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Abstract—We consider networks consisting of nodes with radios,
and without any wired infrastructure, thus necessitating all com-
munication to take place only over the shared wireless medium.
The main focus of this paper is on the effect of fading in such wire-
less networks. We examine the attenuation regime where either the
medium is absorptive, a situation which generally prevails, or the
path loss exponent is greater than 3. We study the transport ca-
pacity, defined as the supremum over the set of feasible rate vectors
of the distance weighted sum of rates.

We consider two assumption sets. Under the first assumption
set, which essentially requires only a mild time average type
of bound on the fading process, we show that the transport
capacity can grow no faster than O(n), where n denotes the
number of nodes, even when the channel state information (CSI)
is available noncausally at both the transmitters and the receivers.
This assumption includes common models of stationary ergodic
channels; constant, frequency-selective channels; flat, rapidly
varying channels; and flat slowly varying channels. In the second
assumption set, which essentially features an independence, time
average of expectation, and nonzeroness condition on the fading
process, we constructively show how to achieve transport capacity
of 2(n) even when the CSI is unknown to both the transmitters
and the receivers, provided that every node has an appropriately
nearby node. This assumption set includes common models of
independent and identically distributed (i.i.d.) channels; constant,
flat channels; and constant, frequency-selective channels. The
transport capacity is achieved by nodes communicating only with
neighbors, and using only point-to-point coding.

The thrust of these results is that the multihop strategy, toward
which much protocol development activity is currently targeted, is
appropriate for fading environments. The low attenuation regime
is open.

Index Terms—Capacity, fading channels, transport capacity,
wireless networks.

1. INTRODUCTION

ECENT years have seen research as well as development
efforts [1] focusing on wireless networks consisting of
nodes with radios. Two examples of much topical interest are
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ad hoc networks [1], [2] and sensor networks [3]. Such networks
have no wired backbone network, differentiating them, for ex-
ample, from cellular systems, and all communication must take
place only over the shared wireless medium. Due to the fact that
all nodes hear a superposition of the attenuated signals trans-
mitted by all other nodes, there are several ways, some quite
complex, by which information originating at a source can reach
its destination. Thus, one would like to have an information-the-
oretic basis for organizing such information transfer.

Current protocol development efforts [1] are aimed at real-
izing the following strategy. Packets are relayed from node to
node until they reach their intended destination. At each hop,
a packet is fully decoded, thus digitally generated, and then re-
transmitted to the next node on its path. The decoding of a packet
at a node is done by treating all interference from concurrent
transmissions as useless noise. For brevity, we call this the “mul-
tihop” strategy. To realize this strategy requires a suite of pro-
tocols. A medium access control protocol is needed to avoid
excessive interference at receivers, since transmitters in their
vicinity need to be silenced. This is the goal of the IEEE 802.11
protocol in distributed coordination function (DCF) mode, as
well as proposals such as DBTMA [4] and SEEDEX [5]. A
power control protocol [6] is needed not only to save battery life,
but also to regulate the power of transmissions which need only
traverse a short hop while avoiding creating unnecessary inter-
ference for other concurrent transmissions. This is the essence
of the notion of spatial reuse of the spectrum. A routing pro-
tocol is needed [7]-[12] to determine the path to be followed by
packets from a source to its destination.

This multihop strategy, however, foregoes many possibilities
for enhancing information transfer, and it is important to char-
acterize how much has or has not been sacrificed. For example,
it does not take advantage of multiuser estimation [13] which
can enable a receiver to decode several concurrent transmis-
sions. In fact, by subtracting the components corresponding
to transmissions not of interest to it, a node could enhance
the signal-to-noise ratio of the transmissions of interest to it.
This is the successive interference subtraction strategy which
has been shown to attain the capacity of the multiple-access
channel [14], [15]. Even when performing the simple oper-
ation of “relaying,” there are alternatives such as “amplify
and forward” rather than “decode and forward,” which are
known to be superior in some settings [16]. In fact, relaying
itself is not a simple problem—to date, the capacity of the
simple three-node relay problem is unknown [17]. Actually,
in the wireless world, much stranger forms of cooperation are
possible. For example, just as in acoustic active noise cancel-
lation [18], a node could help a second node by transmitting
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a signal which nulls out the transmission of a third node as
perceived at the second node. Since the design space is so rich
with complexities, it is necessary to have a theoretical basis
which allows us to choose from among all these possibilities.
For example, we would like to know how much we lose in
capacity if we sacrifice multiuser estimation, or, say, if we
use point-to-point coding rather than network coding.

This problem was addressed in [19]. The usual information-
theoretic model was enriched by taking into account the dis-
tances between nodes located on a plane with a minimum sepa-
ration distance between nodes. Each node is power limited, and
a performance measure C'r, called the transport capacity, was
studied, which is the supremum of the distance weighted sum of
rates taken over all feasible rate vectors. The wireless medium it-
self was very simplistically modeled. An attenuation of the form
e/ p‘5 was presumed, as a signal traveled a distance p, where
~ > 01is the absorption constant, and 4 is the path loss exponent.

However, a very important issue in practical wireless net-
works, and unmodeled above, is the presence of multipath
fading [20]. In a wireless network, due to the physical envi-
ronment, the electromagnetic waves travel to receivers along
a multitude of paths, encountering delays and suffering gains
which vary with time. Depending on the frequency bandwidth
used, and how fast the environment changes, the fading can
be divided into four cases. If the bandwidth W of the signal is
much smaller than the channel coherence bandwidth B}, i.€.,
W < Beon, then the channel is frequency nonselective or flat
fading. This means that the channel only has a multiplicative
effect on the signal. If, on the other hand, W > DB, the
receiver will get several resolvable signal components, and
such a channel is called frequency selective. We can also
characterize a fading channel by comparing the time duration
T, of a signal symbol with the channel coherence time 7.o},.
A channel is called slow fading if 75 < Tcon, or fast fading
if Ts > T.on. Combining these two factors, we basically have
four types of fading channels: flat slow, flat fast, frequency
selective slow, and frequency selective fast fading channels (see
[20]-[22]). In fact, the point-to-point fading channel has been
an active research field for decades, and is still the subject of
much research effort [21].

In order to understand the role of multipath fading in wireless
networks, we address the following question in this paper: In
the information-theoretic sense, what is the transport capacity
of wireless networks when the transmissions encounter multi-
path fading, and how should information transfer be organized
in such a fading environment? We study all the four fading cases
mentioned above. Each node is subject to a common power
constraint, and the signals sent out encounter both power loss
due to distance as well as fading, before reaching their destina-
tion nodes. Our main contribution consists of the following two
results.

A. An Upper Bound

If either the path loss exponent is greater than three or the
absorption constant is positive, then there is a constant ¢; > 0
such that the transport capacity of wireless networks with n
nodes, mutually separated by a minimum positive distance ppin,

is upper-bounded by c;n, where n is the number of nodes in the
network. This is true even if the nodes have perfect noncausal
channel state information (CSI) of all the fading channels.

