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Abstract

Wireless networks with a minimum inter-node separation distance are studied where
the signal attenuation grows in magnitude as 1

ρδ with distance ρ. Two performance mea-
sures of wireless networks are analyzed. The transport capacity is the supremum of the
total distance-rate products that can be supported by the network. The energy cost of
information transport is the infimum of the ratio of the transmission energies used by all
the nodes to the number of bit-meters of information thereby transported.

If the phases of the attenuations between node pairs are uniformly and independently
distributed, it is shown that the expected transport capacity is upper bounded by a
multiple of the total of the transmission powers of all the nodes, whenever δ > 2 for
two-dimensional networks or δ > 5

4 for one-dimensional networks, even if all the nodes
have full knowledge of all the phases, i.e., full channel state information. If all nodes have
an individual power constraint, the expected transport capacity grows at most linearly in
the number of nodes due to the linear growth of the total power. This establishes the best
case order of expected transport capacity for these ranges of path-loss exponents since
linear scaling is also feasible.

If the phases of the attenuations are arbitrary, it is shown that the transport capacity
is upper bounded by a multiple of the total transmission power whenever δ > 5

2 for two-
dimensional networks or δ > 3

2 for one-dimensional networks, even if all the nodes have
full channel state information. This shows that there is indeed a positive energy cost
which is no less than the reciprocal of the above multiplicative constant. It narrows the
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transition regime where the behavior is still open, since it is known that when δ < 3
2 for

two-dimensional networks, or δ < 1 for one-dimensional networks, the transport capacity
cannot generally be bounded by any multiple of the total transmit power.

1 Introduction

Wireless networks formed by nodes with radios are a subject of much topical interest, and may
be at the cusp of a take-off. They are of interest not only in ad hoc wireless networks [1], but
also in mesh networks [2], [3], sensor networks [4], [5], [6], and the emerging field of control
over wireless networks [7]. It is of importance to understand what such networks are capable
of supporting, and how to operate them to maximize their capabilities.

For the communication functionality, a fundamental question is: How much information
can a wireless network transport? To answer this question, one naturally turns to the field of
Information Theory. However, network information theory for communication channels with
multiple users is an area where even several simple scenarios, such as the relay channel and the
interference channel, have not been completely solved [8, Chapter 14], even though there has
been success with respect to the multiple access channel and the Gaussian broadcast channel.

In a previous paper [9], the capacity of wireless networks was studied under technologi-
cal models where interference gives rise to collisions. It was shown that the capability of a
wireless network manifests itself not only in the information transmission rate, but also in the
information transmission distance. To reflect this, the concept of transport capacity was intro-
duced to account for the total rate-distance product (in the unit “bit-meters/time unit”) that
a wireless network can support. One key result obtained was that the transport capacity of a
wireless network grows at most like the square root of the product of the area of the network
and the number of the nodes. Another was that if the node locations are random, and every
node chooses a random destination for its originating traffic, then, as the number n of nodes
increases, there is a sharp cutoff of Θ( 1√

n log n
) for the uniform rate that can be supported for

every such source-destination pair. The scaling laws obtained in [9] were however not conclu-
sive due to the restrictive models studied, which do not cover technologies such as successive
interference cancellation (perhaps better called “subtraction” rather than “cancellation” due
to its liability for confusion with the next possibility) or active interference cancellation, or
operational strategies such as amplifying and forwarding without decoding, etc. To an infor-
mation theorist, the ultimate goal is to find out what is possible or impossible, without such
technological presumptions.

In a subsequent paper [10], general wireless networks were therefore studied in an informa-
tion theoretic setting. Since “distance” plays such a crucial role, as evidenced by the conserva-
tion laws for the transport capacity alluded to above, it was incorporated into the model not
only through making explicit the distances between nodes, but also through explicitly modeling
the attenuation of signals with distance ρ by the factor e−γρ

ρδ . To reflect antenna considerations,
a minimum separation distance between nodes was presumed, which also avoids singularities

2



at ρ = 0. A fundamental result established in [10] is that the transport capacity is always
upper bounded by a multiple of the total power used by the transmissions of all the nodes in
the network, provided that the signals are attenuated sufficiently with distance. This multiple
thus corresponds to the maximum bit-meters of transport that a network can deliver per unit
energy consumed by transmissions. It was shown that either γ > 0, or γ = 0 but δ > 3, was
sufficient for the existence of such a energy cost per unit transport, while γ > 0, or γ = 0 but
δ > 2, was sufficient for linear networks where the nodes are arranged along a line. On the other
hand, counterexamples were also provided of multiple relay networks to show that if γ = 0 but
δ < 3

2
for two-dimensional networks, or γ = 0 but δ < 1 for one-dimensional networks, then the

transport capacity can indeed be unbounded even with bounded total transmission power.
For wireless networks where each node has the same constraint on its transmission power,

the above result immediately establishes a linear scaling law for the transport capacity, since
the total transmission power itself grows linearly in the number of nodes. This is a slight

sharpening of, but in essential conformity with, the O
(√

An
)

scaling law established in [9],

since the area of the domain grows at least like n with a minimum inter-node spacing. Since
linear scaling is in fact achievable, as constructively shown in [9], and that too using only simple
decode-and-forward multiple hopping where at each hop all concurrent interference is treated
as noise, the optimality of the order of the best case transport capacity is thus established for
the range of attenuations where this linear scaling is established. Note that this also proves
that the above architecture for information transport is optimal to within a constant factor.

