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Asymptotic Variance Expressions for Estimated
Frequency Functions

Liang-Liang Xie and Lennart Ljung, Fellow, IEEE

Abstract—Expressions for the variance of an estimated fre-
quency function are necessary for many issues in model validation
and experiment design. A general result is that a simple expression
for this variance can be obtained asymptotically as the model
order tends to infinity. This expression shows that the variance is
inversely proportional to the signal-to-noise ratio frequency by
frequency. Still, for low order models the actual variance may be
quite different. This has also been pointed out in several recent
publications. In this contribution we derive an exact expression
for the variance, which is not asymptotic in the model order. This
expression applies to a restricted class of models: AR-models,
as well as fixed pole models with a polynomial noise model. It
brings out the character of the simple approximation and the
convergence rate to the limit as the model order increases. It also
provides nonasymptotic lower bounds for the general case. The
calculations are illustrated by numerical examples.

Index Terms—Accuracy, asymptotic variance, FIR models,
system identification.

I. INTRODUCTION

E XPRESSIONS for the accuracy of an estimated frequency
function are important for several purposes. They are

needed to understand the reliability of the model, e.g., for con-
trol design. They are also important for various experimental
design issues. See, e.g., [3]–[5]. For parametric estimation
methods, expressions that are asymptotic in the number of
observed data, can always be calculated from the asymptotic
parameter covariance matrix for any given estimate. These
expressions can easily be plotted or tabulated, but are normally
not suitable for analytic calculations. It has therefore been of
interest to find analytic expressions for the frequency function
accuracy, if necessary at the price of approximations.

The basic such expression is as follows [6]–[9]: Consider a
parameterized set of transfer function models:

(1)

Let the order of the model be , and suppose that the
input–output data can be described by

(2)
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where the spectra ofand are and , respectively.
Then the basic result is that the variance of the estimated fre-
quency function is given by

(3)

where the expression is asymptotic in both the model order,
and the number of data. For this result to hold, it is essentially
only required that the model parameterization in (1) has a block
shift structure, so that the gradient w.r.t. the parameter block,

, is a shifted version of the gradient w.r.t. (see [7, p.
293]). This structure is at hand for most of the typical black box
model parameterizations, like ARMAX, Box–Jenkins, etc.

A similar result holds if the frequency function is estimated
by spectral analysis, [2], [7, Ch. 6]:

(4)

where is a number that depends on the type of window
used, as well as on its size.

These results are intuitively appealing, and mean that the vari-
ance of the estimate is inversely proportional to the signal-to-
noise ratio at the frequency in question.

However, it is important to realize that they are asymptotic
in the model order . Simulations in [7, Fig. 9.1], indicate that
they may give a reasonable picture of the true variance, also for
moderately large , but that the goodness of the approximation
becomes worse for colored inputs.

In the recent paper [12] model parameterizations like (1) with
fixed denominators of are studied. The asymptotic result (3)
applies also to such structures. However, in [12] it is shown that
this simple expression may be quite misleading for low order
models, i.e., that the convergence into the right-hand side of
(3) could be quite slow. The authors also derived an alternative
asymptotic expression that shows better accuracy in these cases.
See also [11].

In this paper, we will derive exact, nonasymptotic (in) ex-
pressions for the variance for the following special case of (1):

(5)

with and fixed polynomials, the polynomial with the
uncertain parameters andbeing an autoregressive process. The
arguments also apply to the AR-modeling

(6)
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This exact expression will bring out the character of the ap-
proximation in (3), as well the general convergence rate. It will
also be useful for more exact analytical calculations, involving
the model accuracy. We will also comment on how the results
relate to more general parameterizations.

The remainder of the paper is structured as follows. In Sec-
tion II, we give some preliminary observations on the plausi-
bility and limitation of the asymptotic (in and ) variance
expression (3). In Section III, a nonasymptotic (in model order

) expression is presented for the model structure (5), which im-
proves over (3) especially in the case of low order models. The
detailed proof is presented in Section IV. In Section V, other
model structures are considered, where normally only lower
bounds are obtained, except for the AR-model, for which an
exact expression can be derived in the same spirit. In Section VI,
some numerical illustrations are given. Finally, we conclude this
paper in Section VII.

II. SOME PRELIMINARY OBSERVATIONS

Consider the model (5) and assume thatis an autoregression

(7)

where is white noise with variance . Suppose the true
system can be described by

(8)

where , are polynomials and is white noise with vari-
ance . In other words, comparing (5) and (8), our assumption
is that thea priori guess on the poles of the input–output dy-
namics is correct, while the guess of the noise model could
be wrong, i.e., .