This result implies that though techniques such as diversity
(multiuser, space, time, etc., [23]) may increase the throughput
and reliability, they cannot change the order of the transport
capacity [19]. We do not consider the type of diversity that mul-
tiple antennas at a node can provide, and thus it is of interest to
extend our results to wireless networks where nodes have mul-
tiple antennas.

In the course of the proof of this result, we extend a useful
max-flow min-cut bound to a time-varying fading environment.
We also show that there is a simple and interesting connection
between the flow across cut-sets and the transport capacity.! In
fact, this result makes the transport capacity an even more nat-
ural quantity to study in wireless networks. Both of the above
results may be of independent interest in their own right.

To obtain the upper bound, the CSI is allowed to be perfectly
known in advance to both senders and receivers, a best case
scenario. The following result addresses the opposite situation,
a sort of worst case where the fading is independent from time
to time. Assuming no CSI at all, we exhibit a feasible lower
bound of the same order, £2(n), for all networks where every
node has a nearby node within a fixed multiple of the above
minimum positive distance, when v > 0 or § > 3. Thus, these
two results together delineate the effect of fading, and show that
the fundamental scaling law [19] remains the same even under
fading environments.

B. A Feasible Lower Bound

Assume each node faces a fading process independent from
time to time. If within a distance ( py,in of every node there is an-
other node, then a transport capacity of at least con is achievable
for a positive c. The scheduling, coding, and decoding do not
require any CSI at any node, and in fact require very little statis-
tical knowledge of the fading process. In the example we con-
struct, the signals are “peaky” and only a small fraction of the
time is used in transmission—similar to the signaling strategy
used in [25]. The transmissions are coordinated carefully and
random phases? are introduced in signaling in order to avoid
strong interference coming from nearby transmissions. In the
scenario studied, communications are only between neighbors,
and coding is only point-to-point. The thrust of this result is that
the multihop strategy is a reasonable one for organizing the flow
of information when attenuation is high and load can be bal-
anced across the network.

Above we have only addressed the high-attenuation regime,
and have not said anything about the case where there is no ab-
sorption and attenuation is small, i.e., v = 0 and § < 3. The
reason for this is that in such scenarios one can exploit coher-
ence to obtain capabilities not feasible in the relatively high at-
tenuation regime; for example, unbounded transport capacity is
feasible even when the sum of the transmission powers of the
nodes is fixed; see [19]. However, in a fast fading environment,

IA similar idea is mentioned in [24].

2Random fading is also intentionally induced in [26] to facilitate communi-
cation, but the purpose in [26] is to increase the channel fluctuation to improve
the multiuser diversity.
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one cannot employ a strategy capitalizing on coherence. Feasi-
bility results are constructive, and we have yet to find a scheme
which works in fading environments. This remains a significant
open problem. The recent breakthrough on the capacity of some
relay channels with fading in [27] may possibly prove valuable
in this regard.

It should be noted that fundamental studies based on first prin-
ciple photonic collision models have shown that the case v > 0
generally prevails, unless one is in free space; see [28]. Thus,
the results presented here, which include this case, have bearing
for practical environments, though of course + could possibly
be small.

The remainder of the paper is organized as follows. In
Sections II and III, we formulate the model and state the main
results. In Sections IV-VI, we prove the upper bound, while
in Sections VII-XI, we prove the achievability results. We
conclude with some remarks in Section XII.

II. THE MODEL

We consider a wireless communication network G, con-
sisting of a group of n nodes, N := {1,2,...,n}, located on
the plane. The baseband model for the communications among
them is described by the following equation:

[36_7”“
Y; (t) = Z 5
iz P

(i Hijl(t) . Xl(t — Tij — l)) +Zj(t)7

=0
t>1, j€N. (1)

We will consider two alternative assumption sets (A1) and (A2).

A. Assumption Set (Al)

(Al.i): 0, , B, pij, and T;; are deterministic real variables

known to all the nodes.

e 4 and -y are the path-loss exponent and absorption constant
of the attenuation, respectively. We assume that either v =
Owith§ > 3,ory > 0withé > 0. > 0isjustaconstant
gain.

* pij is the distance between node 4 and j. We assume that
there is a minimum distance between nodes, i.e., p;; >
Pmin > 0.

o T = L%J is the propagation delay for signals from ¢
to j, where pq is the distance that a signal travels in one
time slot. (Later we will see that the results do not really
depend on the precise value of 7;;.)

(ALii): {Hi(t)}, {Z;(t)}, {Y;(t)}, and {X;(t)} are com-
plex variables.
o {H;(t):t >1,i,j € N} is the random fading process.
* {Z;(t): j € N,t > 1} are independent and identically
distributed (i.i.d.) complex circular Gaussian noises? inde-
pendent of the fading process { H;;;(t)}, and are not ob-
servable to the users. We suppose E|Z;(t)|> = a2 > 0.

3A complex random variable (r.v.).Z is circular Gaussian if it can be repre-
sented as Z = Z, + v Z, where Z, and Z, are two i.i.d. (real) Gaussian r.v.’s,
and v is the square root of —1.
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* {X;(t)} is the complex baseband signal sequence node
i transmits, and {Y;(¢)} is the complex baseband signal
sequence node j receives.

(Al.iii): Each node is subject to an individual power con-
straint P. Since the channel has multiple paths with delays, we
need to model what may have been transmitted before time 0,
the time when the useful transmissions begin. We simply sup-
pose that the signals prior to ¢ = 0 satisfy

|X;(t)]? < P < o0,

Vt<0,ie N 2)

and are unknown to the nodes.

(Al.iv): There exist positive constants € (0,1) and H >0,
such that for any ¢, 7 € N, the fading process satisfies

T oo

. 1 -1 2 & 7
llmﬁup?;;a |H;ji(t)] < Ha.s.

3

B. Assumption Set (A2)
(A2.i, ii, iii): Same as (Al.i, ii, iii).
(Al.iv): The fading process {H,;(t)} satisfies the fol-
lowing.
* {H;(t), t > 1} is a sequence of independent random
vectors, where H;(t) = (H;j(t),s € N, > 0) for all
j € N . That is, the fading parameters are independent
from time to time.
o Thereexista > 0andp* > 1/2suchthat, foralli,j € N,
0> 1, Pr(|Hyo(t)] > a) > p.
* There exist « € (0,1) and H > 0 such that, for all
i,j €N

“

(A2.v): There exists ¢ > 1 such that for every node j there
exists another node j with p; = < Cpmin.

Remark 2.1: In Theorem 3.1, we will prove an O(n) upper
bound on the transport capacity (defined below) for Assumption
set (A1) even when the CSI is known noncausally and a priori
at both the transmitters and receivers. In Theorem 3.2, we will
prove a constructive 2(n) lower bound on the transport capacity
for Assumption set (A2) even when the CSI is neither known at
the transmitters nor the receivers. Both results hold whenever
there is any absorption, i.e., v > 0, or if the path loss exponent
is greater than 3. It has been shown in [28] that generally the
absorption is positive.

