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Abstract: Estimating unaccessible physical parameters of a system with the information
provided by the input-output data is of practical significance. This paper presents one
such method based on the state-space model non-singular transformation equivalence.
An algorithm is provided for solving the corresponding bilinear equations, with various
modifications in special cases. Many practical issues are addressed.
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1. INTRODUCTION

System identification is an art of modeling. Its basic
philosophy is to find a good mathematical model
to fit the input-output data of a system instead
of building a model by physical laws, although the
physical structures do provide some guidance in
choosing model structures and experiment designs.
The motivation comes directly from practice: First,
real systems are often too complicated to model
with physical laws, which govern the functioning of
so many small parts and their interactions; Second,
often in practice, for many purposes, e.g., control,
we would be satisfied with a mathematical model
that describes the input-output dynamics quite well,
without asking, e.g., what is the real meaning of the
parameters in the model. Whether it is possible to
model the input-output dynamics of a system only by
its input-output data (black-box modeling) and how
to do it are the main topics of system identification.
For a self-contained introduction and comprehensive
covering of various methods and analyses, see (Ljung,
1999) and the references therein. For practice and
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real implementations, there is a System Identification
Toolbox in Matlab (Ljung, 1995).

However, sometimes in practice, it is possible to
do physical modeling for relatively simple systems,
although there may be some uncertainties, e.g., the
values of some parameters are not accessible. At
the same time, we can construct a black-box model
based on the input-output data by the methods in
system identification. The equivalence of these two
models lies in that they describe the same input-
output dynamics. Now the question is if it is possible
to estimate the uncertain parameters in the physical
model, whose values have practical meaning.

2. PRELIMINARY DISCUSSIONS

In physical modeling, sometimes we can get a state-
space model like

{ = Ao(0)x + Bo(O)u (1)
Yy = 00(9)1’ + DO(O)u

with some uncertain parameters 6 in Ag, By, Cy or
Dgy due to the difficulty of assessing the values of
them in practice.



While using the input and output data {u(t)} and
{y(t)}, by the methods in system identification,
we can get a black-box model like (In the case
where the data are discrete, a discrete-continuous
model transformation is needed, see,e.g., (Astrém
and Wittenmark, 1984, Chapter 3))

i’ = Az’ + Bu
{y:Cm'+Du 2)

which can describe the same input-output dynamics
as (1). The difference is that z' may not be the
physical states and that A, B, C and D may not
have practical meaning. But according to the linear
system theory, if the system is both controllable and
observable, there exists some transformation matrix
T such that

A= 0
‘B = By(9) 3)
c 9)

and D = Dy(f). This relationship is practically
useful. For example, we may use it to find out the
unknown parameters 6 in Ay, By, Cy or Dy, which
have practical meaning.

The purpose of this paper is to present an effi-
cient algorithm to solve the set of bilinear equations
(3), where both T" and some parameters 6 inside
Ap, By, Cy are unknown.

This problem is more complex than it appears.
First, because of the unknown parameters 6 inside
Ag, By, Cy, the solution of T' is generally not unique.
Second, more unknown parameters inside Ag, By, Co
would more likely lead to multiple solutions of these
parameters. Actually, by examining a few simple
examples, it was found that a moderately large
number of unknown parameters is enough to cause
several solutions. Of course, to find out the real
practical values, the algorithm needs to provide all
the possible solutions.

Generally, to solve equations, the less variables, the
better. One way to reduce the number of variables in
(3) is to convert it into a set of polynomial equations,
e.g., the equivalent transfer function equations:

Co(8)[sI — Ag(6)] " Bo(8) + Do(8)
=C(sI —A)"'B+D, (4)

where T disappears. There exist many ways to
solve polynomial equations (see e.g. the references
in (Chesi et al., 2000)). Most of them are based
on algebraic geometry and homotopy methods (e.g.
“Grobner bases”, the method used in “Maple”). A
new approach was recently proposed in (Chesi et
al., 2000), where LMI was employed as a medium

step. Basically the method is first to introduce some
virtual variables like: (for the case that there are
three variables in (4): 6y, 62, 63)

Oy := 016, 05 := 0,03, 5)
96 = 9193, 97 = 919203.

Although more variables were introduced, the benefit
is that nonlinear equations are converted into linear
ones. Solving a set of linear equations is trivial. The
next step is to find out any rule among the solutions
based on the relations (5) by observation in order to
determine what to do next. As a theory, this method
fits the problem (4) well. But as well known from
combinatorics, the introduction of virtual variables
like (5) means 2™ — 1 variables instead of n true
ones. To search for any rule among 2™ — 1 solutions
by pure observation is normally infeasible even for
moderately large n.

Another big issue is that in practice (3) or (4) is al-
ways an approximation. There are always numerical
errors since A, B, C' came from black-box modeling.
Hence some exact computation softwares such as
“Maple” are not applicable. “Maple” can sometimes
fail to provide any solutions even if there is. More-
over, it takes too long time (e.g. several hours or
more) even when the number of unknown parameters
is not large (e.g. five parameters). The computation
time is exponentially increasing as the number of
unknown parameters increases.