Thus interest centers on determining precisely for what range of path loss exponents δ (with
γ = 0) linear scaling of transport capacity can indeed be established. From the aforementioned
results of [10], there is a gap 3

2
≤ δ ≤ 3 for two-dimensional networks, and 1 ≤ δ ≤ 2 for one-

dimensional networks, where the scaling law behavior is unknown. In a subsequent work [11],
an improvement was made, and it was proved that δ > 5

2
for two-dimensional networks and

δ > 3
2

for one-dimensional networks, were also sufficient for linear scaling to hold.
Instead of transport capacity, the average rate per communication pair was examined in [12].

It was shown that in a network with sufficiently many randomly chosen communication pairs,
this average rate tends to zero as the number of nodes in the network grows to infinity. For
this result, the required attenuation exponent δ is much smaller (δ > 1 for two-dimensional
networks and δ > 1

2
for one-dimensional networks) compared with that needed for linear scaling

of the transport capacity.
In all these works [10, 11, 12], the information-theoretical tool used to prove the upper

bounds is the cut-set bound, which is also known as the max-flow min-cut bound; see [8,
Section 14.10] for a general formulation in terms of mutual informations. For the specific
application to wireless networks, a formula in terms of powers was presented in [10].

Essentially, the cut-set bound is an application of Fano’s Inequality to the network scenario.
It is known that Fano’s Inequality provides a tight upper bound on the rate achievable from
one source to one destination. For a network with multiple nodes, the idea is to dissect it into
two sets, with one regarded as the virtual “source” and the other as the virtual “destination.”
Then by Fano’s Inequality, one can bound the total rates achievable from the nodes in the
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“source” set to the nodes in the “destination” set. However, this bound is no longer tight,
unless all the nodes in the “source” set can cooperate in the encoding, and also all the nodes
in the “destination” set can similarly cooperate in the decoding, which are both generally not
feasible.

However, up to now, the cut-set bound appears to be the only general tool that can be used
for establishing upper bounds on the capacity of networks. Nevertheless, one can obtain sharper
bounds and thus tighter results by considering multiple cuts through the network simultane-
ously. Since multiple single cuts considered separately may not all be maximized simultaneously
with the same distribution of the inputs, such a cut-set bound with multiple cuts is generally
tighter than a simple combination of multiple single cut-set bounds. In this paper, we will
employ such a cut-set bound with multiple cuts to get tighter bounds on transport capacity.
Besides, we will prove that for Gaussian wireless networks, a joint Gaussian distribution of the
inputs achieves the maximum for the cut-set bound with multiple cuts.

Actually, a two-cut version of the cut-set bound with multiple cuts has appeared in [13],
where it was used to prove the converse for the capacity of physically degraded Gaussian relay
channels. Later on, another two-cut version was applied in [14, Chapter 2] to get tighter upper
bounds on the capacity of Gaussian parallel relay channels.

In this paper, we will first present a general formula for the cut-set bound with multiple
cuts in Section 3, where, more importantly for the treatment of Gaussian wireless networks,
we will prove the optimality of a joint Gaussian distribution of the inputs. Applications of the
cut-set bound with multiple cuts to one-dimensional and two-dimensional networks are made
in Sections 4 and 5 respectively. Two cases are treated. Assuming random phases of the signal
attenuations (but assuming that they are known to all the transmitters and receivers, i.e., full
channel state information available at all nodes), we prove that δ > 2 for two-dimensional
networks, and δ > 5

4
for one-dimensional networks, are sufficient for establishing that the

expected transport capacity is upper bounded by a multiple of the total of the transmissions of
all the nodes. If nodes are each subject to an individual power constraint, then it follows that
the expected transport capacity scales at best linearly in the number of nodes. This is sharp
in the best case since linear scaling is indeed feasible for the transport capacity. In the case
that the phases are arbitrary, then uniformly for all realizations of the phases, the transport
capacity is upper bounded by a multiple of the total of the transmission powers if δ > 5

2
for

two-dimensional networks or δ > 3
2

for one-dimensional networks, even if all nodes have full
information on the states of all the channels. Thus there is indeed a minimal positive energy
cost per bit-meter of information transport. This narrows the attenuation regime where the
behavior is still unknown, to the interval of path loss exponents 3

2
≤ δ ≤ 5

2
for two-dimensional

networks, and to 1 ≤ δ ≤ 3
2

for one-dimensional networks, since for values of δ below these
ranges it has been shown that there are networks whose infimum of energy costs per bit-meter
of transport is indeed zero. We also show that unless one can improve on the bound following
from the multiple cuts, one cannot establish linear scaling in this unknown region.
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2 Model and definitions

Consider a wireless network consisting of n nodes N = {1, 2, . . . , n}. Let Xi(t) ∈ C1 or Yi(t) ∈
C

1 respectively denote the signal sent or received by Node i ∈ N at the time instant t = 1, 2, . . . .
Each node receives a measurement that is an attenuated and superposed combination of all the
other transmissions and white Gaussian noise:

Yj(t) =
∑

i∈N
i6=j

gi,jXi(t) + Zj(t), ∀ j ∈ N , t = 1, 2, . . . (1)

Here {gi,j ∈ C1 : i 6= j} denote the signal attenuation gains, and Zi(t) are zero-mean com-
plex Gaussian noise with independent, equal variance real and imaginary parts. For each i,
{Zi(t), t = 1, 2, . . . } are i.i.d, and for different i or t, {Zi(t)} are independent of each other.

It is convenient to define the gain matrix

G :=











g1,1 g1,2 · · · g1,n

g2,1 g2,2 · · · g2,n
...