Assumption set (Al) includes channel models where the
fading is flat, i.e., H;j;(t) = Oforalll > 1 and ¢,j € N. By
allowing for CSI to be known at both the transmitters and the
receivers, (A1) covers what is usually meant by “slow fading,”
where the channel varies statistically but with a rate of variation
substantially smaller than the signaling period, so that by use
of a relatively short training sequence the channel state can be
estimated well, and then be regarded as known for the symbol
period. Thus, the upper bound result under (A1) with the CSI
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known at the transmitter and receiver covers the case of “flat,
slow” fading. However the Assumption set (A1) allows for a
much larger class of channels, including, for example, flat or
frequency-selective, stationary ergodic channels, or channels
varying in a deterministic time-varying fashion, since basically
all it requires is the condition (Al.iv).

Assumption set (A2) includes the case of frequency-selec-
tive fading since it allows H;;; to depend on [ > 1. It also in-
cludes “fast fading,” where H,;;(t) is an independent stochastic
process rapidly varying in comparison to the symbol duration.
Thus, it covers the case of “frequency-selective, rapidly varying
channels.” The condition (A2.v) effectively requires that every
node has a nearby node, a reasonable requirement for networks,
and is needed by us to prove the feasibility result. The Q(n)
feasibility result for Assumption set (A2) holds even without
knowing CSI at either transmitters or receivers. Note that As-
sumption set (A2) also allows other channels, for example, flat,
constant fading, or flat, independent fading channels.

C. Definition of Feasible Rate Vectors

For a given wireless network G,,, we employ the standard
definition of what is meant by a feasible information rate vector
R ={R;j,i,j € N,i # j};see [29]:

1) With W;; denoting the message to be sent from node %
to node j, we assume that all the messages W;; are inde-
pendent, and uniformly distributed over their respective
ranges {1,2,... 2TRii},

2) The symbol X;(t), for ¢ > 1, that node 4 sends out at
time ¢ depends on its own outgoing messages {W,;,j €
N,j # i}, as well as the values of its past received sym-
bols {V;(s),0 < s < t — 1}. An encoding scheme of
block length T consists of a set of encoding and decoding
functions, one for each node ¢, as follows:

o Encoders X;(t;Wi1, Wia, ..., Wi,;Yi(1),Y3(2),. ..,
Yi;(t —1)),t = 1,...,T. The encoder maps the mes-
sages that node 7 wants to send to the other nodes, and
its past received symbols, into the symbol X;(¢) trans-
mitted at time ¢. The average power of the symbols
X;(t) is required to satisfy the constraint

1 T
2 P <P 5)
t=1

o Decoders Wii(Vi(1),...,Yi(T); Wir, ..., Win),j =
1,2,...,n. The decoder W]L at node ¢, for node ;’s
message, maps the received symbols in each block, and
its own information, to form an estimate of the message
W;; intended for it from node j € N.

3) For all (4, ), the corresponding probability of error that
the message sent from node 7 to 5 will not be decoded
correctly, converges to zero as 1" goes to infinity, i.e.,

P (i,5) = Pr(Wi;(Y;(1), ..., Y;(T); Wi, ...,
# Wij) — 0,

Win)

as ' — oo.

Now we are in a position to define the transport capacity of
wireless networks.

Definition 2.1: For a given wireless network G,, with fixed
node locations, its transport capacity Cr(G,,) is defined as

(gn = sup ZRUPU

RER(Gn) .

where the optimization is over R(G,, ), the set of all feasible
information rate vectors for network G, i.e., without changing
the node locations in G,,.

We also define the very best transport capacity that can be
delivered by any network with n nodes.

Definition 2.2: The transport capacity C;w") of the class of

wireless networks with n nodes is defined as

C(n) =supCr(Gn) =sup sup Z Rijpij.
Gn Gn RER(Gn)

That is, the optimization is over all wireless networks with n
nodes.

III. MAIN RESULTS
Our main results are the following two theorems.

Theorem 3.1: Under Assumption set (A1), even if the CSI is
known noncausally to all transmitters and receivers, the trans-
port capacity is bounded as

C;") <ecr-n for all n
where
83V PH loge (2(6—2) + §—1
U\/l—(y(pmin/\/i)éfl 65—3 65—2
ify=0,6>3
€1 = 48,3\/ﬁ10ge-p]1“;f = (V2/2)7Pmin

ov/1—a (1_6—(\/5/4)wm;n)4

ify>0,86>0.

Theorem 3.2: Under Assumption set (A2), even if the CSI
is unknown to transmitters or receivers, for any p € (1/2,p*)
there exists a constant ¢y > 0, such that for any network G,

Cr(Gn) > ca-m, for all n
where ¢ 1=
4
2 26 2 _
min L £g ' (Comin) 0 (" —p)
27 16APB2p ] 261 0o
i (142248 (ST 4 520y ) 462

) (1 - H(p)) Pmin,

1 Pﬂ2(cp,m,,)—“e—m’min a’-(p* —p)
27 16aPp2p 2% 3
P Pmin —2%Pmin 4 2YPmin 1482
T ( (1— e*‘/_‘Yﬂmm )2

(1_H(p)) Pmin; if 6>0, y>0
with H (p) := —plog(p) — (1 —

i > ¢

if 6>3, v=0

min

P)log(1 — p). In particular

for all n.

7

Remark 3.1: It may be noted that the preceding result gen-
eralizes the ©(n) feasibility result shown in [19] for regular
networks, where nodes are located at integer lattice sites in a
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square, to the more general class of networks satisfying prop-
erty Assumption (A2.v).

IV. A MAX-FLow MIN-CUT LEMMA FOR
TIME-VARYING MEDIA

In this section, we present a useful lemma showing that the
information rate one set of nodes can receive from the rest of
the network is upper-bounded by a function of the power it can
receive from the other nodes. It generalizes the corresponding
result in [19] to fading environments.

