.2: A rate vector (Ri,...,Rpp-_1)) is
said to be achievable for the n(n — 1) source—destina-
tion pairs {(s¢,d¢),f = 1,...,n(n — 1)}, with the power
constraints {P;, 7 € N}, if there exists a sequence of
((2TRr . 2TRnce-1) T, PT)) codes with power con-
straints {P;, i € N} such that P{") — 0 as T — oco.

The preceding definitions are presented in the context of the
separate power constraints {P;, i € N} for the n nodes. How-
ever, if a total power constraint F;,ta1, oOr a common individual
power constraint P4, is imposed, then one simply needs to re-
place the constraints (4) by

T
1
7S IXOIF £ Pt s, ©

t=1ieN
or

T

1

T S IXi()]* < Pina, as., fori €N (7)
t=1

and correspondingly modify the rest of the definitions.

Above, we have not considered node locations, or even
distances between nodes. Let p, denote the distance between
source s, and destination dy, in the /th source—destination pair
(817 d[)
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Definition 2.3: The transport capacity of a wireless network
is defined as
n(n—1)
Cr = sup
(Ri1,...;Rp(n—1)) achievable ;=

Ry - pe.

III. A CUT-SET BOUND WITH MULTIPLE CUTS

Let S be any subset of the nodes \V in the network, and denote
its complement by S¢ = A/ — S. Let R() be the summation of
all the achievable rates with the source in S and the destination
in S¢. Then by [8, Theorem 14.10.1], we have

R < X,y 59 x5%) (8)

max I

p(z1,5mn)
where X(%) .= {X;,i € S}, and Y5, X5 are similarly
defined.
One can also consider multiple cuts of the network simulta-
neously, to obtain the following corollary.

Corollary 3.1: Considering multiple subsets S, C N, k =
1,2..., K, simultaneously, we have the following bound:

K
Z ap R <
k=1 k=1

where a, > 0, k= 1,..., K are arbitrary weights.
Proof: From [8, p. 446, eqgs. (14.313)-(14.330)], for any
Sk, k=1,2..., K, we have

R(S*) < I(XSVYSPIXED) 4 ) (10)

where @ is a random variable uniformly distributed on the set
{1,2,...,T}, and e<Tk) — 0 as T — oo. (Note that ) only
depends on 7" and is independent of k.)

A weighted summation of (10) gives

ZakR(Sk < Zakl X0, Y(S‘)|X S* )+ Zake
k=1
Wthh leads to (9) 1mmed1ately by letting 7" — oo. O

K
Dl (XY SD1X 5Dy (9)

Remark 3.1: The bound (9) is in general tighter than ap-
plying the single-cut bound (8) K times on the subsets S, k =
, K, which leads to

ZakR(SA) < Zak max

P(T1,sT0)

I(X 5K,y Sk

‘f)).

Now, we turn to the wireless network with power constraints
defined in last section. Consider the following subsets:

S;:={1,...,i} CN, Vi=1,2,...,

and we have the following theorem.

n—1

(1)

Theorem 3.1: Considering the n — 1 subsets S; defined in
¢! 1) simultaneously, we have the following bound:

ZaR(S)<

max
{PA(>0 Eﬂ ' PH<P,\} {¢Az€[0 27)}

. 2
nol i HZk:l i V/ Pr €94
Z «; Z log|1+ e

=1 j=i+1 J

12)
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where a; > 0,fore =1,...,n—1, are arbitrary weights, Py, is
the power constraint of node k € N, and 0% = E||Z;(1)||* for
j=2,.

Proof: An application of Corollary 3.1 gives

n—1 n—1
ZaiR<51) < max ZaiI(Xh...,X
i=1

P(zh---amn) i=1

Yitts oo, Yol Xiz1, .., Xpn). (13)
By the model (1), forany s =1,...,n —1
I(X17'"7Xi;Y;+l7"'7Yn|Xi+17"'7Xn)
= h(i/i-l-l? .- '7Yn|X’i+17 B /Xn)
- h( i+ly- - 7Yn|X17' e 7Xn)
=h (Z Irit1 Xk + Zig1, .-y
k=1
ng,nXk + Zn| Xit1,--- 7Xn>
k=1
- h(Zi+17 L) Zn)
< Z h <ng,ij+Zj Xi+17"'7Xn>
j=i+1 k=1
-y Mz
j=i+1
< Z h <ngij+Z X'i+1:~-~7Xn—1>
Jj= L+1
- Z h(Z;)
J=i+l
where in the last inequality, “=""holds if X, is independent of
all X;, « = 1,...,n — 1. Therefore, by (13)
n—1
Sar)s m So 3
i=1 P(@1,Tn1) § j=it1
7 n—1 n
h(Z!Jk,ij + Z; X’i+17---7Xn—1> - o Z
k=1 1=1 Jj=t
(14)

Now, consider any p(zq,...,z,_1) with E||X;||> > 0,

i = 1,...,n — 1. Define the correlation matrix of the vector
(X17' e 7X 71)
711 Y12 Yi,n—1
( V21 Y22 Y2,n—1
Tn—1,1 TYn-1,2 Tn—1,n—1
D, S X\ T
VEIX1]? VEIIXq]?
=E : : (15)
X1 X1
VEIX. 1] VEIX. 12

where (-)T denotes the conjugate transpose. Note that I is dif-
ferent from the covariance matrix since X;’s may not be zero-
mean.
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For any two complex random variables (X,Y) € C2, let

Var(Y|X) :=E[||Y — E(Y|X)|]?>|X] and
EXY™
VXY '= TS
E[XIPE[Y]

where (-)* denotes the conjugate. From the Appendix

E[Var(Y]X)] < (1 — lxy [))EY? (16)
with “="holding in (16) if (X, Y") is circularly symmetric com-
plex Gaussian distributed with zero mean (see [15, Sec. 2] for
the definition). Hence, we have

h(Y|X) <E {log[reVar(Y|X)]} (17)
< log {meE[Var(Y|X)]} (18)
< log [re(1 = |lyxv [I*)E[Y]?] (19)

where (18) follows from the Jensen’s inequality, and “=""holds

in both the inequalities (17) and (19) if (X, Y') is circularly sym-

metric complex Gaussian distributed with zero mean.
Therefore, forany 1 < ¢ < j < n

h (ng,ij +7Z;

Xi,+17 s 7Xn—1>

k=1
7 n—1
< min o h( D aeiXet Z) 3 B
gl ec! -
f — = 1
q:iﬁ‘,—l,...,n—l k=1 7=t
< min log
pi-Dect
g=t+1,...,n—1
. 2
K2
me (1 ||’y(i,j,,@fl o @(1 J))H ) ngJXk + Zj
k=1
(20)
where
Va5, p00,.807))

E (me 9k Xk + Zj) (Zz;i1+1 ﬁéi’j)Xq)*

\/[EHEk 1 9k,j q= z+1ﬂq
Let P/ := E||X;||*. Define vectors P’ := (P{,...,P,_)T
and o2 := (03,...,02)T. By P’ > 0, we mean that all P/ >
0,7 = 1,...,n — 1. It is easy to see that in (20), the bound

minimized over {[3§i’j) ERqg=i+1,....,n— 1} only
depends on 4, j, P', 02, G = {9i;}, and T’ = {~;;}, and thus
can be denoted by

Bi; (P',¢% G,T).