...
. . .

...
gn,1 gn,2 · · · gn,n











, (2)

with gi,i := 0 for all i = 1, . . . , n, and to define vectors X = (X1, X2, . . . , Xn)T , Y =
(Y1, Y2, . . . , Yn)T and Z = (Z1, Z2, . . . , Zn)T . Then (1) can be put into a compact form:

Y (t) = GT X(t) + Z(t), t = 1, 2, . . . (3)

Next, we recall the definition of the transport capacity of a wireless network [10]. For this, we
gather together the by now pro-forma standard definitions of information theory including codes
with power constraint, the probability of error, achievable rates, etc., for wireless networks.

Definition 2.1 Consider a wireless network of n nodes. Let {(sℓ, dℓ), ℓ = 1, . . . , n(n−1)}, be a

listing of the n(n−1) possible source-destination pairs. Then a
(

(2TR1, . . . , 2TRn(n−1)), T, P
(T )
e

)

,
code with power constraints {Pi, i ∈ N}, consists of the following:

1. Independent random variables {Wℓ : 1 ≤ ℓ ≤ n(n − 1)}, with P (Wℓ = kℓ) = 1
2TRℓ

for

every kℓ ∈ {1, 2, . . . , 2TRℓ}. Let W i := {Wℓ : sℓ = i} and Ri :=
∑

{ℓ: sℓ=i} Rℓ. (Note that

W j = ∅ and Rj = 0 if no traffic originates at node j).

2. Functions fi,t : Ct−1 × {1, 2, . . . , 2TRi} → C1, t = 1, 2, . . . , T , for node i = 1, 2, . . . , n,
such that

Xi(t) = fi,t

(

Yi(1), . . . , Yi(t − 1),W i

)

, t = 1, 2, . . . , T ;

with
Xj(1) = 0 for nodes with Rj = 0,
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such that the following power constraints hold:

1

T

T
∑

t=1

‖Xi(t)‖2 ≤ Pi , a.s., for i ∈ N . (4)

3. Decoding functions gℓ : C
T×{1, 2, . . . , 2TRdℓ} → {1, 2, . . . , 2TRℓ} for ℓ = 1, 2, . . . , n(n−1).

4. The average probability of error:

P (T )
e := Prob

(

(Ŵ1, Ŵ2, . . . , Ŵm) 6= (W1,W2, . . . ,Wm)
)

, (5)

where Ŵℓ := gℓ

(

Y T
dℓ

,W dℓ

)

, with Y T
dℓ

:=
(

Ydℓ
(1), Ydℓ

(2), . . . , Ydℓ
(T )
)

.

Definition 2.2 A rate vector (R1, . . . , Rn(n−1)) is said to be achievable for the n(n−1) source-
destination pairs {(sℓ, dℓ), ℓ = 1, . . . , n(n−1)}, with the power constraints {Pi, i ∈ N}, if there

exists a sequence of
(

(2TR1, . . . , 2TRn(n−1)), T, P
(T )
e

)

codes with power constraints {Pi, i ∈ N}
such that P

(T )
e → 0 as T → ∞.

The above definitions are presented in the context of the separate power constraints {Pi, i ∈
N} for the n nodes. However, if a total power constraint Ptotal, or a common individual power
constraint Pind, is imposed, then one simply needs to replace the constraints (4) by

1

T

T
∑

t=1

∑

i∈N
‖Xi(t)‖2 ≤ Ptotal , a.s. (6)

or

1

T

T
∑

t=1

‖Xi(t)‖2 ≤ Pind, a.s., for i ∈ N , (7)

and correspondingly modify the rest of the definitions.
Above, we have not considered node locations, or even distances between nodes. Let ρℓ

denote the distance between source sℓ and destination dℓ, in the ℓ-th source-destination pair
(sℓ, dℓ).

Definition 2.3 The transport capacity of a wireless network is defined as

CT := sup
(R1,... ,Rn(n−1)) achievable

n(n−1)
∑

ℓ=1

Rℓ · ρℓ.
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3 A cut-set bound with multiple cuts

Let S be any subset of the nodes N in the network, and denote its complement by Sc = N −S.
Let R(S) be the summation of all the achievable rates with the source in S and the destination
in Sc. Then by [8, Theorem 14.10.1], we have

R(S) ≤ max
p(x1,... ,xn)

I(X(S);Y (Sc)|X(Sc)) (8)

where X(S) := {Xi, i ∈ S}, and Y (Sc), X(Sc) are similarly defined.
One can also consider multiple cuts of the network simultaneously, to obtain the following

corollary.

Corollary Considering multiple subsets Sk ⊂ N , k = 1, 2 . . . ,K, simultaneously, we have
the following bound:

K
∑

k=1

αkR
(Sk) ≤ max

p(x1,... ,xn)

K
∑

k=1

αkI(X(Sk);Y (Sc
k)|X(Sc

k)) (9)

where αk ≥ 0, k = 1, . . . ,K are arbitrary weights.