Lemma 4.1 (Max-Flow Min-Cut Bound): Suppose a wireless
communication network is modeled as

=3 3 Ai(t)X.
i#j 1=0
where i) the 7;;’s are deterministic nonnegative integers;
i) {A;;(t)} is a sequence of known deterministic com-
plex numbers; and iii) {Z;(¢)} is the ii.d. circular Gaussian
noise process independent of the signal process {X;(¢)}, and
E|Z;(t)]? = o2
Then for any subset S of IV, the rate vector {Rij, i,j € N}
satisfies

Tij — l) +Zj(t), _] eEN

Rsp <1+ TRspPT Z Z

t 1jeN\s

FE ) At
10g<1+ |Zz€SZl:0 101(2

)Xi(t — 75 — l)|2>

where N\ S denotes those nodes in N but not in S,

Z Rij7

i1€5,jEN\S

RSD =

and Pe(T) is the probability of decoding error.
Proof: The proof is similar to the proof of Lemma 4.1 in
[19]. Let D := N\S be a set of destination nodes, and let

Wi = {1,2,...,27R}

denote the message set from node ¢ to j. We use the following
notation:

= Z f: Aijl(t)X T(t

i€eS 1=0
Vi(t) :=Uj;(t) + Z;(t)
Wsp ::{Wij:ie S, ED}
Wp ::{Wi]’:iED,j GN}
W; . ={W,; :j € N}.
LetVp(t) :={V;(t): j € D}, V], = {Vp(k): k=1,...
and similarly for Y, U, Z. Also, let
Fs(t) = {Aijl(t)Xi(t — - l) 1€ 8,7€D,l> 0}
First we want to show that

Wsp — {VEWD} - {ngwD}

Tij—l), JED

it}

Tz'j

forms a Markov chain. This can be done by showing that Y is a
deterministic function of (VZ', Wp) and the fading coefficients
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= {A4;;(t),Vi,5,l,t > 1}. Actually, for any j € D,
2<t<T

Vi) =Vi()+ > > Aut)Xiz(t—7i;—1)

i€D,i#j 1
Z Z Aiji(0) fi (VTN W)
i€D,i#j 1
and
Y1) Z Z Aiji(1) fi  (W5).

i€Di#y

Now by Fano’s lemma and the property of a Markov chain,
we have

H(Wsp|VE Wp) < HWsp|YA  Wp) <1+ TRspP™).
Thus,
TRsp
=H(Wsp) = I(Wsp; VA, Wp) + HWsp|VE, Wp)
<I(Wsp; VA Wp) 4+ 1+ TRspP™
=I(Wsp; Wp) + I(Wsp; Vi |Wp) + 1+ TRsp PP
=0+ h(VE|Wp) — M(VE |Wsp,Wp) + 1 + TRsp P
<h(VE) = h(VE|Wsp,Wp) + 1 4+ TRsp P
with
h(VD5IWsp, Wp)

= zT: }L(VD

OVp(1),...,Vp(t—1),Wsp, Wp)
> 3" h(Vp(®)|[Vp(1),..., Vb(t = 1),Ts(t), Wsp, Wp)
= > h(Vb(D)Ts(1) Zh Vo (1)|Up (1))

Henc:a

t=1jeD

— log(meo?))
1 + TRSDP(T)

=Y Yt +

t=1j€D

t
()| L)+ 1+TRspP™

where the last inequality follows from [30, Lemma 2]. O

Remark 4.1: Lemma 4.1 differs from [19, Lemma 4.1] in
allowing for a time-varying fading process.
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With Lemma 4.1 in hand, we can easily get the following
corollary.

Corollary 4.2: If a wireless network satisfies Assumption set
(A1), and the fading process is known beforehand, then for any
subset S of IV, and feasible rate vector {R;;,7,j € N}

Rsp := Z R;;
i1€S,jEN\S
satisfies
- 26VPH P
RSDﬁloge'm' Z pi; e . (6)

1€S,JEN\S
Proof: Let D = N\S. Since the rate vector is feasible, we

know Pe(T) — 0as T — o0. So by the proof of Lemma 4.1, we
have the equation at the bottom of the page.

Furthermore,
2
E|Y Z/fé@ Y05 Hiy(6) Xip(t— 735 — 1)
1€S 1=0
_ﬁ_zE Zi /2 —pij /2. (Ha~?) .
o2 p” € ijl «
1€S 1=0

( —6/2 77p”/2X o(t— i — l)auz)’z

<Zz‘p—5/26 i /2, a(ha 1/2‘ )

i€S 1=0

> 2
(Z > ‘p'i_jme_w”/ZXi,T(t — Tij — l)al/2’ )
1€S 1=0
(ZZp—% - Hi (1) u) |
1€S 1=0
(zz B0~ )
1€S 1=0

where the inequality comes from the Cauchy-Schwarz in-
equality, and the last equality follows from the fact that we
know H,j;(t) beforehand, with y a constant to be determined
later.

It is easy to verify that for any nonnegative a and b,
log(1 + ab) < (a + b)loge. Hence,

RSD—O(I)

T 0 =6 ,—ypij
<23 Yo <1+ <Z > lehﬂ(t)ﬁa—l)

t=1jeD i€S 1=0

=6 ,—vpij 3,1
e
+%E|X@T(t — T — l)|2al>

prle=1rii B 1 L& l
=loge Z - p M'TZZ|Hijl(t)|2a_

i€s,jeD

1 T oo
T oD ElXir(t

t=1 1=0
(a) eI

< loge Z ' -

1€S,j€ED
oo T
B[S Xt -y - D | of
T ) J
=0 t=1
=6 o=pi;
e _
S La 0 (MH +o(1)
1€S,5€D g
ij 15
T]T+ P>al>

+u Y (P +
pj,5e*79ijﬂ B
=loge Z | puH + o(1)

=0
. - o
i€S,5€D

(/LH +0o(1)

(b)
< loge

—1Tij P
T 1—a

1

Hl“U\

P
—tpu

th 1l -«

TR

=P
e i B
=loge Z u (uH +o(1)

g
i€S,jeD

P ;1,_1 Tijp _ o
- P
l—a T <1—a+ (1—a)2>>

where (a) is because of (Al.iv), and (b) is because of (2) and
(5).

Now, letting T — oo, we get

+pt

=8 o—7pi;
p.:e Jﬂ _ P
Rsp <1 - (pH i—
SD_Oge‘Z p <M +u 1—a>
i€S,j€D
The result holds by setting u = /3 (1P_ ok O

V. FROM CUT-SETS TO DISTANCES

‘We now show a natural relationship between cut-sets and the
distance rate product. It allows us to easily convert results for
rate vectors across cut-sets, a staple feature in network informa-
tion theory, to results on the transport capacity. It also renders

> p;j‘se*’YPij Bu 1 5 the transport capacity an even more appealing quantity to study
) Z Z fm){vﬁ(t —7ij — D) in networks.
i€S 1=0

Lz oo —5=vpii § Lemma 5.1: If for a set of numbers {a;;,i,j € N},
<loge- — Z Z Z Pij 'LL|H”1(15)|2 -1 ZL jijlies jen\s) = 0 holds for every subset S of N, then

T o

t=1jeD ieS I=0 i,j azgpu Z 0.
T 2 00 —& —~p.s 2
1 FE i —_oPi; € 'YP”HZ" tX,L' t—Tir—l
Rsp < _Zzlog 1_}_/3 |Z eSZl—OpJ - Jl( ) ,T( J >| +O(1)'
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— V2 .
}p = %2 pmin
| Node 1
< X / X
0 kp' |k +1)p!
P
A
S
S
N RN
séluare that are k-steps
Fig. 1. The procedure for choosing a random subset S of /N in Lemma 5.1. away Tom the Origin

Proof: By the symmetry of the condition, for any subset ~ Fig- 2. Square tessellation of the plane.