~
—
3
Q
[V

21

Therefore, by (14)

OSLLIES WD o

1=1 J=t+1

2317

< sup ZaZZB” B’a GF)

p(zl,...,zn 1) i=1 j=it1

PI

= sup maxX:ozZ Z Bz] P 02,G,F) (22)

P'>0 R i

n—1

= sup sup » Z Bi; (P',¢% G T)  (23)

P'>0I>0= j=itl
where (22) follows since the bound only depends on
p(z1,...,2,—1) via P’ and I', and, noting that I' by the
definition (15) is nonnegative definite, (23) follows by re-
stricting I" to be positive definite.

Now, for any given I' > 0 and P’ > 0, we specially construct
p(z1,...,7,_1) as follows. Let & € C', i =1,...,n — 1 be
i.i.d. zero-mean complex Gaussian distributed with independent
real and imaginary parts of the same variance % Let

n—1
Xi=Y Ain&/P!
k=i

where {\;r, € C, 1 < i < k < n— 1} satisfy

Vi=1,...,n—1

M1 0 .. 0 T
A12 Aop e 0
I'= . . .
)\l,n—l )\2,71,—1 )\n—l,n—l
M1 0 . 0
A12 Azp o 0
X . . ) ) (24)
An—1 A2n-1 An—1n-1

with A\;; # 0fori = 1,...,n — 1. The decomposition (24) is
possible since I' is a positive-definite matrix. N

For this special construction of { X; }, we can choose B;W ) €
Cl,q=1i+1,...,n — 1such that

ngng— Z B X,

g=1+1

ng j Z )\u&\/7
=1

which can be easily checked noting that \;; # O for any i =

1,...,n — 1. Hence, for the terms in (20), we have
7 n—1
h (Z 9k i Xk + 7 A X,
k=1 q=i+1
=h ngjZ)\kgfg Pk—|-ZJ> (25)
k=1 =k
and
7 n—1
h{ > gkiXk+ 7Z; AENX, | =
k=1 q=i+1
i 2
tog |me (1=l s s |IP) E{ 905 Xe + 2
k=1
(26)
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where the equality in (26) holds since “=""holds in all the three
inequalities (17)—-(19) with

i n—1
Y:ng,ij-l-Zj, X = Z Igém)xq.
k=1 i1

Therefore, by (20), (21), (25), and (26)

Bi; (P'.0% G.T) <h<2qka,\,d&\/>+z>
k=1

Hence, by (23), we have

n—1 n

Za RSI< sup supz Z

P'>00>07=5

=1 j=i1+1
n—1 n
(Z Gk, j Z)\kl&\/ + Z; ) Z Z h(Z;)
k=1 i=1  j=i+l
n—1 n
= sup sup o Z
Pr>or>0iz) 5
EHEk L9k L Mee
[EIIZ 12
= sup sup Z o Z
P'>0T>0 % St
. 2
2= ‘Zk:l 9k7j/\kszéH
log | 1+ 5 27)
loin
J
By (15) and (24), we have that for any I"
n—1
> kel = ok =
=k
Also note that the power constraints ensure that
P,i.ng—Fe;ﬁ Ver >0, fork=1,...,n—1.

Hence, by (27), we finally have

SaiR(Si)

< lim sup max
{ee=0} fo< P <Piter} {3007 IMeel?=1}

2
ol Yt sz=1 Ik, Aker/ PIQH
Zai Z log | 1+ )
=1 jeitl 9;

n—1

= max max E (0%
n—1

. Pung} {¢re€l0,2m)} —

. 2
n Py H2£=1 9r.j V' Pre €194
g log | 1+ 5
U'
j=it1 J
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where the last equation follows by letting Pr¢ = || Age||? P/, and
¢re be the phase of Ajy. O

IV. ONE-DIMENSIONAL NETWORKS

Consider a Gaussian network of n nodes N’ = {1,2,...,n}
on a line, with coordinates a1 < az < --- < a,. Let p;; be
the distance between Node ¢ and Node j. Then p;; = |a; — a;].
With the constraint of minimum separation distance pin, We
have a;11 — a; > puin forany s =1,...,n — L.

Let the gains be g;; := %, 1 # 7 for some § > 0 and
6;; € [0, 2m), in the model (1). (The results for one-dimensional
networks as well as others considered in subsequent sections

i0;
extend trivially to the case where g;; := c‘;é ~ for some pre-

constant c.) Let E||Z;(1)]|?> = o2 fori € N. '

Define subsets S; := {1,...,i}and S}t :== {i +1,...,n},
fori = 1,2,...,n — 1. Then it is easy to see that the total
achieved transport is

n—1

3 (ai — a) (R<sz> + R(SJ)) ,

i=1
Hence, applying Theorem 3.1 twice on Z;:ll (aip1—a;) R
and on Z?Z_ll (aip1— ai)R(Si+ ), we have the following bound on
the transport capacity (using the inequality log(1+z) < xzloge
for z > 0).