Proof. From (14.313)-(14.330) in [8, p.446], for any Sk, k = 1, 2 . . . ,K, we have

R(Sk) ≤ I(X
(Sk)
Q ;Y

(Sc
k)

Q |X(Sc
k)

Q ) + ǫ
(k)
T (10)

where Q is a random variable uniformly distributed on the set {1, 2, . . . , T}, and ǫ
(k)
T → 0 as

T → ∞. (Note that Q only depends on T and is independent of k.)
A weighted summation of (10) gives

K
∑

k=1

αkR
(Sk) ≤

K
∑

k=1

αkI(X
(Sk)
Q ;Y

(Sc
k
)

Q |X(Sc
k
)

Q ) +
K
∑

k=1

αkǫ
(k)
T (11)

Thus, (9) follows immediately by letting T → ∞ in (11). �

Remark 3.1 The bound (9) is in general tighter than applying the single cut bound (8) K
times on the subsets Sk, k = 1, 2 . . . ,K, which leads to

K
∑

k=1

αkR
(Sk) ≤

K
∑

k=1

αk max
p(x1,... ,xn)

I(X(Sk);Y (Sc
k)|X(Sc

k))

Now, we turn to the wireless network with power constraints defined in last section. Consider
the following subsets:

Si := {1, . . . , i} ⊂ N , ∀ i = 1, 2, . . . , n − 1, (12)

and we have the following theorem.
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Theorem 3.1 Considering the n − 1 subsets Si defined in (12) simultaneously, we have the
following bound:

n−1
∑

i=1

αiR
(Si) ≤ max

{Pkℓ≥0:
Pn−1

ℓ=k
Pkℓ≤Pk}

max
{φkℓ∈[0,2π)}

n−1
∑

i=1

αi

n
∑

j=i+1

log






1 +

∑i
ℓ=1

∥

∥

∥

∑ℓ
k=1 gk,j

√
Pkℓ eiφkℓ

∥

∥

∥

2

σ2
j






,

(13)

where αi ≥ 0, for i = 1, . . . , n − 1, are arbitrary weights, Pk is the power constraint of node
k ∈ N , and σ2

j = E‖Zj(1)‖2 for j=2, . . . ,n.

Proof. An application of the above Corollary gives

n−1
∑

i=1

αiR
(Si) ≤ max

p(x1,... ,xn)

n−1
∑

i=1

αiI(X1, . . . , Xi;Yi+1, . . . , Yn|Xi+1, . . . , Xn). (14)

By the model (1), for any i = 1, . . . , n − 1,

I(X1, . . . , Xi;Yi+1, . . . , Yn|Xi+1, . . . , Xn)

= h(Yi+1, . . . , Yn|Xi+1, . . . , Xn) − h(Yi+1, . . . , Yn|X1, . . . , Xn)

= h

(

i
∑

k=1

gk,i+1Xk + Zi+1, . . . ,
i
∑

k=1

gk,nXk + Zn

∣

∣

∣

∣

∣

Xi+1, . . . , Xn

)

− h(Zi+1, . . . , Zn)

≤
n
∑

j=i+1

h

(

i
∑

k=1

gk,jXk + Zj

∣

∣

∣

∣

∣

Xi+1, . . . , Xn

)

−
n
∑

j=i+1

h(Zj)

≤
n
∑

j=i+1

h

(

i
∑

k=1

gk,jXk + Zj

∣

∣

∣

∣

∣

Xi+1, . . . , Xn−1

)

−
n
∑

j=i+1

h(Zj),

where in the last inequality, “=” holds if Xn is independent of all Xi, i = 1, . . . , n−1. Therefore,
by (14),

n−1
∑

i=1

αiR
(Si) ≤ max

p(x1,... ,xn−1)

n−1
∑

i=1

αi

n
∑

j=i+1

h

(

i
∑

k=1

gk,jXk + Zj

∣

∣

∣

∣

∣

Xi+1, . . . , Xn−1

)

(15)

−
n−1
∑

i=1

αi

n
∑

j=i+1

h(Zj).

Now, consider any p(x1, . . . , xn−1) with E‖Xi‖2 > 0, i = 1, . . . , n−1. Define the correlation
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matrix of the vector (X1, . . . , Xn−1)
T by

Γ :=











γ11 γ12 · · · γ1,n−1

γ21 γ22 · · · γ2,n−1
...

...
. . .

...
γn−1,1 γn−1,2 · · · γn−1,n−1











:= E















X1
√

E‖X1‖2

...
Xn−1

√

E‖Xn−1‖2





























X1
√

E‖X1‖2

...
Xn−1

√

E‖Xn−1‖2















†

(16)

where (·)† denotes the conjugate transpose. Note that Γ is different from the covariance matrix
since Xi’s may not be zero-mean.

For any two complex random variables (X,Y ) ∈ C
2, let

Var(Y |X) := E[‖Y − E(Y |X)‖2|X], and

γXY :=
EXY ∗

√

E‖X‖2E‖Y ‖2
,

where (·)∗ denotes the conjugate. From Appendix A,

E[Var(Y |X)] ≤ (1 − ‖γXY ‖2)E‖Y ‖2, (17)

with “=” holding in (17) if (X,Y ) is circularly symmetric complex Gaussian distributed with
zero mean (see [15, Section 2] for the definition). Hence, we have

h(Y |X) ≤ E {log[πeVar(Y |X)]} (18)

≤ log {πeE[Var(Y |X)]} (19)

≤ log
[

πe(1 − ‖γXY ‖2)E‖Y ‖2
]

, (20)

where (19) follows from the Jensen’s Inequality, and “=” holds in both the inequalities (18)
and (20) if (X,Y ) is circularly symmetric complex Gaussian distributed with zero mean.