S of N
VI. AN UPPER BOUND ON THE TRANSPORT CAPACITY

iiUies,j Iji¢s,; > 0. 7 .
Z Z aij(Tlies,igs) + liigs jes) ™ To show the proof of the upper bound, we need the following

i=1 j#i
i lemma. (Lemma 6.1 iii) is needed for Lemma 9.1).
Now we will construct a model to randomly select a subset

S of N. Suppose the n nodes of N are located within a disk of Lemma 6.1:

radius r centered at the origin, as depicted in Fig. 1. i) For any ip € N and ¢’ > 2

The selection proceeds as follows. First we pick an angle 6 5 4 2(8' — 1) s
uniformly in [0, 27). Then, on the diameter corresponding to Z Pig.j < > ( S + 5 ) .

. . . . oy ’ (pmin/\/i) (5 -2 6 -1
that angle, we pick a point uniformly. Denote the point by A. J#io
Then the line F' that is perpendicular to the diameter, and inter- ii) Foranyio€ N,§>0,andvy > 0
secting it at point A, will divide the n nodes into two groups. We 15 (V32
randomly and equiprobably pick one of these to be the set S. Z Pl e=VPi0s < 24p o e~ (V2/2)7pmin
20,] -

Suppose the line interval L(¢,7) connecting nodes 4 and j (1- e_(\/i/4)7P111i11)4'

makes an angle 6y with the x-axis. Then i#i

iii) Foranyip € Nand~vy > 0
E(ljies jgs) + liigs jes))

12¢~V27Pmin

= EI[Line F separates points ¢ a'nd ]] . Z 672’Ypi0j S m
= Prob (Line F separates points ¢ and j.) J#io
B / T piil cos(6 — o) 1 ” Proof: Without loss of generality, suppose that 7 = 1,
) o 2 and that it is located at the origin. Let us tessellate the plane by

P a square grid of size p’ := (/2/2)pmin With the origin being
= dnr / | cos(0 — 6o)|df one of the corners of the grid; see Fig. 2.

Ozﬂ Since the diagonals of the small squares have lengths ppin,

_ P / | cos 0|d6 each of them can contain at most one node. Also, there is no

dmr Jo node within the interior of the four squares surrounding the
_ Py, /2 odo — Pii origin.
T dar /0 cos T oar Since there are 4(2k 4 1) squares that are k steps away (in an

Now, taking the expectation on both sides of (7), we get 1-sense) from the origin (see Fig. 2), for case i) we have

S < ST A2k 4+ 1) (k)Y
EY Y aij(lies jgs) + ligs jes) ; Py = ; ( (k)
i=1 j#i
n 4 & 1
=— N2k +1)—
=D _aiiB(les jgs) + ligs.jes) " ,;1( i
i=1 j#i 0o s
" 8 1 4 1
= Zza/ﬂ >0 = 1T Z [y
4 i 20 Lt L —
= 1

i=1 jAi 3 %
" 1
Hence 301 >0, aijpij 2 0. O PE ( +/1 2o —1
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4 0]
+ W 1 + ) gj‘sl d.ﬁIZ’
1 4 1
= |1+ 5 _9 + W 1+ 71
2(68" = 1) &
( ) +6’—1>'
Similarly, for case ii)

E pl 6 e~ YP1j

J#1

_6 _ )
< Prmin Z prje 7
j;ﬂ

<pmmz4 2k+]‘

p

= plé’

(k+ 1)V2p - e~k

< pmu‘szL 3k - 2k - e~k
k=1

k
, 2
B s e= P /2
_24pm1n (1 _ e_'Yf)’/z)z
o'
=24plt
(1 e—P /2)

For case iii), we have

D e <342k 4 De R <Zl2k ek
j#1 k=1 k=1
12¢=277'

(1 —e=2v0")2"

—12e=27F Z k.(e—%p')k—l —

k=1

O
Now we prove the upper bound of Theorem 3.1.

Proof of Theorem 3.1: By Corollary 4.2, we know that for
any subset S of NV

ZRijI[ieS,jeN\Sl
.7
28V PH s
<loge- U\/ﬁ : izj:ﬂu e ]I[LGS]GN\S]

Hence, by Lemma 5.1

S Riypy <loge - 2P S s,
Z_]pZ] Oge m 1)

ij Ly

Applying Lemma 6.1 i) and ii) we get the desired result. O

Fig. 3. A network satisfying property (A2.v). All dashed lines have lengths
less than a multiple of the minimum distance.

VII. NETWORKS WHICH ACHIEVE THE LOWER BOUND UNDER

INDEPENDENT FADING

Beginning with this section, we constructively show that the
linear growth rate of the transport capacity is achievable in wire-
less networks. Actually, we show that it is achievable in any
network that satisfies the property specified in property (A2.v);
see Fig. 3. The simplest example of a network satisfying this
property is the regular network defined in [19], which is a net-
work with nodes located at the coordinates (kpmin, {pmin) for
1 <kl < y/n.

Suppose that the destination node for the information origi-
nating at each node j is the corresponding node 5 Furthermore,
without loss of generality, we assume that the delay 7 = 0 for
all 5.

In the following sections, we show how to generate the code-
books, then how to coordinate the transmissions by a schedule
generated by a randomization scheme, and then how to decode
the signals by thresholding. Finally, we analyze the probability
of decoding error.

We begin by fixing a number p € (1/2,p*). For € > 0 suffi-
ciently small, we introduce the following quantities for brevity:

P..=P —¢
(- ;lf)ms (256 11 + 5= 1) if 6>3,7=0
A 12p= 26 ,—V27Pmin . (8)
e i1920,7>0
b= min J 1/9, L= Comin) e >0mma? - (" ~p)
- LSHIP=AB ()28 0= 2ypmin 4 \) 4462
f.:=0 — e. )]

For any ¢ making the above quantities positive, and ¢; €
(0,p — 1/2), we are going to show that the information rate
0.(1 — H(p — €1) — €1) is achievable for every node pair j and
J simultaneously. This certainly suffices to prove Theorem 3.2.

From now on, p, € and ¢; are fixed.

VIII. RANDOM CODING

Each node is given 6.7 slots to transmit during a communica-
tion horizon T'. The scheduling details will be given in the next
section. In this section, we apply a random coding method to
generate the codebook, similar to classical information theory.
The only additional feature is that we generate the codebooks
for different T”s in a coupled fashion, to facilitate analysis.

For a givenrate R = 1 — H(p — €1) — €1, the n nodes gen-
erate their codebooks individually, independently of each other.
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Node j generates a 2°<7® x §_T random matrix with entries
being i.i.d. binary valued r.v.’s with distribution p(z) such that

=0)=1/2 and Pr(X = /P./60) =1/2.

The wth codeword is the wth row of this matrix. The codebook
of node j is denoted as

Cr={X, = (X301, X}

w,27

Pr(X

X o p)iw=1,2,... 2%TF}

and it is revealed to the intended receiver node j We denote the
codebook by C := {C1,...,C,}.