Theorem 4.1: The transport capacity is upper-bounded by

n—1
loge
< max i+1 — @
T—{Pu,m} o2 L=1( +1 )
n_ il 1(0r;+dre) Pre
ke
A5 S5ty
j=i+1 =2 ||k=1 J
1 n—1 n i(ek'+<f)u)\/P— 2
e 4
_ 28
1530 3] Ol =acttin [ en
=1 (=i ||k=(+1

where ¢g¢ € [0,27), and Pr, > 0 are real numbers (1 < k, £ <
n, and k # ¢) satisfying the total power constraint

Zmax{ Y Pu, ZPM} < Piotat (29
k=1

f=k+1
or the individual power constraint

n k—1
max{ Z Pk[7ZPk[} SPinda \V/k‘ZI,...,TL. (30)
(=k+1 (=1

A. Expected Upper Bound With Random Phases

In this subsection, we develop upper bounds on the transport
capacity under the assumption that the phases {6;;} are random
variables, but are known to all the nodes, so that {¢, ; } can be de-
signed based on {6;;}. We assume that these random variables
{6;;} are all uniformly distributed on [0, 27) and also indepen-
dent of each other.
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First, by exchanging the order of summation, the bound (28)
can be rewritten as

Cr

<

loge
S max —2
{Pre, pre} O

Fit1 — i Tl —a
(=2 i=(—1 j=it1 k=1 (a; — ax)
n—1 ¢ i n i(ek'+<f)k£)\/— 2
et Pry
3 T ol IS
(=1 i=1 =1 |lk=t+1 (ar — a;)
2
/—1 .
I i(0k;+dee) /P
max —5°¢ ZZ i—ag_1) Z;ﬁki
{Per, dre} 02 Py = (aj —a)
—1 ¢ o 2
nzzam Ot Py an
DAY
—1j=1 Wi (o)

Using the inter-independence of {6;;}, we have the following
bound, forany 1 < k,p < ¢ —1:

n i(0rj+ore) /P —i(0pj+¢pe) /P,
E Z(a ¢ ke © pt
j=t

(aj — ag)? (a; —ap)®
n 6y, —if,
elk; e PJ
<E (a; — ar—1) v Prern/ Ppe
g ’ (a; = ar)® (a; —a,)? !
1
_ 27 2
n i i
(aj _ aé_l)elekjeflgp]‘
< |E V Prer/ Ppe
; (a; —ar)’(aj — ap)® :
- 1
n ) :
- az 1
_ P, P
; j— ar)?(a; — ay)2 MO
- 3
n _ 2
< Xa ST )
_]:Z - ak)? a] — )’ 2
Hence,
21 ikt one) /P ?
[EZ —ar—1) R
=RCRT
0—1¢—1 n el(Orj+dne) /Pro
2 E D o) — )
k=1p=1 j=¢ G a
e i(6pi+dp0) /
X
(aj —ap)?
: o1
—10-1 | n 2 :
— ae 1) Pké + P Y4
DI PIY 5 :
el (aj — ag)? a] —ap) | 2
- o1
t—10-1 | n _ 2 :
_ Z . az 12 i Pue.  (32)
k=1p=1 | j=¢t (a5 = ax)**(a; = ap J
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And similarly

2
¢ n ei(ek_7+¢u) Pre
3 o - T

k=t+1 (ar —a;)°
1
¢ b
n n a£+1 _ a])z
2 2 |1 | P
k=t+1p=£+1 j:l ak — aj ap - aj)
Therefore, by (31), we have
ECt
I
< max o€
{P)cg} 02
1
n £—=1/0-1 n 3
> U /S i Y
(=2 k=1p=1 | j=¢ (aj = ax)?(a; — ap)?
1
n—1 n n l (az a ) 2
+1 — Uy
+Z Z 25 55| Dre
=1 k=(+1p=t+1 | j=1 (ar — a;)**(ap — a;)
(33)

Now, under the total power constraint (29), we can show that
ECr is upper-bounded by the total power Piota) to a constant
factor if the coefficients of all the Py, in (33) are uniformly
bounded by a constant. That is, we need to show that the fol-
lowing terms are uniformly bounded:

=

~
|
—

i —ae 1)? . Vi<k<f<n
p=1|j=t (aj = ax)*(a; — ap)? B B
] (34)
n [ Y4 T %
(ag41 — a;)?
. Vi<l<k<n.
= 2:: (ax — ;) (ap — ;) S ret

(35)

To this end, first, for § > 5/4, we have the following uniform
upper bound for all the terms in (34):

=

-1 n 1 1
max Z(a] - a£71)2 25 26
1k<ten £ | (a; —ax)? (a; — ap)
- 3
Syt :
= max
1<t<n = | i=¢ (aj — ar-1)*=2 (aj — ap)*
3 -1 n 1
_11&&;(” Z (a; — ag_1)2-2
) 1
1 2

[N
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%
(a) - 1
b 1 6—% 26—% z 1 (46 —1)(46 — 3)2
< 5 Tsg_5\95_5 = 951 15 _5)3
pmln 4 2 min ( )

where the inequality (a) follows from the minimum distance
constraint, and the inequality (b) follow from the fact that for
anyreala > 0and 8 > 1

> o

l=0

1 < 1 1 1
+/o v ap = w T e
(36)
Similarly, we can prove that the same upper bound holds for all
the terms in (35). This leads to the following theorem.

Theorem 4.2: Let the phases {6;;} be independent of each
other and uniformly distributed on [0, 27 ), but their realizations
are known to all the nodes. Under the total power constraint,
for 6 > 5/4, the expected transport capacity is always upper-
bounded by the total power to within a constant factor

c1(6) log
ECr < QQT%@ Piotal (37)
g pmin
where
2(46 — 1)(46 — 3)2
e (8) = ( I ) ) (38)

(46 — 5)2

The following theorem establishing a linear scaling law under
the individual power constraint follows immediately by noting
that Piota1 = 1 - Pina.

Theorem 4.3: Let the phases {¢;;} be independent of each
other and uniformly distributed on [0, 27), but their realizations
are known to all the nodes. Under the individual power con-
straint, for § > 5/4, the expected transport capacity is always
upper-bounded by the number of nodes n to a constant factor

c1(0)loge
|E CT S 0'2p2§.71

Pia-n (39)

where ¢, is defined in (38).

B. Uniform Upper Bounds Irrespective of Phases

In this subsection, we consider uniform upper bounds on the
transport capacity for all possible realizations of the phases
{0i;}-

Our first result, Theorem 4.4, follows immediately from the
bound (28).

Theorem 4.4: The transport capacity is upper-bounded by

1 n—1 n i+l
Cr < ?113% c;g; ;(awrl —a;) j;l ;::2
-1 i 2
vV P
D P ZZ[Z w—ay) [ 0
1 k) j=1 =i Lk=e31 "k 0
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where the nonnegative powers Py (1 < k,¢ < n and k # /)
satisfy the total power constraint

Zmax{ > Pu ZPM} < Piowat (41
k=1

f=k+1
or the individual power constraint

max{ Z Pk[7ZPkZ} Spind Vk:l,...,n. (42)
{=k+1

The bound (40) can be weakened by using the the following
inequalities:

g

—a

Z\/_e

_ak

iJPT)e

4
8 p=1 (a] - ap)§

N??‘
,_.,_.