Therefore, for any 1 ≤ i < j ≤ n,

h

(

i
∑

k=1

gk,jXk + Zj

∣

∣

∣

∣

∣

Xi+1, . . . , Xn−1

)

≤ min
β
(i,j)
q ∈C1

q=i+1,... ,n−1

h

(

i
∑

k=1

gk,jXk + Zj

∣

∣

∣

∣

∣

n−1
∑

q=i+1

β(i,j)
q Xq

)

≤ min
β
(i,j)
q ∈C1

q=i+1,... ,n−1

log



πe
(

1 − ‖γ
(i,j,β

(i,j)
i+1 ,... ,β

(i,j)
n−1)

‖2
)

E

∥

∥

∥

∥

∥

i
∑

k=1

gk,jXk + Zj

∥

∥

∥

∥

∥

2


 , (21)
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where

γ
(i,j,β

(i,j)
i+1 ,... ,β

(i,j)
n−1)

:=
E

(

∑i
k=1 gk,jXk + Zj

)(

∑n−1
q=i+1 β

(i,j)
q Xq

)∗

√

E

∥

∥

∥

∑i
k=1 gk,jXk + Zj

∥

∥

∥

2

E

∥

∥

∥

∑n−1
q=i+1 β

(i,j)
q Xq

∥

∥

∥

2
.

Let P ′
i := E‖Xi‖2. Define vectors P ′ := (P ′

1, . . . , P ′
n−1)

T and σ2 := (σ2
2, . . . , σ2

n)T . By P ′ > 0,
we mean that all P ′

i > 0, i = 1, . . . , n − 1. It is easy to see that in (21), the bound minimized

over
{

β
(i,j)
q ∈ R

1, q = i + 1, . . . , n − 1
}

only depends on i, j, P ′, σ2, G = {gij} and Γ = {γij},
and thus can be denoted by

Bi,j

(

P ′, σ2, G, Γ
)

. (22)

Therefore, by (15),

n−1
∑

i=1

αiR
(Si) ≤ sup

p(x1,... ,xn−1)

P ′>0

n−1
∑

i=1

αi

n
∑

j=i+1

Bi,j

(

P ′, σ2, G, Γ
)

−
n−1
∑

i=1

αi

n
∑

j=i+1

h(Zj)

= sup
P ′>0

max
Γ

n−1
∑

i=1

αi

n
∑

j=i+1

Bi,j

(

P ′, σ2, G, Γ
)

−
n−1
∑

i=1

αi

n
∑

j=i+1

h(Zj) (23)

= sup
P ′>0

sup
Γ>0

n−1
∑

i=1

αi

n
∑

j=i+1

Bi,j

(

P ′, σ2, G, Γ
)

−
n−1
∑

i=1

αi

n
∑

j=i+1

h(Zj), (24)

where (23) follows since the bound only depends on p(x1, . . . , xn−1) via P ′ and Γ, and, noting
that Γ by the definition (16) is nonnegative definite, (24) follows by restricting Γ to be positive
definite.

Now, for any given Γ > 0 and P ′ > 0, we specially construct p(x1, . . . , xn−1) as follows. Let
ξi ∈ C1, i = 1, . . . , n − 1 be i.i.d. zero-mean complex Gaussian distributed with independent
real and imaginary parts of the same variance 1

2
. Let

Xi =

n−1
∑

k=i

λikξk

√

P ′
i , ∀i = 1, . . . , n − 1,

where {λik ∈ C1, 1 ≤ i ≤ k ≤ n − 1} satisfy

Γ =











λ11 0 · · · 0
λ12 λ22 · · · 0
...

...
. . .

...
λ1,n−1 λ2,n−1 · · · λn−1,n−1











†









λ11 0 · · · 0
λ12 λ22 · · · 0
...

...
. . .

...
λ1,n−1 λ2,n−1 · · · λn−1,n−1











, (25)

10



with λii 6= 0 for i = 1, . . . , n − 1. The decomposition (25) is possible since Γ is a positive
definite matrix.

For this special construction of {Xi}, we can choose β̂
(i,j)
q ∈ C1, q = i + 1, . . . , n − 1 such

that
i
∑

k=1

gk,jXk −
n−1
∑

q=i+1

β̂(i,j)
q Xq =

i
∑

k=1

gk,j

i
∑

ℓ=k

λkℓξℓ

√

P ′
k,

which can be easily checked noting that λii 6= 0 for any i = 1, . . . , n − 1. Hence, for the terms
in (21), we have

h

(

i
∑

k=1

gk,jXk + Zj

∣

∣

∣

∣

∣

n−1
∑

q=i+1

β̂(i,j)
q Xq

)

= h

(

i
∑

k=1

gk,j

i
∑

ℓ=k

λkℓξℓ

√

P ′
k + Zj

)

(26)

and

h

(

i
∑

k=1

gk,jXk + Zj

∣

∣

∣

∣

∣

n−1
∑

q=i+1

β̂(i,j)
q Xq

)

= log



πe
(

1 − ‖γ
(i,j,β̂

(i,j)
i+1 ,... ,β̂

(i,j)
n−1)

‖2
)

E

∥

∥

∥

∥

∥

i
∑

k=1

gk,jXk + Zj

∥

∥

∥

∥

∥

2


 , (27)

where the equality in (27) holds since “=” holds in all the three inequalities (18), (19) and (20)
with

Y =
i
∑

k=1

gk,jXk + Zj, X =
n−1
∑

q=i+1

β̂(i,j)
q Xq.

Therefore, by (21), (22), (26) and (27),

Bi,j

(

P ′, σ2, G, Γ
)

≤ h

(

i
∑

k=1

gk,j

i
∑

ℓ=k

λkℓξℓ

√

P ′
k + Zj

)

.