Notice that the codebook actually depends on T'. We construct
the random codebooks for different 7”s in a coupled way that
such that the codebook for a larger 1" is an extension of the
codebooks for smaller ones. That is, for T < 1", X ,(T) =
Xi,’k(T’) whenever k < 6. T and 1 < w < 20TR « 26 T'R,
forall j € N.

IX. SCHEDULING TRANSMISSIONS WITHOUT
EXCESSIVE INTERFERENCE

If we allow all the nodes to transmit in the same time slots,
then each receiver will face strong interference from nearby
nodes. So we let nodes transmit in a time-shared fashion. Specif-
ically, for any given large T' > 0, each node j € NN only
transmits at a set of preselected increasing time slots #7, k =
1,2,...,0.T. We call this set the duty slots of node j. The cor-
responding (intended) receiver j will decode based only on the
signals it receives at time slots t ,k=1,...,6.T. (Note that
here we use the assumption that 7.» = 0 for all J €N).

Let the indicator function b;(t), ¢ € N, be defined as follows:

bilt) = {[1)

Then the following result guarantees the existence of a “good”
time-sharing schedule.

if slot ¢ is in node 7’s duty slot

if otherwise. (10)

Lemma 9.1 (Bounded Interference): For all T sufficiently
large, there exists a set of natural numbers
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such that, if we let node j’s duty slots be this set, then

Prive *Mmmﬂ?Za NG
+ Z —26 —2’ypz;l[32§: lEb(f.J o _l)
ApLi € : & g e — T
i#5,] =0
4P.[3?
< —5(p;§f “2yPmin L N\) Vi€ N,k=1,...,0.T

T 1l-a
where ) is defined in (8).
Proof: We exhibit the existence of such a schedule by a
probabilistic argument.
Every node j € N independently generates a sequence of
iid. Bernoulli r.v.s B;(t), t > 1, with

Pr{B;(t)=0}=1-20 and Pr{B,(t)=1} = 20.

Define B;(t) := 0fort < 0. Let;(k) be the time slot that node
7 gets the kth 1 in its sequence.
By the strong law of large numbers (SLLN)

Th_)rr;o— ZI[B (h=1] =20 > 20./5,¥j € N as.
Hence, for all j € N, with high probability, there are at least
20.,5T 1’sin {B;(t),t < T} when T is large.
Again, by the SLLN, forall j € N
20, )5T

0o — l
h%n 20,,,T ¢ Z ( i(t, — Do ) 200" as.
foralll > 1;
20 /5T
I 1 — 1
h%n 20.,,T ¢ Z ( (6, — 1 — T ) 200" as.

foralll > 0,7 > 0 andz # 4. Since
20 /5T

ok

Vi

Bi(t; —1—7)d| <
296/2T T)a o,

by the dominated convergence theorem, we get the equation at

{tfc; k=1,...,0T;j€N } the bottom of the page, where the last two inequalities follow
26’</2T [ee] P
: —26,-2 2 Ie —26 ,—2vp,;; 32 l2ep (i _ . _
= i#5,] =

= Prain® *Wmﬂ?Z —29+ > vite *%ﬁ?i

§ :6 2’\//)”'0 25[)}2 ‘

=1 i#5,]
< p;li‘f —2’YPmmIBZ P
i£5,]
2P.3?
(ify = 0,6 >3) <3 _[a (p2e=21Pmin 4 )) as.
2P.3? .
(lf’y > 0/6 Z 0) S /B ( ;?26—2 YPmin + pmuf Z e Q'Yp”
i£5,]
2P.3?
< £ (p;life—hpmm +A) as.

T 11—«
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Random phase
ev?

X;(t) Fading Y] (t)

channel

“0” or

v (VE])

Fig. 4. The communication system.

from Lemma 6.1 i) for v = 0 with § > 3, and Lemma 6.1 iii)
for v > 0 with 6 > 0.

Since at least half of the (nonnegative) elements are smaller
than or equal to twice the average for large T we claim that
there are 0.7 time slots {¢7, ,0.T} in {tj
1,2,...,20./5T} such that

oo

>l

=1

Y e T o] g -0

—26 ,—29pmin 32
mme ﬂ

i(t,— 1)

i#£5.5 1=0
4Pe[7)2 —26 —2
< —47%Pmin )\
—_ 1 —« (plnlne + )
Otherwise
295/2T jee]
—26 ,—2Vpmin 32 IEB. Fo_
Z Prmin [)) Z o 9 J (tk )
k=1 1=1
+ Z p2le 2P 32 ZalEB (fj — 1 —1)
Fij g ki
i#5,] 1=0
4P.[3?
AP it 1) (28,10 = BT
-«
which implies
20 2T 0o
S (ppzememng o Lep i 1
205/2T — min ll 9 I\"k
_ — R - Pe vl
n Z pﬁzse 27035 32 Z 041731'(% — 75— 1)
i#i.] =0
2P6/82 26 —2 4
- —2%9Pmin /\ .
=g (Pmin® TN

This is a contradiction. O

Based on this lemma, we first pick a T large enough, and
then let node j’s duty slots in the time interval {1,2,..., T} be
the corresponding {tfC7 k =1,...,6.T}. Now for a T that is
an integral multiple of 7', we perlodlcally repeat the duty slot
sequence. That is, for T = mT, the duty slots are

{st] :k=1,...,0.T and s =1,2,...,m}.
In the sequel, we need to, and will, only consider 7”s which are
integer multiples of 7', and relabel the duty slots as {t],k =
0T},

The Transmission Schedule and Random Phases: Each
node j € N chooses a message W; uniformly from
{1,2,...,2%TR} During j’s duty slot t, (k = 1,2,...,0.T),

843

07|V < M;
“7 Y5 (82 > M.

Decoder of Y] (t)
node j

it first generates a random phase exp(v¢; (ti)), where v is the
square root of —1, and ¢; (t]) ~ UJ0,2m). Then it transmits
XZU & exp(vg; (t])). The random phases exp(v¢;(t))’s are
introduced just to help the decoding by eliminating the possible
correlations among signals and fading processes. The receivers

need not know the exact values.

X. DECODING BY THRESHOLDING

Upon receiving the complex baseband signal sequence
{Y;(t), 1<k <0.T}, node j first passes the sequence through
a simple thresholding filter, as follows:

2
ij:{l, lf‘Y;(ti) > M, k=1,2,...,0.T
0, otherwise,
where
4HP.3? s .
M= ( 1 —j’(pmi‘f 2rPmin 4 X) + 2) /(p*=p). (1)

This is shown in Fig. 4. .
Then, node j declares that the index W; was sent if

6.T
(12)

p— €1

1. >
LN VPO
and there is no other codeword X that satisfies this.

If no such W; exists or if there is more than one such, then an
error is declared. Or even if the energy in the codeword exceeds
the prescribed P, an error is declared.

XI. ANALYSIS OF THE PROBABILITY OF DECODING ERROR

Instead of calculating the probability of error for a specific
codebook generated according to the procedure in Section VIII,
we calculate the average over all such codes, as is standard.