— 1 ‘i 1 Pu+Pu
— (aj—ar)’ = (aj —ap)® 2

-1

1 1
Py
T

(a; —ar)® =

IN

~ =
ol
-

(43)

k

Il
-
3

and a similarly obtained one

- Py ’

k=(+1

n n

1
SZ(

kmtg1 Pk T a;)

Now the upper bound (40) can be weakened to

Cr
< loge n_l( )
max ——4 a; — a;
{P)‘g} 202 +1
=1
no il -1 L 1 .
X Py
gzzi;rl;/; (aj —ax)® Z: (aj —ap)°
1 n—1 n 1 n 1
+ Z Z Z 5 5 Pre
PR C) i1 (ap — a;)
loge n (-1 n—1 n 1
= max (a<+1 a-)
(P} 207 ;::21«:111:21%;1 Z Z ]':ij;_l (a; — ax)?
-1
5 S ERNS S o ST
p=1 \4i T =1 k=041 i=1
i . n )
X Py
;::1 (ar — aj)? p_%;_l (ap — a;)?
loge n (-1 n a [_1
—ap—1)
_{Hll’?ﬁ%? ZZZ (aj — ar)? (a; — ap Pre
(=2 k=1 j=¢ =1
= 1

(44)

—I—Z Z Z a[:l__aa] ) (ap_aj)5Pke

(=1 k=0+1 j=1 p=0+1

where the last two equalities follow by exchanging the order of
summation.
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Now, under the total power constraint (41), we can show that
Cr is upper-bounded by the total power Pit,) to within a con-
stant factor if the coefficients of all the Py, in (44) are uniformly
bounded by a constant. Hence, we proceed to show that the fol-
lowing terms are uniformly bounded:

>

j=t p=

L n

2 =) 5
ak — a]

Jj=1

aj_aé 1

(a; — ag)?

2 Vi<k<f<n (45)
P

1

oy YLSE<ESn @9
p=0+1 P J

First, for § > 3/2, we have the following uniform upper bound
for all the terms in (45):

n
(aj —ag—1) 1
max
1<k<t<n (a; —ar)? et (a; —ap)®
—1
_ n (a] — agfl) 1
T4 —a )52( —ay)°
sneim \ag = a-1)” 2= (A —ap
= max
1<l£"]: (aj = ae1)*~" = (aj — ap)°
9 Gt
o 3 >
z‘inl 1<b<n £~ [j — D=t =G -p)?°

= 26,71 1<tn ; [ — (z — )Pt

pmll’l

= =DF " (6-1lj - (£ - P

< 1 1+ 3 n 1
=21 T o5 2 T (65— 1)(26 - 3)

min

where the inequality (a) follows from the minimum distance
constraint, and the last two inequalities follow from the fact (36).

Similarly, we can prove that the same upper bound holds for
all the terms in (46). This leads to the following theorem.

Theorem 4.5: Under the total power constraint, for § > 3/2,
the transport capacity is always upper-bounded by the total
power to within a constant factor

Or < Cag‘?%;gf Proia @7)
where
3 1
al®) =21+ S oD@ = 3)] - @9

The following theorem establishing a linear scaling law under
the individual power constraint follows immediately by setting
Pigtal = n - Pina.

Theorem 4.6: Under the individual power constraint, for
8 > 3/2, the transport capacity is always upper-bounded by the
number of nodes n to within a constant factor
c1(6)loge
Cp < —=—~2_°~
T et

where ¢, is defined in (48).

Pina-n (49)
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Next, we show that § > 3/2 is almost the weakest require-
ment for any linear scaling law that we can prove with The-
orem 4.1. That is, we will show that for any 6 < 3/2, under
the individual power constraint (30), there exists a topology
a; < az < --- < ay of the network, and {6;;}, such that
the right-hand side (RHS) of (28) is not upper-bounded by the
number of nodes 7 to within any constant factor, i.e.,

RHS of (28)

— 00, asmn — oo. (50)
n
Consider any pg > max{pmin, 1}. Let
a;+1 — a; = po, 1=1,2,...,n—1
and let 6;; = 0, Vi # j. Choose
Pin
Py = 4 and dre =0 forall k £/ (@28

where it is easy to check that the individual power constraint
(30) is satisfied. For this choice, the RHS of (28) simplifies to

Pualoge J) K E & 2
(n—1)o? Pgé ' i=1 ]zz;—uz; |Jc 1 ]
t n—1 2
Dol Pl
j=1t=i Lk l+1
Let
n i+1 [£-1 2
B(n,0) := 25 12 Z Z[Z ]
TL i=1 j=i+1 (=2 =

Since po > 1, B(n, 5) is a decreasing function of §. Therefore,
we only need to show that for any 1 < § < 3/2
B(n, )
n
Although a little messy, the following straightforward calcu-
lations lead directly to (52). First

— 00, asn — Q. (52)

B(n,6)>
i+1 —1 2
(n— 1)0(2)6 Y %21;Z—|—M r;ﬂﬂ [Z 1

1+1

e ¥ Y

Deo™ i Zf i=it =i 41

Since j—(£—1) < j/2forany [j/2]+1 < ¢ < i+1, we have
i+1 -1y 2
> V ﬁdl‘]
e=[j/2141 L70 (j — =)
i+l 1
- [Z%H{(é— D~ (- P!

1 2
(6 - DR/2)]1%- 1}

o= f::Hl{ ( 11) [j—(fil)]‘s_l}Z
e (e >2 > T

=[j/21+1
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o1 Lt 2 /i 1 i
T (6-1)? 227 Jampiyo U — 2?72 !

=a1(8) [(5 = [3/21)*7% = (5 —1)*~™] (53)
where
1 1\ 1
0= =g (1 51) @
Therefore,
B(n,é) Z W&l(é)
S 3 G-t - G-
i=[n/2] j=i+1
i Z [(j/2 _ 1)3—25 _ (j _ i)3—25] . (54)

i=[n/2] j=i+1
Again, approximation of a summation by an integral in (54)
leads to

n—1

Z ZJ/Z 1326

i= ]’n/2‘|] i+1

n+1
> V (/2 —1)> % de— / (x —i)*~ 26d:1:]
i=n/2] ¥ 1

_i)3—2§]

25 { (n)2 —1)=2 —2[(i + 1)/2 — 1*=%
i=n/2]
(n+ 1 )4 26 + 1}
= n 4-—-26
. 2(3—1)0_26—/ o[+ T 4
n—1
- / (n+1—2)*2ds+1
n/2]-1
1 1 sas 11 s
> 12 (- _ . _(n—-1
=125 {2426 (n=2) 5asorm ()
1
_ _ ) 2 5—26 1
g T+ 2
1 1 s 11 e
> 1 (- - (n-1
VY {24—25 (n=2) 520 iz (")
1 5—26
=95 = S5 (n+4) +1}
= a2(5)n5*25 +0(1) (55)
where
()= ! 1 11 11
WO T o5 | 2820 T 525282 5_2625-28

> 0.
Finally, by (54) and (55), we obtain that for any 1 < 6 < 3/2
B(n, 5) 1

251 ¢

8)as(8)n’~2 4+ o(1) — oo,
P e (D)o o)

asn — oQ.