Therefore, in this study we take a numerical ap-
proach. The disadvantage with numerical methods is
that (3) or (4) is a non-convex problem. Hence, the
initial values have to be chosen carefully. But since
Ag, By, Cy came from practical physical modeling,
it is realistic that we have some a priori knowledge
on the unknown parameters 6, e.g., the lower and
upper bounds. Then we only need to try different
initial values between these bounds. This is one of
our basic assumptions in this paper.

Generally computation time is a measure to judge
an algorithm. To fully exploit the property of this
problem, we starts with (3) instead of (4) although
(4) contains less variables (namely, T' disappears).
The advantage with (3) is that it is bilinear. Hence
linear least-square (LS) methods can be used (fix T
or 6 at each time in turn), which is much faster
compared with nonlinear methods such as Gauss-
Newton methods.

Before we design the algorithm, a criterion must be
decided. The most natural way of course is to mini-
mize the errors of the equations (3). For example, we
can choose to minimize the Frobenious Norm of the
differences:



e=min(|T- A~ 4p(8) - Tl (6)
+||T-B - By(0)||lr + |C — Co(0) - T||F),

where || -||F is the Frobenious Norm: || M||p = tr(M -
M7T), for any matrix M.

(6) is the criterion we will adopt for the algorithm.
As can be seen from next section, it is well suited
for applying linear LS method. The deficiency with
(6) is that it doesn’t have any real physical meaning.
All our confidence is based on that there exists such
a mathematical relation as (3). However, because
of the complexity of the real problems (e.g., the
system may not be well identifiable due to nearly
zero-pole cancellations although still controllable and
observable), we may come up with a black-box model
which describes similar input-output dynamics (e.g.,
similar Bode plots), but fails to preserve the relation-
ship (3). In such cases, it is of course wiser to choose
some other criterion that is directly related to the
input-output dynamics, such as the Bode plots or
frequency functions. But normally such criterions are
dependent on the unknown parameters in a compli-
cated nonlinear way. Whether good algorithms can
be found for such criterions is for further research.

In next section, our algorithm is presented, together
with a few versions adapted to some special cases.

3. THE ALGORITHM

Our algorithm can be divided into four steps.

Step 1. Choose initial values 8y for the unknown
parameters 6 inside Ay, By, Cpy.

Step 2. For the initial values chosen in Step 1,
minimize the criterion (6) by solving for T using the
linear LS method:

~

T =argmin(||T - A — Ao(0o) - T||r
T
+||T'- B = Bo(6o)|lr + [|C = Co(bo) - Tl F).

Step 3. For T got in Step 2, minimize the criterion
(6) by solving for € using the linear LS method:

= argmin(||T - A — Ao(0) - T||r
0
+IT - B = Bo@)llr +IC = Co(8) - Tl r)-
Step 4. Check the value of the error

er=(IT-A- A0 -T|r
+T - B - Bo(B)|lr +IC — Co(d) - T||F).

If ey is lgss than some confidence error bound &g, then
accept € as one solution of the unknown parameters

and T as the corresponding transformation; If not,
decide 6 is a good initial value or not: No, return to
Step 1; Otherwise, let 6y = 6 and return to Step 2.

3.1 Analysis

It is obvious that the value of the criterion (6) is
always decreasing in Step 2 and Step 3. As long
as in Step 1 the initial values 6y are well chosen,
it finally will decrease to zero (if equations (3) are
exact), which ensures that 6 and T converge to one
of the possible solutions. Due to numerical errors and
the fact that the algorithm cannot go on infinitely,
some confidence error bound g9 was introduced. It
can be expected that this algorithm works quickly
since only linear LS method is involved.

Undoubtedly, the key issue with this algorithm lies
in Step 1: How to choose the initial values 837 Since
this is a non-convex problem, any badly chosen initial
values will not lead to any solutions. Anyway this
is an essential issue with any numerical algorithms
trying to solve non-convex problems. Fortunately, in
this problem the unknown parameters # came from
practical physical modeling, on which we normally
have some a priori knowledge. In the following, as
an example, we suppose that their lower and upper
bounds are known.

Ezample 1. Suppose § < 6 < 6. That is to say,
each element of # lies on the interval confined by
the corresponding lower and upper bounds. We may
choose any value on the interval to be its initial value.
But we cannot be sure that any initial values on
the intervals will lead to one solution or the same
solution, due to, e.g., some of these intervals may
be too long. One of the obvious ways to overcome
this is to divide a long interval into several short
ones and on each of them try an initial value. What
we can expect is that by continuing such interval
refining, finally we will get all the solutions. In
practice, normally the implementer should have the
confidence on how small intervals are enough for all
the solutions. The main drawback with this method
is that the number of such chosen initial values is
exponentially increasing as the number of parameters
increases. This however seems inevitable for this
problem.