The model (5) is a linear regression for estimating

(9)

with

The true system corresponds to

(10)

Apply the LS method to estimate

It is well known that the covariance matrix of the estimate
is given by (see, e.g., [7, (9.42)])

(11)

where the elements of the matrix is given by the correlation
function of

and the elements of the matrix is given by the correlation
function of

where

with

From this follows immediately one important observation:
The covariance matrix of the estimate depends on the poly-
nomials, and only in the combinations

(12)

and

(13)

The latter expression describes the discrepancy between the true
noise description in (8) and the noise model in (5). We shall refer
to this ratio as thenoise model error.

From the general asymptotic result (3), it follows that the vari-
ance of:

(14)

is asymptotically in and given by

(15)

Since the transfer function estimate is , this gives
the asymptotic variance of the frequency function

(16)
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The asymptotic variance thusdoes not depend on either or
. This may be counter-intuitive for two reasons.

• We know that the best choice of noise model is to
let it be equal to the true one (see, e.g., [7, p. 478]).
This minimizes the variance, and makes it equal to the
Cramer–Rao bound. Yet, the asymptotic (in) variance is
independent of ! To understand this paradox, it is neces-
sary to realize the role of the noise model filter: It weighs
together information about the system from different fre-
quency points to merge it into one model. The noise filter
will make sure that information where there supposedly
is much noise [i.e., frequencieswhere is large]
carries less weight in the final estimate. As the model order
increases, the estimates ofbecome more and more de-
coupled at different frequencies, so this global frequency
weighting becomes less pronounced. As a consequence,
the influence of the noise model filter on the estimate be-
comes less important.

• The prior knowledge about system poles, represented by
should be beneficial for the variance of the estimate

(provided it is correct). However, again as the model order
increases, the value of this knowledge decreases. In other
words, for large , the set of models described by
as ranges over all -order polynomials comes close to
describe all “nice” linear systems, regardless of.

It is also clear that for small values of, the influence of
and should be more pronounced. The paper [12] contains
several striking examples of how much the variance for small
may differ from the asymptotic expression.

In the next section, we shall demonstrate this by deriving a
nonasymptotic expression for the variance.

III. A N EXACT EXPRESSION FOR THEVARIANCE

First, let us explicitly write out the polynomials , , ,
in the following form:

(17)

with , ,
. Note that since or can be zero, and are not

necessarily of the same order.
The main technical result of the paper is the following one.
Theorem 3.1:Consider the problem of estimating the fre-

quency function in the model structure (5), where the input is
given by (7). Assume that the true system is given by (8). Sup-
pose that the model orderis no less than the order of and
also the order of the polynomial . Then the vari-

ance of the frequency function estimate, asymptotically in,
but exact in , is given by

(18)

Here

• is the order of , and is the order of ; (Note
that );

• for a polynomial is
given by

(19)

• for a rational function is given by

(20)

where, is the mirror of and is any
simple closed positively oriented curve on the complex
plane with all the poles of inside and the point
outside.

Some Observations About the Expression for :

• The factor

actually is the noise-to-signal ratio (SNR)
as in (3).

• Note that (18) can be rearranged as

(21)

As the model order increases (and the polynomials
and remain fixed) the expression for the covariance,

thus converges to the basic expression (3) at the
rate .

• When , and the noise model is correct, i.e.,
, that is, we have a FIR model with white input

and noise, it follows from (19) and (20) that ,
and (18) reduces to

which agrees with (3).
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• When the noise model is correct, i.e., , the
expression (18) reduces to

which basically is the main result in [12]. However, ap-
parently it is not realized in that paper that this is the exact
expression when the noise model is correct and the input
is an autoregression.

• The main new contribution of (18) is the third term
, which obviously

is accounting for noise model error [it is easy to see
that ]. In Section VI, some interpretations
are given on how it depends on the filtered noise spec-
trum . It should be noted that
this term is bounded since and

by (17).

IV. PROOF OFMAIN RESULTS

A. An Extension of Laurent Expansion

First, on a more general orthonormal basis than the trigono-
metric one all integers , we establish an extension of
the Laurent Expansion, which plays a key role in the proof of
Theorem 3.1.

For complex numbers with , it
is easy to see that the functions given by

(22)

are orthonormal on the unit circle : , i.e.,
for , with

(23)

where “ ” denotes “complex conjugate.” By [10, Th. 1], ,
form a complete orthonormal basis for the analytic func-

tions. Specially, if , , then .
Similarly, it is easy to see that , are also

orthonormal and , if , .
Lemma 4.1 (An Extension of the Laurent Expan-

sion): Suppose , are complex num-
bers with , and .