Let&; == {W # W;},and € := U7_, &;. Then the average
probabihty of error over all codebooks satisfies
= L PHOR(©) < L PHONS_PHEIO)
c j=1

If we can show the average probability of decoding error from
any node j to its destination j goes to zero, then Pr(&) does so
too. To fix notation, say 7 = 1 and its destination is node 2. Fur-
thermore, we can assume that, without loss of generality due to
symmetry of codebook construction, the message W1 = 1 was
sent from node 1 to node 2. So we only consider Pr(&;|[W; = 1)
in the sequel.

To ease the burden of complex notation, without loss of gen-
erality, we assume that the delay 71 = 0, and denote node 1’s
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duty slots as {t;, : k = 1,...,0.T}. Now the reception at node
2 can be described as follows:

Ya(te) = Bois €™ Hy ,0(tk) X1 ()
+ Bpis e Z Hy o (te) X1 (bt — 1)
=1
+Zﬂpf§e‘”’”2szzztk it — iz — 1)
i>3
+Z2(tk), k= 1,2,...,05T. (13)
Define
0.T
Ao = {1/T Y | X1(t)]* > P}
k=1
and
Ay = {codeword X} satisfies (12)}
forw € {1,2,...,2%TR} Then
PI‘(51|W1 = 1) :PI(AO U Ai U A2 U A3 y---u A20€TR)

29IR
ZPr

By the law of large numbers, we know Pr(AO) — 0, as
T — o0.
The following lemma shows that Pr(A§) — 0, as T" — oo.

<Pr(Ao) + Pr(A49)

Lemma 11.1: Pr(A$) — 0,as T — oc.
Proof: 1t suffices to show that
0.T

. 1
hmTlnf HF_T ; I[Xll_k-/

According to (13), the reception at node 2 can be decomposed
as follows:

Ya(tr)

= Z(ty) + Bp1s e 772 Hy o0 (tk) X1 (tk)
tr—1

+ Bpry e Z Hyp(te) Xa(te — 1)

P 6-v?] >p—e1/2 as. (14)

+ Bpiye 0 Z Hyoa(te) Xa(te — 1)

1=t}
tp—Tio—1
+Zﬂp1 e TP Z Hi o1 (ti) Xi(ty — iz — 1)
i>3
+Zﬁp_56 ez Z H; o 1(t) Xi(te — Tiz — 1)
>3 =t —Tio

i=Zo(tr) + p(tr) X1 (tr) + 71 (k) + 1 ()
) ), k=1,2,..,6.T. (15)
Define 7y, := o{X{,, X, _4,...,X{ } fork > 1, as the
o-algebra generated by the first & digits of the codeword, and
Fo := {4, 0}, and Qy, := I[Xll,k/ P jo=y?)
We will now show that there exists an integer K > 0 such
that when &k > K

Pr([Ya(tr)|? < M|Fr_1 and |Xi(tx)| =0)>p—€e1/2

(16)
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and

Pr(|Ya(t)|? > M| Fr_1 and |Xi(tx)| = /P./0)
zp—e/2 (A7)

where M is defined in (11).
Proof of (16): We have

PI‘(|Y2(tk)|2 Z M|X1(tk) = 07.7:]6,1)
< %Em@k)ﬁm(m — 0, Fis)

E(|vi(tr) + 91 (te) + 75 (tx)

= TE(h

F(00) + o) | Fica) - (by (15)

%E(M(W () + 1 (1)
/(1)

ti)|? + 0% | Fr_1)

+
S5

(18)

where the inequality is because of Chebyshev’s inequality, and
the last equality comes from the fact that

Y1 (te), va (), 71 (k) 4 75 (tr) and Zo(ty)

are uncorrelated by the random phases introduced in the
signaling.

Again, by the decorrelation, and recalling the definition of the
indicator function b;(¢) in (10)

E( (te)l* + |73 (te) | Fi-1)

tp—1

</82 ~28,=27p12 Z E|H121(tk)| —b1(tk =1)
=1

+ Z ﬂ2p1 2266—2'yp 2

>3
tpr—Tio—1 2F)E
> ElHis(t)| 5 bilte =Tz = 1)
=0
tr—1 P
< 2 —26 —27pmm E\H t b tr — 1
B2p- 2 ; |121(k)|0‘0‘9 (e = 1)
+ Zﬂ2 7—226672’yp12
>3
tp—Tio—1 P
I
(a) i 1 b
< 32 —26 —2'YPmm H l—Eb t —l
/[ Prin © Z @ 0 1( k )

+) B3t e Z Ho! —b —1)

>3
_APSH

(P ™70 + ) (19)

11—«

where (a) holds because E|Hji(t1)|? ! < H by (4), and the
last inequality comes from Lemma 9.1.

Since Fj,_; is independent of the past signals X (¢), ¢ < 0,
we have

E(|7y (tk) + 74 (t1) * | Fr=1)
= ElyY(tr) + 95 (te) | < 2B (t)1* + 2E vy ()]
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Now we show that both 1 (¢x) and 4 (¢;.) diminish to 0 as  when k is appropriately large, depending on €; /2. This proves