Hence, by (24), we have

n−1
∑

i=1

αiR
(Si) ≤ sup

P ′>0

sup
Γ>0

n−1
∑

i=1

αi

n
∑

j=i+1

h

(

i
∑

k=1

gk,j

i
∑

ℓ=k

λkℓξℓ

√

P ′
k + Zj

)

−
n−1
∑

i=1

αi

n
∑

j=i+1

h(Zj)

= sup
P ′>0

sup
Γ>0

n−1
∑

i=1

αi

n
∑

j=i+1

log
E

∥

∥

∥

∑i
k=1 gk,j

∑i
ℓ=k λkℓξℓ

√

P ′
k + Zi

∥

∥

∥

2

E‖Zj‖2

= sup
P ′>0

sup
Γ>0

n−1
∑

i=1

αi

n
∑

j=i+1

log






1 +

∑i
ℓ=1

∥

∥

∥

∑ℓ
k=1 gk,jλkℓ

√

P ′
k

∥

∥

∥

2

σ2
j






. (28)
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By (16) and (25), we have that for any Γ,

n−1
∑

ℓ=k

‖λkℓ‖2 = γkk = 1.

Also note that the power constraints ensure that

P ′
k ≤ Pk + ǫk, ∀ ǫk > 0, for k = 1, . . . , n − 1.

Hence, by (28), we finally have

n−1
∑

i=1

αiR
(Si)

≤ lim
{ǫk→0}

sup
{0<P ′

k
≤Pk+ǫk}

max
{Pn−1

ℓ=k
‖λkℓ‖2=1}

n−1
∑

i=1

αi

n
∑

j=i+1

log






1 +

∑i
ℓ=1

∥

∥

∥

∑ℓ
k=1 gk,jλkℓ

√

P ′
k

∥

∥

∥

2

σ2
j







= max
{Pn−1

ℓ=k
Pkℓ≤Pk}

max
{φkℓ∈[0,2π)}

n−1
∑

i=1

αi

n
∑

j=i+1

log






1 +

∑i
ℓ=1

∥

∥

∥

∑ℓ
k=1 gk,j

√
Pkℓ eiφkℓ

∥

∥

∥

2

σ2
j






,

where the last equation follows by letting Pkℓ = ‖λkℓ‖2P ′
k and φkℓ be the phase of λkℓ. �

4 One dimensional networks

Consider a Gaussian network of n nodes N = {1, 2, . . . , n} on a line, with coordinates a1 <
a2 < · · · < an. Let ρij be the distance between Node i and Node j. Then ρij = |ai − aj|.
With the constraint of minimum separation distance ρmin, we have ai+1 − ai ≥ ρmin for any
i = 1, . . . , n − 1.

Let the gains be gij :=
eiθij

ρδ
ij

, i 6= j for some δ > 0 and θij ∈ [0, 2π), in the model (1). Let

E‖Zi(1)‖2 ≡ σ2 for i ∈ N .
Define subsets S−

i := {1, . . . , i} and S+
i := {i + 1, . . . , n}, for i = 1, 2, . . . , n − 1. Then it

is easy to see that the total achieved transport is

n−1
∑

i=1

(ai+1 − ai)
(

R(S−
i ) + R(S+

i )
)

.

Hence, applying Theorem 3.1 twice on
∑n−1

i=1 (ai+1 − ai)R
(S−

i ) and on
∑n−1

i=1 (ai+1 − ai)R
(S+

i ), we
have the following bound on the transport capacity (using the inequality log(1 + x) ≤ x log e
for x > 0).

12



Theorem 4.1 The transport capacity is upper bounded by

CT ≤ max
{Pkℓ, φkℓ}

log e

σ2

n−1
∑

i=1

(ai+1 − ai)







n
∑

j=i+1

i+1
∑

ℓ=2

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θkj+φkℓ)
√

Pkℓ

(aj − ak)δ

∥

∥

∥

∥

∥

2

(29)

+
i
∑

j=1

n−1
∑

ℓ=i

∥

∥

∥

∥

∥

n
∑

k=ℓ+1

ei(θkj+φkℓ)
√

Pkℓ

(ak − aj)δ

∥

∥

∥

∥

∥

2






where φkℓ ∈ [0, 2π), and Pkℓ ≥ 0 are real numbers (1 ≤ k, ℓ ≤ n, and k 6= ℓ) satisfying

n
∑

k=1

max

{

n
∑

ℓ=k+1

Pkℓ ,
k−1
∑

ℓ=1

Pkℓ

}

≤ Ptotal (Total Power Constraint), (30)

or

max

{

n
∑

ℓ=k+1

Pkℓ ,
k−1
∑

ℓ=1

Pkℓ

}

≤ Pind ∀k = 1, . . . , n (Individual Power Constraint).(31)

4.1 Expected upper bound with random phases

In this section, we develop upper bounds on the transport capacity under the assumption
that the phases {θij} are random variables, but are known to all the nodes, so that {φ

ij} can
be designed based on {θij}. We assume that these random variables {θij} are all uniformly
distributed on [0, 2π) and also independent of each other.