Consider the region . Let
be analytic on the region . Then, we have the following
expansion for (the interior of )

(24)

where, is defined as in (22), is similarly defined
with replaced by .

Proof: By Cauchy’s Integral Formula, we have for

(25)

For , is analytic on . Hence, by
[10, Th. 1], we have for

with

Hence, we have

(26)

Hence, the first term in RHS of (25) can be written into

(27)

where the second equation follows from Cauchy’s Integral For-
mula and for .

For the second term in the right-hand side of (25), let

(28)

Then

(29)

For , is analytic on . Hence by
[10, Th. 1], we have for
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with

Hence, we have

(30)

Then, by (29) and (30), we have

where the third equation follows from Cauchy’s Integral For-
mula and for . Hence

which together with (27) lead to (24).

B. Proof of Theorem 3.1

It is obvious from (5), (7), (8), and (17) that the true model
for and is

(31)

where

and

By reparameterization using the orthonormal basis (see [10])

(32)

where

(33)

with

(34)

we have the new equivalent (in the sense of frequency function)
model

(35)

with

(36)

and there exists some linear relationship betweenand . Note
that could be complex numbers.

By the same reason as deriving (11), applying [7, (9.42)] to
the model (35) and (36), we have

(37)

with

where is defined in (32)–(34).
By Parseval’s formula, we have

(38)

where is an symmetric Toeplitz matrix for
any positive function :

(39)
It follows immediately that for any constant

since form an orthonormal basis. Hence, by (35)–(38),
we have

(40)
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Equation (40) can also be derived by the arguments in [12].
The only difference is that undermodeling is not our concern in
this paper since : by our assumption.
Thus, the term containing in [12, (38)] will drop out and
leave the same equation as (40).

So now the left task is to make (40) into a simpler and more
explicit form. The method used in [12] is to apply an asymp-
totic result which holds as the model order . But in
this paper, to get a nonasymptotic expression, we will exactly
calculate (40), which is feasible due to the specially chosen or-
thonormal basis (32).

An application of Lemma 4.1 in our problem is as follows.
For any , let

and

in Lemma 4.1. Then it is easy to check that

(41)

(42)

with defined in (33) and that

(43)

(44)

By (43), (44) and using Cauchy’s Integral Formula, it is obvious
that for any

Hence by (41), (42), and Lemma 4.1 for
with , we have for any

(45)

Before going further, let us introduce some notations. Corre-
sponding to defined in (34), let

(46)

and

(47)

It is not difficult to prove the following two equations for
:

(48)

and

(49)

In fact, for any , let

It is not difficult to establish the fact that Hence
by the definition of , we have

which is (48). By similar arguments, we can prove (49).
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Now another application of Lemma 4.1 with

gives

with , , , defined in (34), (46) and (47).
Then, for

by Cauchy’s Integral Formula, we have

Hence, by Lemma 4.1, we have

Then it follows from the definition (23) and the summation
of the above equation over that:

(50)

Now, to calculate the inner products in the above equation,
first let us suppose , are distinct in order to use
the Residue Theorem for single poles. Let

in the following calculation. By the definition of inner product,
we have

Similarly, we can calculate that

Then, it follows from (50), (48), and (49) that
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Then, using the Residue Theorem, we have for any simple
closed positively oriented curve with all the poles of
inside and the point outside, such that

(51)

For the case where there are multiple poles in, ,
we can perturb a little in order to apply the above analysis.
Then because the complex integrations on both sides of (51) are
continuous on , we have (51) hold for the general case.

Now we are well prepared to calculate (40). By the definitions
(32) and (39), we have

(52)

where, the last equation follows from (45) and (51).
At last, Theorem 3.1 follows from (40), (52) and the fact that

V. APPLICATIONS TOOTHER MODEL STRUCTURES

A. Estimated Noise Model

Consider again the model structure (5), but assume that the
noise model polynomial is estimated, rather than being fixed

(53)

If and are estimated by a standard prediction error method,
and the system operates in open loop, the estimates ofand
are asymptotically (in the number of data) uncorrelated (see,
e.g., [7, (9.42)]). That means that the variance ofwill be the
same as if was fixed at the resulting estimate. If the order of
the model polynomial is at least as large as that of the true
noise description , the estimate will converge to . All
this means thatthe variance of the estimated frequency function

will be given by (18) with in case the noise model
order is sufficiently large.