The preceding example shows that only with Theorem 4.1,
under the individual power constraint, we cannot expect to
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prove that the transport capacity is always upper-bounded by
the number of nodes n to within a constant factor for any
5 < 3/2.

As a fringe benefit, it also shows that with only Theorem
4.1, under the total power constraint, we cannot expect to prove
that the transport capacity is always upper-bounded by the total
power to within a constant factor, for any 6 < 3/2.

V. TwO-DIMENSIONAL NETWORKS

Consider a Gaussian network of n nodes N' = {1,2,...,n}
on a plane, with coordinates (a;, b;), i = 1,...,n. Let p;; be
the distance between Node 7 and Node j. Then

pij = \/(az‘ —a;)% + (b — b;)*.
With the constraint of minimum separation distance pin, We
have p;j > pmin for any i # j.

8‘0 ij

Let the gains g;; = P

1 # j for some § > 0 and

6;; € [0,27) in the model (1). Set E|| Z:(t)||? = o2 for i € N,
We order the nodes horizontally and vertically as follows. Let

(u1,u2,...,u,) and (vy,vs,...,v,) be two permutations of
(1,2,...,n) such that
a/'u,] S aug S o S aun and b111 S buQ S e S bvﬂ .
For: =1,2,...,n — 1, define subsets
A7 ={ug,. .. ui}, and  AF = {uigg, .. un)

By :=={vi,...,v;}, and B :={vii1,...,v.}.

Then it is easy to see geometrically that the total achieved trans-
port is upper-bounded' by

n—1
Q = Z(a”lti+1 - afm) (R(A;) + R(Aj))
i=1
n—1 _ N
+ Z(bvi+1 — by,) (R(Bi )+ R )>
=1
and also is lower-bounded by —Q
Hence, applying Theorem 3.1 four times on A; =
{u1,...,u;}, on A;" = {uit1,...,un}, on B =
{vi,...,v;}, and on Bf := {vit1,...,vn}, we have the
following bound on the transport capacity. We use the in-
equality log(1 + z) <z loge for z > 0.

Theorem 5.1: The transport capacity is upper-bounded by

loge =
Cr < max 5 E (Cupsy — Ou,)
{Puyusbugu,) 00 =
4 . 2
L[|€=1 i(Bu, o, v
n it 61(9"“1 +Pupuy) /P'ukw
j=i+1 =2 |[k=1 Puyu,
. 2
—1 .
+ i n el(gukuj *‘rd’ukuz)\/m
j=1 t=i ||k=t+1 Puyu,
log -

max Z s —
(P, 0, 900, } —

An exact expression for the achieved transport can be obtained by random
cuts omnidirectionally on the plane, as in [11] and [16]. But here, for the appli-
cation of Theorem 3.1, the nodes need to be ordered.
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n i+l Z—l Oupw; +¢”k"2) P
> Z
j=i+1 =2 ||k= Poyo;
. . 2
i n—1 n i(0,, 0,40, ) 3]
15 3) Bl (D il KL [ ED
G=1 =i ||k=t+1 p'ukvj

where ¢,,u, € [0,27), ¢, € [0,27), and Py,., > 0,

P’ > 0 are real numbers (1 < k, ¢/ < n, and k # /) sat-

VE Ve

isfying the total power constraint

ZZ=1 max {E?:k;+1 Pu;\.uz 5
> k= lmaX{Zl k1 Popog s

k—1
(=1 Pukug} < Ptotal

k 1Pll;l\ué} S Ptotal
(57)
or the individual power constraint: Forall k = 1,...,n

n k—1
max {Zl=k+1 Pupues Do Puku[} < Pina

n / k—1 (58)
max {Zl:k-l—l kaw ’ =1 kaw} S Pind-

A. Expected Upper Bound With Random Phases

In this subsection, we determine upper bounds on the trans-
port capacity under the assumption that the phases {6;;} are
random variables, but are known to all the nodes, so that {¢,;}
can be designed based on {6;;}. We assume that these random
variables {6;,} are all uniformly distributed on [0, 27), and also
independent of each other.

Similar to the one-dimensional case (31), by exchanging the
order of summation, we can rewrite the first part of the RHS of
(56) as

2

—1 i+1||—1 i .
n n it el Ougu T bupuy) /Pu““
E (a“1+1 _am) E E E
i=1 j=i+10=2 |[k=1 puk.u]-
nn - (u wjtPupuy) P
k ke
Uk’u,g
= (Gu, = Oy _,) E p
(=2 j={ k=1 Wk tj

Then similar to (32), using the inter-independence of {6;,}, we
have the following bound:

2
n =1 i(0y, uw,+Pu,u,)
€ ki ke \V4 Pu,ml,g
[EE :(auj _a’u271> E :
k=1

j=t p'ukllj
1
0—10-1 | n 9|2
au] Ay 1) P
UpUgp*
k:1p=1 j= puku]pupuj

Similarly, we can obtain bounds for the other three parts in the
RHS of (56). Therefore, as in the one-dimensional case (33), we
have

ECT
1
n £-10-1| n 2|2
a —a
< max E E E %4@1)
{P“A"z} U (=2 k=1p=1 | j=¢ p1Lk1LJp1l uj
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1
n—1 n n 4 ( )2 2
auH_1 Q.
Puku[ + : Puku[
P, P2
(=1 k=(+1 p=(+1 | j=1 UkUj upu;
1
n (—14—-1] n 2 2
ge (Qo, = u,_,) ,
+ II’rllaX o2 26 Vg
{ Uk,vz} =2 k=1p=1 |j=t p'ukv pvpvj
1
n—1 n n 4 ( 2 2
ave+1 — Qo ) /
+ Z Z 26 - kavz : (59)

pu;\ v; pvpv]

Now, under the total power constraint (57), we can show that
ECt is upper-bounded by the total power Piot,) to within a
constant factor if the coefficients of all the P,, ., and P, , in
(59) are uniformly bounded by a constant. That is, we need to

show that the following terms are uniformly bounded:

~ -1
2

-1 n (a . )2
Z u; w1 Vi<k</{¢{<n (60)
p=1 | j=¢ pm,uj pupuj
4 1
n l a —u )2 3
Z m+1 Uj , Vi</<k<n (61)
p=L+1 ]:1 puA uj pupuj
B - 1
(=1 | n a _a )2 3
Oy = Oyy_y )™ , Vi<k</t<n (62)
p=1 ]:[ p’IJAv pl)pyj
14
n ¢ )
(l” — Qy
é+1 _7) , V1 <l<k<n. (63)
p=L+1 ]:1 pUkUJ pvpv]

Toward this end, we will use the following bound: For any
node i € N, po > pmin, and § > 2

Pmin
1 (z) 2
Z 6 = p =
JEN pz] jGN min /=% -
pij=>po Pij=po
1

rdrdf

s
2

(p?j + 12 = 2rp;; cosf)

(b)
< / / 5 pdpd@
7rpmln —7 J po— Lmin p

= - (64)
(6 — 2)pmin (po — pmm)‘s 2
where the inequality (a) follows from the observation? that for
any f € [-7,7]and 0 < < Lmin
1 1
— <

p%; (p3; 4+ 12 — 2rpij cost)

s
2

and the inequality (b) follows from the observation that all the
open disks centered at node j € A with radius 25 are disjoint
with each other.

2Consider a triangle with p;; and r as the lengths of two sides, with an angle
6 between them. Then the third side has a length of (p?; +12 —2rp;; cos 6)1/2,
by the triangle formula. When p;; > pmin, 0 € [-Z "] and0 < r < ”“‘"‘ R
the length of the third side is no more than p, ;.
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Let 14y be the indicator function of the event A (defined
to be one if A is true and zero otherwise). For 6 > 2, for any
1<k +#p<¥l<n, wehave

1 1
2
- au271> 25

UpUj pupuj

(auj

n
Z 26—2 26 {Puku

=t Puru; puPu]

M-

<
I
~

55 Lpupu; <pupu,}

—
I/\g

Pupuj}

262

{puku SPupujr Pupuj ZPujupt
Pupu; pupu]

n
1 1 1y
+§ :p26 2 {Pupu; SPupujs Pugu; <Pupup}
7=t

U U pupu]

1
<Z 45 2 {puku pum}+z 25—2

Uk“] j=t puku] (puk“p/2)26
(b) 32 1
S W42 Pmin ) 464

win (Puu, = 25)
N 32 1 1
(25 4)pmm (pmin - %)26_4 (pukup/Z) 20

___ 8 ! b ;
B (6 - l)pgnln (pul\»up - %)46_4 (5 - 2)pif1n2 p“k“P

where the inequality (a) follows since

(a’uj - au[—l) S (auj - a’“k) S pukuj

and the inequality (b) follows by the bound (64). Similarly, we
can prove the same bound for

n

> (o,

i=t

1 1
- au571)2 25

{puku >pupu;}
Up U pupu]

Hence, we have

n
11
D (= )

puk.uj p’up’u]‘

7=t
__ 16 1 Lo 1
N (6 - 1)pr2n1n (pukup - %)46_4 (6 - 2)pfr(1$1n2 p”k"v

Therefore, for 6 > 2, we have the following uniform upper
bound for all the terms in (60):

=

—1 n

1 1
2
1<ket< Z(auj ~ Ous)
S 7np=l =t pukuj pupuj-
1
n 2
, 11
T 1cheis Z Z(a"j ~ )
<fsn 1<p<t—1 | j=¢ Puju; pupu]
p#k
1
2
n
, 11
+ E (a’u] aué—l) 28
=t pukuj puku7
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1
16 1 2

< max Z [ - _

1<k<t<n 1<p<t-1 (5— I)Pmin (pukup _ pnénn)
p#k
B 3
246+1 1 2 Z
+ max
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where the inequality (a) follows from the bound (64) and the
following bound:
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which follows similarly as (64), but with smaller disks of radius
Pmin

Similarly, we can prove that the same upper bound holds for
all the terms in (61)—(63). This leads to the following theorem.

Theorem 5.2: Let the phases {6;;} be independent of each
other, and uniformly distributed on [0, 27), but with their real-
izations known to all the nodes, i.e., all channel state informa-
tions (CSI) are known to all transmitters and all receivers. Under
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the total power constraint, for § > 2, the expected transport ca-
pacity is always upper-bounded by the total power to within a
constant factor

(6) loge

IEC < 25 1 Ptotal (65)
where
24§+2 245+4
52(6) = 1 + 1
(6—1D2(6—-2) (6—1)2(26—3)
236+12—1 226+§
+ + —. (66
(6-2)F  (6-1)2 (©0

The following theorem establishing a linear scaling law under
the individual power constraint follows immediately by noting
that Piotal = 1+ Pipg.

Theorem 5.3: Let the phases {#;;} be independent of each
other and uniformly distributed on [0, 27), but with their real-
izations known to all the nodes, i.e., the information states of
all channels are known to all nodes. Under the individual power
constraint, for 6 > 2, the expected transport capacity is always
upper-bounded by the number of nodes n to within a constant
factor
Z2(6) loge

2 26—1
07 Prin

ECt < Pipa-n (67)

where ¢» is defined in (66).

B. Uniform Upper Bounds Irrespective of Phases

In this subsection, we develop uniform upper bounds on the
transport capacity for all possible realizations of the phases
{0i;}.

The following theorem follows immediately from the bound
(56).

Theorem 5.4: The transport capacity is upper-bounded by

n i+l
loge
Cr < 5 Z Ay — Quy) Z Z
{ uku[} o Pl
-1 n—1
<Z \/PUAU[) +i < Z V u;‘Ug>
5
1 puku] j=1 =i \k=(+1 p“’\“]
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T SINESID ob>
e i=1 j=i+1 (=2
-1 2 i n—1
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’Uk’l)g VRV
3 ) R (5 v
<k:1 ”k"] ) j=1 =i \k=t(+1 pv“)J
(68)
where the nonnegative powers Py, ., and P, ,, (1 <k, £ < n,

and k # /) satisfy the total power constraint

ZZ:l max {EZ:IHJ Pumu ’
Zk 1 max {Ez k+1 11“12 )

k—1
(=1 P’Ilk’ll.g} < Ptotal

k ! P{;k”é} S Ptotal
(69)
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or the individual power constraint: Forall k = 1,....n
k-1
max {Z;sz-l—l Pm\.u,f ’ =1 Pu;\uc} S Pind (70)
k 1
max{Z?:k_H Py, s P{}AW} < Pind-
Similarly to the inequality (43), we have
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As in the one-dimensional case, we can substitute the above
inequalities into (68) so that Ct is upper-bounded by the total
power P, to within a constant factor, if the coefficients of all
the P, v, and P] ,, are uniformly bounded by a constant. That

is, similarly to (45) and (46), we need to show that the following
terms are uniformly bounded:

n -1
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= P 5 Pope

By the bound (64), for § > 5/2, we have the following uni-
form upper bound for all the terms in (71):
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(75)
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where for any =,y € R, # V y := max{z,y}.
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If5/2 < 6 < 3,thensince ay, =y, ; < Gy, — Oy, < Pugu,
for any k£ < ¢ < j, the RHS of (75) is upper-bounded by

n 3—6 n
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where the inequality (a) follows from the bound (64).
If 6 > 3, then the RHS of (75) is upper-bounded by
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where the inequality (a) follows from the bound (64).
Similarly, we can prove that the same upper bound holds for
all the terms in (72)—(74).
This leads to the following theorem.