k — oo. Actually (16).
Bl 9 Proof of (17): Recall that what we need to show is that
[ ()] - there exists a K > 0 such that when & > K,
< B2 pime” 2P Bl Y Hipa(t) Xa(te = D)
Z,; Pr(|Ya(ty)|* > M| Fj—1 and | X1 (t)| =/ P /) 2P — €1/2
< B - Bl > Higa(te)a 2 - o2 Xy (1, — 1)) where M is defined in (11).
=ty Let event D;, be the event
< BPp % H te) 2! ot | Xy (ty — D)
< B Prin - <§ |H12,0(tk)| g; RS {HH12,0(tk)| = a, 7Y (tk) + 72 (tk)] < VMe'}
(@ #p73 . <Z E|Hy o, (tg)]?a” )(Z o p) for some ¢ > 0. First we show that
=ty =ty
((i)) 2 —28 Patr Pr(Dg|Fr—1) = Pr(Dy) > p* + o(1), ask — oo (22)
— min ) m
HpB%p ;1125 P . where p* is as stated in Theorem 3.2.
1— o = o(1), as k — oo. (20) By assumption, Pr(|H; 20| > a) > p*. Furthermore, from
20) and (21), as k
For E|v4(tx)|* we have (20) and (21). as k — oo
Elys (t)I? Pr (I%’(tk) +9% ()| > VMe)
2
oo < 5 Bl (t) + 75 (1)
=By Y Bpise " Higa(ti) Xi(th — 7o = 1) MQIQ ' ’
128 =t =T < e (Bl ()P + Elyg (t4:)]7) = o(1).
75 2,~vpiz
=BB> Z 2T i (1)) Hence (22) follows.
123 l=t) —Ti2 Now
2
(pia" 22Xt — i — Dal/?)
Pr(|Ya(ti)|* > M| |X1(tx)] = / Pe/0, Fi—1)
<B’E Z Z Pl | Hy (1) P! > Pr(|Ya(tx)|? > Mand Dy, | | X1(t)| = \/P./0, Fr_1)
123 l=t), —Ti2 =Pr (|,3p1_25€_7p12 Hl,z,o(tk)\/ Pg/g exp(u(/ﬁl(tk))
s + 71 () + 77 (tk) + Y3 (te) + 95 (te) + Za(tr)|
VP2 | X (g — a0 — 1) 2
Y Y e i
>3 l=t > VM and Dy, ’ fkfl)
G k—Ti2
«@ >> l > Pr(|B(Cpmin) ~*e ™7™ Hy 9 o(t1) v/ Pe/6] > 2V M,
H(Sogeren S o (94 62) + 74(16) + Zate)] < V(1 — )
>3 =t —Ti2 and Dk | fk_l)
> X weerd o sy i
i>3 I=tg i - Pr(|B(Cpmin) "™ min HY 5 o(ty)\/Pe /0> > 4M,
) X ) T i (tk) + 7a(te) + Z2(te)| < VM(1 =€) [ Dy, Fie—1)
=8 ,—vpiz =6 ,—Vpiz a
N A PP DPr(Dy) - P () +7(t6) + Zate)
} 2 < VM(1 =€) | Dy, Fi-1)
B>HP 5 b s Q) 1
< . TPz e 21 >Pr(Dy) - (1 — ———
< ;pl,ze « @y 2Pr(Dy)- (1= 37—y
- E(Iv(te) +v3(te) + Za(t1)[* | Dk, Firm1) )
Since Y .54 pZSe‘””“ < 0o, we know E|vY(t)]> — 0, as 1
k — oo, ZPT(Dk)'<1—m
Combining (18)—(21), and recalling the definition of M in
(11, we obain Elbe) +2t) 200 P
9 PI‘(Dk>
Pr(Ya(t)” 2 M| X (1) = 0, Fi_y) pr(De) — B +95(0) + Zo(t) P Fi)
= Pr k) —

<p —pt+a/2<l-pte/? M(1—¢)?



846

where (a) is because | Hy 2,0(tx)| > a, and since the definitions
of # and M ((9), (11)) imply that

_5 — ) ,
|ﬁ(§pmin) % VCPmmHl,z,o(tk)\/m|
Z /62(Cplnin)726672’>l<pminGZPE/H
2 ﬁZ(Cpmin)_Qse_Q'YCpmin 012]:)6
1

=4M
PE/BZ(Cpmin)_26€_2'YCPmin a2/4M

while (b) comes from Chebyshev’s inequality.
From (18) and (19)

E(7i(tr) + 75 (tr) + Zo(t)*| Fr-1)
- 4P.32H

(p—Zée—vamm -I-)\) o2

1—a« min

So

Pr(|Ya(te)[* > M| X1 (k)| = /Pe/6, Fi-1)

4P 3*H —25 o2 o2
£ ( Y Pmin + /\)
> Pr(D _ l1—a min ©
2 Pr(Dy) M(1 —€)?
. M(p* - p)
= 1) - 2 8
p + 0( ) M(l _ 6/)2
* 1 * _
=p +0(1)—m(p —p)7 aSI{}-)OO.

By selecting €’ sufficiently small

Pr(|Ya(te)[* > M || X1 (te)| = V/Pe/0, Fem1) > P — €1/2

for k large enough. This proves (17).
Based on (16) and (17), for & > K, we have

ElQ | Fr-1]
[ e
=E {I[IXl(tkN:O]I[X;’k N Iﬂ_l]

B [I (1) (o) =v/P78) T [x2, /o=y ml]
1
= 5P1~(|Y2(tk)|2 < M| Fi—1, | Xa(te)| = 0)

FSPH(IVa() > M| Foo | Xa(ta)| = v//B)

>p—e1/2 as.

Note here that until now we have considered the situation for
fixed T', i.e., all the variables X, Y, Q, etc., depend on T'. Recall
now the coupled generation of the codebooks for different 7"s
in Section VIII, by which the codebooks for a greater 1" are the
extensions of those for smaller ones. Based on this observation,
we know Fj_1 and y are well defined for & > 1.
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Define

k
Qk = Qx — E[Qx|Fr1] and S = Q.
=1
Since E[Q|Fr—1] = 0, {Q} are martingale differences. Fur-
thermore, { S} is an L? martingale, i.e., E|Si|?> < oc.
Since

S
2
k=1

=4
<2 e
k=1

by martingale theory ([31, p. 397
So.17/(0.T) — 0, a.s. This implies

1), we know that

1 6. T
liminf — >0 —€1/2
inin HETkZ:le_p €1/

which is (14).
If, furthermore, we can show that for any w > 2

Pr(A,) < 270 T0-HE=a) (23)
then
PI‘(51|W1 = 1)

<o(l)+ 96. TR—0.T(1—H(p—e1)) _ o(1) + 27T = o(1)

as T — oo.
By symmetry, we only need to show (23) for the case w = 2.
For any deterministic 0, 1 sequence y = (y1,...,Ys.7), We
know from the Chernoff bound ([32, p. 11]) that

6. T
T (; I[le,k/\/m:yk] >60.T(p— 61)>
< 2796T(17H(13751))'

So, letting Y := (Y2, Y3, ..., Y} ), we have

0. T
Pr\ 2 iy sy iy 2 0T - )>

= P (Y =y)
\1 &/ Pe/0=yk] 2 0T(p — 61))

y)2 0 TO=H =)

”M?

- 2—0 T(1—H(p—e1))
This proves Theorem 3.2.

XII. CONCLUDING REMARKS

In this paper, we have examined the effect of fading on wire-
less networks, studying in particular how the transport capacity
grows with the number of nodes, in networks where nodes are
separated by a minimum positive distance. We have restricted
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our attention to the case where there is absorption, the generally
prevalent case, or the path-loss exponent § is larger than 3. When
the nodes are subject to power constraints, we have shown that
the transport capacity can grow no faster than linearly in the size
of the network even if the fading process is known noncausally.
Thus, the upper bound holds no matter what the fading envi-
ronment is, and is thus a best case result. On the other hand, if
we consider the opposite scenario where the fading is indepen-
dent from time to time, a sort of worst case scenario, then one
achieves linear growth in any network where every node has an-
other node located within a fixed multiple of the positive min-
imum distance. In the constructions, communications are only
between neighboring nodes, and only point-to-point coding is
used. This supports the case for the use of the multihop strategy
in wireless ad hoc networks, a strategy which is currently the
target of much protocol development activity. When v = 0
and 6 < 3, the behavior of wireless networks can be quite dif-
ferent, as shown in [19], through the exploitation of coherence.
Whether such behavior can hold under fading, where coherence
is not achievable, is an open question. Also of interest is how
to exploit multiple antennas at nodes, when such are present in
wireless networks.
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