B. AR-Models

Consider now the case of estimating a time-series AR-model

(54)

Assume that the true time series is described by

(55)

Define

(56)

where contains the LS-estimated AR-parameters. It is well
known that the covariance matrix of these estimated AR-param-
eters is given by

(57)

where is the correlation matrix of :

Thus, note that is the same matrix as the right-hand side
of (11) for , , and . This
means that the variance of the-function estimate is the same
as a special case of Theorem 3.1.

We formulate the result as a separate theorem.
Theorem 5.1:Consider the AR-process (55) of order. Let

the -polynomial be estimated as anth-order AR model (54)
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and assume that . Then the variance of the -func-
tion is given by

(58)

where , are the roots of the -polynomial.

C. Lower Bounds for Output Error (OE)-Models

It seems quite difficult to derive an analytic expression of the
variance like (18) for the general model (1), where also the poles
are estimated. However, (18) actually provides a lower bound
for more general models.

Consider first the OE model

(59)

Suppose the true system can be described by

(60)

It is easy to see that if we partition a parameter vector into one
part that is estimated and one part that is replaced by the true
values, then the covariance matrix of the estimated part cannot
be larger than if the whole vector is estimated. This follows from
[7, (9.59)] and the fact that for any , ,

, and symmetric and positive matrices, ,

if . (Where “ ” denotes “conjugate transpose”).
In the present case, this means that the variance of the esti-

mate must be at least as large as if the denominator poly-
nomial is fixed to its true value:

(61)

The variance of the frequency function estimate in (61) is given
by Theorem 3.1, which leads to the following result.

Theorem 5.2:Consider the output error model (59), where
the input is given by (7). Assume that the true system is given
by (60). Suppose that the order of is no less than the order
of and also the order of . Then the variance of the
frequency function estimate is bounded from below by

(62)

where is defined in Theorem 3.1.

D. Lower Bounds for ARMAX-Models

Now, consider the ARMAX model

(63)

Fig. 1. T is chosen close to the circlejzj = 1 and avoiding the singular point
e with ! = 0.

Suppose the true system can be described by

(64)

As above, it follows that the variance of the frequency function
estimate using the model (63) is no less than that using the fol-
lowing model:

(65)

Define and apply Theorem 3.1 to the esti-
mation of in . The variance
of according to (18) can then be translated to the variance of
the frequency function estimate to yield the following re-
sult.

Theorem 5.3:Consider the problem of estimating the fre-
quency function in the model structure (63), where the input is
given by (7). Assume that the true system is given by (64). Sup-
pose that the order of is no less than the order of and also
the order of . Then the variance of the frequency function
estimate is bounded from below by

(66)

VI. NUMERICAL ILLUSTRATION

A. What Does Look Like?

It would be instructive to see how depends on

which is the filtered noise spectrum. To this end, we’d like to
choose as the circle in the complex integration (20)
since then , and (20)
becomes a weighted integration of the filtered noise spectrum

. But is a singular point in the complex integration
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Fig. 2. The real part of the weighting functionW (!; �) as a function of� for ! = 0. Left: d = �=7. Right:d = �=14.

Fig. 3. Two comparisons betweenR (C =C ) (top) and(1=�)� (!) (bottom) with�(!) = jC (e )=C (e )j , as functions of!. Left:C zeros: 0.1, 0.6,
0.7,�0.9;C zeros: 0.2, 0.5, 0.8,�0.85. Right: Two more zeros toC : 0.7� 0.6i, 0.7+ 0.6i; Two more zeros toC : 0.6� 0.6i, 0.6+ 0.6i.

(20). So must avoid it by indenting to the inside a little (e.g., in
Fig. 1, where setting ). To see how sensitively the value
of the complex integration depends on the local behavior of
around , it is interesting to note that the integration value
will increase by if instead indents to the outside a little.
[This can easily been proved using the Residue Theorem for the
multiple pole in (20).]

In the following, we specially choose as the curve shown
in Fig. 1, which is actually made up of two parts: an arch and a
piece of line. As the angle tends to zero, tends to the circle

. Hence we can nearly regard as a weighted
integration of the filtered noise spectrum ,
namely,

(67)

where, the weighting function is defined as

if

if
(68)

Since the noise spectrum is real, we only need to consider the
real part of the weighting function, which is plotted in Fig. 2 for

and respectively (where setting ).
We can see that the graph of the weighting function is quite

typical, made up of three jumps around, the frequency in ques-
tion. As tends to zero, these jumps become more narrow and
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Fig. 4. Variance of the estimated frequency functions, as functions of frequency. The true system is given by (8) withB (q) = q (1 + 0:5q ) , C (q) =
1 � 1:4q + 0:85q andF = 1. The model structure is given by (5) withn = 12 andC (q) = 1 + 1:4q + 0:85q . The input is white noise. The
dashed line shows the variance from a Monte Carlo experiment with 500 runs. The solid line is the expression (18). The dotted line is the “classical” expression
(3), while the dash-dotted line is the expression from [12].