First, by exchanging the order of summation, the bound (29) can be rewritten as

CT ≤ max
{Pkℓ, φkℓ}

log e

σ2







n
∑

ℓ=2

n−1
∑

i=ℓ−1

(ai+1 − ai)
n
∑

j=i+1

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θkj+φkℓ)
√

Pkℓ

(aj − ak)δ

∥

∥

∥

∥

∥

2

+
n−1
∑

ℓ=1

ℓ
∑

i=1

(ai+1 − ai)
i
∑

j=1

∥

∥

∥

∥

∥

n
∑

k=ℓ+1

ei(θkj+φkℓ)
√

Pkℓ

(ak − aj)δ

∥

∥

∥

∥

∥

2






= max
{Pkℓ, φkℓ}

log e

σ2







n
∑

ℓ=2

n
∑

j=ℓ

(aj − aℓ−1)

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θkj+φkℓ)
√

Pkℓ

(aj − ak)δ

∥

∥

∥

∥

∥

2

(32)

+
n−1
∑

ℓ=1

ℓ
∑

j=1

(aℓ+1 − aj)

∥

∥

∥

∥

∥

n
∑

k=ℓ+1

ei(θkj+φkℓ)
√

Pkℓ

(ak − aj)δ

∥

∥

∥

∥

∥

2






.
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Using the inter-independence of {θij}, we have the following bound:

E

n
∑

j=ℓ

(aj − aℓ−1)

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θkj+φkℓ)
√

Pkℓ

(aj − ak)δ

∥

∥

∥

∥

∥

2

= E

n
∑

j=ℓ

(aj − aℓ−1)
ℓ−1
∑

k=1

ei(θkj+φkℓ)
√

Pkℓ

(aj − ak)δ

ℓ−1
∑

p=1

e−i(θpj+φpℓ)
√

Ppℓ

(aj − ap)δ

≤ E

ℓ−1
∑

k=1

ℓ−1
∑

p=1

∥

∥

∥

∥

∥

n
∑

j=ℓ

(aj − aℓ−1)
ei(θkj+φkℓ)

(aj − ak)δ

e−i(θpj+φpℓ)

(aj − ap)δ

√

Pkℓ

√

Ppℓ

∥

∥

∥

∥

∥

= E

ℓ−1
∑

k=1

ℓ−1
∑

p=1

∥

∥

∥

∥

∥

n
∑

j=ℓ

(aj − aℓ−1)
eiθkj

(aj − ak)δ

e−iθpj

(aj − ap)δ

√

Pkℓ

√

Ppℓ

∥

∥

∥

∥

∥

≤
ℓ−1
∑

k=1

ℓ−1
∑

p=1



E

∥

∥

∥

∥

∥

n
∑

j=ℓ

(aj − aℓ−1)
eiθkj

(aj − ak)δ

e−iθpj

(aj − ap)δ

√

Pkℓ

√

Ppℓ

∥

∥

∥

∥

∥

2




1
2

=
ℓ−1
∑

k=1

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(aj − aℓ−1)
2 1

(aj − ak)2δ

1

(aj − ap)2δ
PkℓPpℓ

]
1
2

≤
ℓ−1
∑

k=1

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(aj − aℓ−1)
2 1

(aj − ak)2δ

1

(aj − ap)2δ

]
1
2

Pkℓ + Ppℓ

2

=
ℓ−1
∑

k=1

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(aj − aℓ−1)
2 1

(aj − ak)2δ

1

(aj − ap)2δ

]
1
2

Pkℓ. (33)

and similarly,

E

ℓ
∑

j=1

(aℓ+1 − aj)

∥

∥

∥

∥

∥

n
∑

k=ℓ+1

ei(θkj+φkℓ)
√

Pkℓ

(ak − aj)δ

∥

∥

∥

∥

∥

2

≤
n
∑

k=ℓ+1

n
∑

p=ℓ+1

[

ℓ
∑

j=1

(aℓ+1 − aj)
2 1

(ak − aj)2δ

1

(ap − aj)2δ

]
1
2

Pkℓ.

14



Therefore, by (32), we have

ECT ≤ max
{Pkℓ}

log e

σ2







n
∑

ℓ=2

ℓ−1
∑

k=1

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(aj − aℓ−1)
2 1

(aj − ak)2δ

1

(aj − ap)2δ

] 1
2

Pkℓ (34)

+

n−1
∑

ℓ=1

n
∑

k=ℓ+1

n
∑

p=ℓ+1

[

ℓ
∑

j=1

(aℓ+1 − aj)
2 1

(ak − aj)2δ

1

(ap − aj)2δ

]
1
2

Pkℓ







.

Now, under the total power constraint (30), we can show that ECT is upper bounded by
the total power Ptotal to a constant factor if the coefficients of all the Pkℓ in (34) are uniformly
bounded by a constant. That is, we need to show that the following terms are uniformly
bounded:

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(aj − aℓ−1)
2 1

(aj − ak)2δ

1

(aj − ap)2δ

]
1
2

, ∀1 ≤ k < ℓ ≤ n, (35)

n
∑

p=ℓ+1

[

ℓ
∑

j=1

(aℓ+1 − aj)
2 1

(ak − aj)2δ

1

(ap − aj)2δ

]
1
2

, ∀1 ≤ ℓ < k ≤ n. (36)

To this end, first, for δ > 5/4, we have the following uniform upper bound for all the terms
in (35):

max
1≤k<ℓ≤n

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(aj − aℓ−1)
2 1

(aj − ak)2δ

1

(aj − ap)2δ

]
1
2

= max
1<ℓ≤n

ℓ−1
∑

p=1

[

n
∑

j=ℓ

1

(aj − aℓ−1)2δ−2

1

(aj − ap)2δ

]
1
2

≤ max
1<ℓ≤n

ℓ−1
∑

p=1

[

n
∑

j=ℓ

1

(aj − aℓ−1)2δ−2

1

(aj − aℓ−1)
1
2 (aℓ − ap)