Apparently it is important to realize whether an
initial value is good or not as soon as possible. Earlier
quit of bad initial values means less computation
time. The decreasing rate of the value of the criterion
(6) can provide some useful information in this
aspect. But this is an issue highly dependent on the
actual problem.



3.2 Some special versions

Due to the variety of the practical problems, different
adaptations may be made on the general form of the
algorithm. In some special cases, some modifications
will greatly reduce the computation time.

Case 1. Relatively many unknown parameters lie on
the same row in Ag or Cjy.

In this case, it may be wise to omit the equations
introduced by such rows in (3). Let us be specific.
Suppose the dimensions of Ag, By and Cy are n X n,
n X m and r X n respectively. It is easy to see that
there are all together n® + nm + nr equations in (3),
while normally the unknown parameters inside Ag,
By and Cj are much less. Hence, although each row of
Ag or Cy will introduce n equations and the number
of unknown parameters introduced is absolutely no
more than n, it is still wise to drop out some
rows with relatively many unknown parameters. This
observation becomes vivid by considering an extreme
case. Suppose all the unknown parameters are on
the same row in Ag. Omitting this row from (3), we
still get n(n — 1) + nm + nr equations, which are
sufficient to solve for the n? variables in T as long as
non-singularity is satisfied. Once T obtained, which
of course is the true solution in this case, picking
up the omitted equations, we can directly get the
solution for the unknown parameters in that row.

Case 2. Different unknown numbers have quite dif-
ferent lengths of ranges.

This consideration follows Example 1. In Example
1, it is clear that longer distance between lower and
upper bounds means more divisions of the interval,
which in turn implies more choices of initial values,
hence longer computation time. Therefore, the equa-
tions containing the unknown parameters that have
wide ranges may be preferably omitted in the spirit
of Case 1.

Case 3. Weighted LS methods

This may be better regarded as a general consid-
eration instead of a special case. The basic idea
is quite simple: We may have different confidences
on the n? + nm + nr equations in (3), e.g., some
equations contain more unknown parameters than
others. Therefore, different weights may be applied
when using the LS method in Step 2 and Step 3.

4. A NUMERICAL EXAMPLE
In this section, we show a simple example to illustrate
the algorithm.

We adopt the example depicted in Figure 3-15 in
(Chen, 1984): A cart with an inverted pendulum

hinged on top of it, which is redrawn here in Figure
1. The problem is to maintain the pendulum at the
vertical position by exerting the force u.

u—=> M

O

@
e

Fig. 1. A cart with an inverted pendulum.

The physical modeling is done in (Chen, 1984) and
gives the following state-space model:

01 0 07
T1 —2mg T
3| {00 0 1 Z3
; 2g9(M + m)
T4 00— 0| LT
(2M + m)l
0 -
2
+ 2Mdkm u
-t
(2M+m)lJ
y=[1 0 0 0]z
where ©1 = y, T2 = ¥y, T3 = Q, T4 = &, M

and M are the mass of the pendulum and the cart
respectively; [ is the length of the pendulum, and g is
the gravitation constant 9.8 (for simplicity, we omit
all the units).

Suppose from some observation data of u and y, by
black-box modeling we obtain the following state-
space model:

& 18.4268 30.1636 —15.0469 3.3101
& | | —3.3101 —5.0311 9.9923 —1.6512
@ | T 16512 —9.9923 5.0311 3.3101
& ~3.3101 15.0469 —30.1636 18.4268
T —2.5304
!
z) 0.8296
N | | —0.8214
zh 2.4391
y=10"2% x

[0.8118 —0.8301 —0.8800 0.8282]zx".

(Actually here, the above model is obtained by sim-
ulation of the system (7) with m = 1.2, M = 5.5,



[l = 2.3. Tt is stabilized by a zero-order-hold linear
state-feedback controller with sampling period 0.1
and white Gaussian noise is added to the control
signal for two purposes: accounting for the obser-
vation errors and acting as excitation signals for
identification.)

Now we try to estimate m, M and [ by the equiva-
lence of the above two state-space models. (Although
it seems that it is quite feasible in practice to measure
them directly, we are showing the idea here.)

Let 0 = [01,92,03,94]T with

9, = —2mg_ o ._ 29(M +m)
LT 2M2+m’ T (2M+1m)l’
03 = 0, := —

2M +m’ ' M +m)l
Choose the initial estimates
m(0) =1, M(0)=7, [(0)=2.
Then correspondingly,
9(0) = [-1.3067, 5.2267, 0.1333, —0.0333]".

Apply the algorithm in Section 3 with 20 iterations,
we will have

6(20) = [—2.0630, 5.1955, 0.1639, —0.0334]7,
with e; = 4.7254 x 10~°.

By the structure of the system (7) and noting the
relation (4), we solve the following three equations:

2g(M + m)

=0,(2
(2]\g+m)l 2(20)
W = 05(20)
oY o o
— % — $,(20) 6,4(20) — 65(20) f5(2
@M+ m)i 61(20) 84(20) — 62(20) 63(20)
and get

m(20) = 1.0730, M (20) = 5.5635, [(20) = 2.0521.
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