Fig. 5. Illustration of the effect of a bad choice of prefilter. The curves show the frequency function variance as a function of frequency. The expression is given
by (18) withL = F = 1, � = � = 1 andn = r = 2. Left: C has zeros at 0.8, 0.9; whileC has zeros at 0.4, 0.5. Right: The converse situation:C has
zeros at 0.4, 0.5; whileC has zeros at 0.8, 0.9. Note the different scales of they-axis!

steeper and it can be proved that the area above zero is asymp-
totically proportional to the area below zero. By the formula for
the second derivative:

one may guess that , with

. We present two examples in
Fig. 3, which shows that the second derivative indeed can catch
the spirit of the complex integration although the fitting is not
exact and the scaling differs from case to case. Since from (67),
it is quite clear that depends on the global behavior
of , , we cannot expect the local behavior

provide the total information.

B. Some Comparisons

To see how much the new result may differ from the existing
ones, we choose a th order model in Fig. 4. It is obvious
that both the existing results [7] and [12] are quite misleading
in this case.

From the model structure (10), it is clear that we can re-
gard as a prefilter of the input and output data. It has been
proved (see, e.g., [7]) that choosing will minimize the
variance, i.e., achieve the Cramer–Rao bound. But the problem
arises of course when is not known exactly. In this case, one
has to guess where the zeros ofare located and then choose
the poles of the prefilter properly. But one must realize that bad
poles of the prefilter will cause much larger variance than bad
zeros of . For example, suppose that it is believed that some
zeros of are close to the unit circle. Choosing a prefilter
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Fig. 6. Modification of (f) in [7, Fig. 9.1] with the new expression (66). Thin
lines: Normalized true variances forn = 2 (solid) andn = 10 (dashed). Thick
lines: Normalized lower bounds forn = 2 (solid) andn = 10 (dashed).

Fig. 7. Comparison between true variance and the lower bound (66) for the
“Åström system” corrupted by a colored noise with two zeros at 0.5. Thick lines:
normalized lower bounds; thin lines: normalized true variances by Monte Carlo
estimate. Solid lines:n = 2; dashed lines:n = 10.

of this kind could however lead to very high variance, if the true
does not have zeros close to the unit circle. The reverse sit-

uation that indeed has zeros close to the unit circle leads
to less variance. In other words, if you choose a prefilter with
zeros close to the unit circle, you better be sure that this reflects
a property of the true system. This is illustrated in Fig. 5.

This observation becomes more concrete when we consider
the case when in (17), since then by the Residue The-
orem, (18) reduces to

(69)

It is clear that it is very unfavorable for to be close to 1 unless
is also close to .

C. Lower Bounds for ARMAX Models

In the case where both the input and the noise are white, the
expression (66) reduces to the expression (3), i.e., the result in
[7]. In fact, [7, Fig. 9.1] has shown that it is really a lower bound
for the ARMAX model and the true variance approaches the
lower bound as the model order goes to infinity. The graph “”
is an exception because there the input data is not white. Hence,
we need to use the formula (66) instead. The new result is shown
in Fig. 6. (From now on, we use the log-log scale plot in accor-
dance with that used in [7, Fig. 9.1].) It should be noted that in
Fig. 6 the lower bounds for the second order and the tenth order
are no longer the same due to the new expression (66).

Next, we consider the case where the noise is not white. We
shall compare how much the true variance differs from the lower
bound calculated from (66). Suppose the true system can be
described by (64) with ,

, , i.e., the “Åström
system” corrupted by a colored noise with two zeros at 0.5. We
use the ARMAX model (63) with order or
respectively. The results are shown in Fig. 7.

VII. CONCLUSION

It is a simple and natural asymptotic result that the covari-
ance of an estimated frequency function is proportional to the
noise-to-signal ratio at the frequency in question. However, due
to erroneous noise models, colored inputs, fixed poles and other
features, the actual variance of the frequency function estimate
may differ substantially from the asymptotic value for low order
models. This has been pointed out clearly in [12]. We have here
developed an exact result for the covariance within a limited
class of models and input spectra. This result points to the fea-
tures that cause the deviations from the limit expression. It also
establishes the convergence rate to the limit to be like 1 over the
model order.

As a fringe benefit an exact result for the covariance of the
AR-model frequency function is obtained, thus extending the
classical asymptotic result by Berk, [1].
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