Theorem 5.5: Under the total power constraint, for § > 5/2,
the transport capacity is always upper-bounded by the total
power to within a constant factor

ca(6) loge
Cr < —5%5—= Piota 76
T > o p[zrinl total ( )
where
226—1—8
co(8) := m ()

The following theorem establishing a linear scaling law
under the individual power constraint follows immediately
from Ptotal =n- Pind-

Theorem 5.6: Under the individual power constraint, for
8 > 5/2, the transport capacity is always upper-bounded by the
number of nodes n to a constant factor
6)1
Cr < % Pia-n
0 Pmin

where c5 is defined in (77).

(78)
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Next, we show that § > 5/2 is almost the weakest require-
ment for linear scaling law that we can prove with Theorem 5.1.
That is, we will show that for any § < 5/2, under the individual
power constraint (58), there exists a topology of the network
such that the RHS of (56) is not upper-bounded by the number
of nodes n to within any constant factor, i.e.,

RHS of (56)
_ =

n

00, as n — 0o. (79)

Choose any pg > max{pmin, 1}. Consider regular planar net-
works with separation distance py, i.e., n nodes arranged with
coordinates

(ipo,3po), fori=1,...,mandj=1,....,m

where the integer m satisfies m? < n < (m + 1)%. The other
n — m? nodes can be placed arbitrarily and they will not be
counted in our calculations. Let 6;; = 0, Vi # j. For any two
differentnodes (41, 71 ) and (i2, j2 ) (We denote the nodes by their
coordinates), let

Pina

—— and
m2

P(il-,jl)y(’i%]é) =
/

= ¢(i17j1)1(i21j2) =0

It is easy to check that the individual power constraint (58) is

satisfied. For this choice, the RHS of (56) simplifies to the ex-
pression at the top of the following page. Let

= Pir 1), (i2,42)

P(lil 291),(2,32)

m m i+l m

(%i

klk’l

B(m, 6)

k! j/)2]%) )

Since pg > 1, B(m, 6) is a decreasing function of é. Therefore,
we only need to show that for any 2 < § < 5/2

B(m, 6)

n

— 00, asn — 0o. (80)

Similarly to the one-dimensional case, straightforward calcula-
tions lead directly to (80) as follows.
First
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Then, since j — (£ — 1) < j/2forany [j/2] +1 <{<i+1,
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where the inequality (a) follows similarly to (53), and

=[] (1-55) 527"
(82)

z+1

(= D/21+1

2 [

Again, similarly to (54)—(55), we have

Z Z _ ,L->5—26]

1= fm/?] J=i+1
> oy (6)m™=%° + o(1)

(G —T3/21)°7>° = (4

where

ay(6)

1 I I 1
T6—26|26-26 7 _2§26-25 7 _9§927-26
> 0.

Therefore, finally by (81), we obtain (80).

The preceding example shows that with only Theorem 5.1,
under the individual power constraint, we cannot expect to
prove that the transport capacity is always upper-bounded by
the number of nodes n to within any constant factor, for any
5 < 5/2.

As a fringe benefit, it also shows that only with Theorem
5.1, under the total power constraint, we cannot expect to prove
that the transport capacity is always upper-bounded by the total
power to a constant factor for any § < 5/2.

VI. CONCLUDING REMARKS

The results in this paper establish that for a path loss %0,
where 6 is a random phase, the expected transport capacity is
at best ©(n) when § > 2 for two-dimensional networks, or
6 > % for one-dimensional networks, even if all nodes have
full information on all CSI such as all random phases. This also
has implications for the ergodic transport capacity of wireless
networks over fading channels. It is interesting to know how
far these bounds on § can be decreased. Furthermore, for any
realization of the phases, the transport capacity is uniformly
upper-bounded by a multiple of the total of the transmissions

powers of all the nodes when 6 > % in the two-dimensional
case, or 6 > % in the one-dimensional case. But this cannot

hold true if 6 < % in the two-dimensional case, or § < 1 in
the one-dimensional case, as demonstrated by the multiple-relay
networks constructed in [10]. What happens in the transition re-
gion in the interval% <6< %for two-dimensional networks, or
1<6< % for one-dimensional networks, is still an open ques-
tion. These appear as fairly challenging issues given the present
state of knowledge regarding upper bounds in network informa-
tion theory. It is also useful to sharpen the pre-constants, since
they specify, for example in the latter case, the energy cost to be
irreducibly paid for a single bit-meter of transport in any wire-
less network, and thus a fundamental constant of much interest.

APPENDIX
PROOF OF (16)
The proof idea follows from [14, p. 37], which also appeared
in [13]. First
lyxv IPEIXIPENY|® = [EXY ™)
= [E[XE(Y*[X)]|?
<E|IX|’EIE(Y*]X)]?
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where the last inequality follows from the Cauchy—Schwarz in-
equality, and “="holds if (X, Y") is circularly symmetric com-
plex Gaussian distributed with zero mean. Hence,

Ivxy PENY]? < EJEY X)) (83)
Furthermore

E[Y[I* =E[E(Y X))
=E{E[|lY —E(Y[X) + E(Y |X)||*|X]}
=E{E[|lY - E(Y|X)|I’|X] + [E(Y X))}
=E{E[|lY —E(Y [X)|P|X]} +E[E(YX)|*. (84)

Therefore, by (83)—(84), we have
E{E[lY —E(Y[X)I?X]} < (1 =[xy PENYIP (85)

where “=" holds if (X,Y") is circularly symmetric complex
Gaussian distributed with zero mean.

REFERENCES

[1] MobiHoc '04, The Fifth ACM International Symposium on Mobile Ad
Hoc Networking and Computing, Tokyo, Japan, May 2004. Available
[Online] at http://www.sigmobile.org/mobihoc/2004/.

[2] Mesh Networking Summit, Microsoft, Redmond, WA, 2004. Avail-

able [Online] at http://reseach.microsoft.com/meshsummit/techpro-

gram.aspx.

The 2004 National Summit for Community Wireless Networks, Cham-

paign-Urbana Community Wireless Network (CUWIN), Free Press, and

Prairie Community Network, Champaign-Urbana, IL, 2004. Available

[Online] at http://www.communitywirelesssummit.org/.

[3

[t}

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

[4] ACM SenSys '04, The Second ACM Conference on Embedded Net-
worked Sensor Systems, Baltimore, MD, Nov. 2004. Available [Online]
at http://www.cse.ohio-state.edu/sensys04.

[S] IPSN ’04, Information Processing in Sensor Networks, Berkeley, CA,
2004. Available [Online] at http://ipsn04.cs.uiuc.edu/.

[6] The First IEEE Communications Society Conference on Sensor and Ad
Hoc Communications and Networks (IEEE SECON 2004), Santa Clara,
CA, Oct. 2004. Available [Online] at http://www.ieee-secon.org/2004/.

[7]1 S. Graham, G. Baliga, and P. R. Kumar, “Issues in the convergence
of control with communication and computing: Proliferation, architec-
ture, design, services, and middleware,” in Proc. 43rd IEEE Conf. De-
cision and Control, Atlantis, Paradise Island, Bahamas, Dec. 2004, pp.
1466-1471.

[8] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[9] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388-404, Mar. 2000.

[10] L.-L. Xie and P. R. Kumar, “A network information theory for wireless
communication: Scaling laws and optimal operation,” IEEE Trans. Inf.
Theory, vol. 50, no. 5, pp. 748-767, May 2004.

[11] A.Jovicic, P. Viswanath, and S. R. Kulkarni, “Upper bounds to transport
capacity of wireless networks,” IEEE Trans. Inf. Theory, vol. 50, no. 11,
pp. 2555-2565, Nov. 2004.

[12] O. Leveque and I. E. Telatar, “Information-theoretic upper bounds on
the capacity of large extended ad hoc wireless networks,” IEEE Trans.
Inf. Theory, vol. 51, no. 3, pp. 858-865, Mar. 2005.

[13] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Inf. Theory, vol. IT-25, no. 5, pp. 572-584, Sep. 1979.

[14] B. Schein, “Distributed Coordination in Network Information Theory,”
Ph.D. dissertation, Dept. Elec. Eng. and Comp. Sci., MIT, Cambridge,
MA, 2001.

[15] 1. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ.
Trans. Telecommun., vol. 10, pp. 585-595, Nov. 1999.

[16] F. Xue, L.-L. Xie, and P. R. Kumar, “The transport capacity of wireless
networks over fading channels,” IEEE Trans. Inf. Theory, vol. 51, no. 3,
pp. 834-847, Mar. 2005.



	toc
	On the Path-Loss Attenuation Regime for Positive Cost and Linear
	Liang-Liang Xie, Member, IEEE, and P. R. Kumar, Fellow, IEEE
	I. I NTRODUCTION
	II. M ODEL AND D EFINITIONS
	Definition 2.1: Consider a wireless network of $n$ nodes. Let $\
	Definition 2.2: A rate vector $(R_{1}, \ldots , R_{n(n-1)})$ is 
	Definition 2.3: The transport capacity of a wireless network is 

	III. A C UT -S ET B OUND W ITH M ULTIPLE C UTS
	Corollary 3.1: Considering multiple subsets $S_{k}\subset {\cal 
	Proof: From [ 8, p. 446, eqs. (14.313)-(14.330) ], for any $S_{k

	Remark 3.1: The bound (9) is in general tighter than applying th
	Theorem 3.1: Considering the $n-1$ subsets $S_{i}$ defined in (1
	Proof: An application of Corollary 3.1 gives $$\displaylines{\su


	IV. O NE -D IMENSIONAL N ETWORKS
	Theorem 4.1: The transport capacity is upper-bounded by $$\eqali
	A. Expected Upper Bound With Random Phases
	Theorem 4.2: Let the phases $\{\theta _{ij}\}$ be independent of
	Theorem 4.3: Let the phases $\{\theta _{ij}\}$ be independent of

	B. Uniform Upper Bounds Irrespective of Phases
	Theorem 4.4: The transport capacity is upper-bounded by $$\displ
	Theorem 4.5: Under the total power constraint, for $\delta >3/2$
	Theorem 4.6: Under the individual power constraint, for $\delta 


	V. T WO -D IMENSIONAL N ETWORKS
	Theorem 5.1: The transport capacity is upper-bounded by $$\eqali
	A. Expected Upper Bound With Random Phases
	Theorem 5.2: Let the phases $\{\theta _{ij}\}$ be independent of
	Theorem 5.3: Let the phases $\{\theta _{ij}\}$ be independent of

	B. Uniform Upper Bounds Irrespective of Phases
	Theorem 5.4: The transport capacity is upper-bounded by $$\eqali
	Theorem 5.5: Under the total power constraint, for $\delta >5/2$
	Theorem 5.6: Under the individual power constraint, for $\delta 


	VI. C ONCLUDING R EMARKS
	P ROOF OF (16)

	MobiHoc '04, The Fifth ACM International Symposium on Mobile Ad 
	Mesh Networking Summit, Microsoft, Redmond, WA, 2004. Available 
	The 2004 National Summit for Community Wireless Networks, Champa
	ACM SenSys '04, The Second ACM Conference on Embedded Networked 
	IPSN '04, Information Processing in Sensor Networks, Berkeley, C
	The First IEEE Communications Society Conference on Sensor and A
	S. Graham, G. Baliga, and P. R. Kumar, Issues in the convergence
	T. Cover and J. Thomas, Elements of Information Theory . New Yor
	P. Gupta and P. R. Kumar, The capacity of wireless networks, IEE
	L.-L. Xie and P. R. Kumar, A network information theory for wire
	A. Jovicic, P. Viswanath, and S. R. Kulkarni, Upper bounds to tr
	O. Leveque and . E. Telatar, Information-theoretic upper bounds 
	T. Cover and A. El Gamal, Capacity theorems for the relay channe
	B. Schein, Distributed Coordination in Network Information Theor
	. E. Telatar, Capacity of multi-antenna Gaussian channels, Europ
	F. Xue, L.-L. Xie, and P. R. Kumar, The transport capacity of wi