2δ− 1
2

]
1
2

≤ max
1<ℓ≤n

ℓ−1
∑

p=1

1

(aℓ − ap)
δ− 1

4

[

n
∑

j=ℓ

1

(aj − aℓ−1)
2δ− 3

2

] 1
2

(a)

≤ 1

ρ2δ−1
min

max
1<ℓ≤n

ℓ−1
∑

p=1

1

(ℓ − p)δ− 1
4

[

n
∑

j=ℓ

1

(j − ℓ + 1)2δ− 3
2

] 1
2

(b)

≤ 1

ρ2δ−1
min

δ − 1
4

δ − 5
4

(

2δ − 3
2

2δ − 5
2

)

1
2

=
1

ρ2δ−1
min

(4δ − 1)(4δ − 3)
1
2

(4δ − 5)
3
2

,
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where the inequality (a) follows from the minimum distance constraint, and the inequality (b)
follow from the fact that for any real a > 0 and β > 1,

∞
∑

l=0

1

(a + l)β
≤ 1

aβ
+

∫ ∞

0

1

(a + x)β
dx ≤ 1

aβ
+

1

(β − 1)aβ−1
. (37)

Similarly, we can prove that the same upper bound holds for all the terms in (36). This leads
to the following theorem.

Theorem 4.2 Let the phases {θij} be independent of each other and uniformly distributed on
[0, 2π), but their realizations are known to all the nodes. Under the total power constraint, for
δ > 5/4, the expected transport capacity is always upper bounded by the total power to within a
constant factor:

E CT ≤ c̄1(δ) log e

σ2ρ2δ−1
min

Ptotal, (38)

where

c̄1(δ) =
2(4δ − 1)(4δ − 3)

1
2

(4δ − 5)
3
2

. (39)

The following theorem of linear scaling law under the individual power constraint follows
immediately by noting that Ptotal = n · Pind.

Theorem 4.3 Let the phases {θij} be independent of each other and uniformly distributed on
[0, 2π), but their realizations are known to all the nodes. Under the individual power constraint,
for δ > 5/4, the expected transport capacity is always upper bounded by the number of nodes n
to a constant factor:

E CT ≤ c̄1(δ) log e

σ2ρ2δ−1
min

Pind · n, (40)

where c̄1 is defined in (39).

4.2 Uniform upper bounds irrespective of phases

In this section, we consider uniform upper bounds on the transport capacity for all possible
realizations of the phases {θij}.

Our first result, the following theorem, follows immediately from the bound (29).
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Theorem 4.4 The transport capacity is upper bounded by

CT ≤ max
{Pkℓ}

log e

σ2

n−1
∑

i=1

(ai+1 − ai)







n
∑

j=i+1

i+1
∑

ℓ=2

[

ℓ−1
∑

k=1

√
Pkℓ

(aj − ak)δ

]2

+
i
∑

j=1

n−1
∑

ℓ=i

[

n
∑

k=ℓ+1

√
Pkℓ

(ak − aj)δ

]2






(41)

where the nonnegative powers Pkℓ (1 ≤ k, ℓ ≤ n, and k 6= ℓ) satisfy

n
∑

k=1

max

{

n
∑

ℓ=k+1

Pkℓ ,
k−1
∑

ℓ=1

Pkℓ

}

≤ Ptotal (Total Power Constraint), (42)

or

max

{

n
∑

ℓ=k+1

Pkℓ ,
k−1
∑

ℓ=1

Pkℓ

}

≤ Pind ∀k = 1, . . . , n (Individual Power Constraint).(43)

The bound (41) can be weakened by using the the following inequalities:

[

ℓ−1
∑

k=1

√
Pkℓ

(aj − ak)δ

]2

=
ℓ−1
∑

k=1

√
Pkℓ

(aj − ak)δ

ℓ−1
∑

p=1

√

Ppℓ

(aj − ap)δ

≤
ℓ−1
∑

k=1

1

(aj − ak)δ

ℓ−1
∑

p=1

1

(aj − ap)δ

Pkℓ + Ppℓ

2

=
ℓ−1
∑

k=1

1

(aj − ak)δ

ℓ−1
∑

p=1

1

(aj − ap)δ
Pkℓ, (44)

and a similarly obtained one,

[

n
∑

k=ℓ+1

√
Pkℓ

(ak − aj)δ

]2

≤
n
∑

k=ℓ+1

1

(ak − aj)δ

n
∑

p=ℓ+1

1

(ap − aj)δ
Pkℓ.
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Now the upper bound (41) can be weakened to

CT ≤ max
{Pkℓ}

log e

2σ2

n−1
∑

i=1

(ai+1 − ai)

{

n
∑

j=i+1

i+1
∑

ℓ=2

ℓ−1
∑

k=1

1

(aj − ak)δ

ℓ−1
∑

p=1

1

(aj − ap)δ
Pkℓ

+
i
∑

j=1

n−1
∑

ℓ=i

n
∑

k=ℓ+1

1

(ak − aj)δ

n
∑

p=ℓ+1

1

(ap − aj)δ
Pkℓ

}

= max
{Pkℓ}

log e

2σ2

{

n
∑

ℓ=2

ℓ−1
∑

k=1

n−1
∑

i=ℓ−1

(ai+1 − ai)
n
∑

j=i+1

1

(aj − ak)δ

ℓ−1
∑

p=1

1

(aj − ap)δ
Pkℓ

+
n−1
∑

ℓ=1

n
∑

k=ℓ+1

ℓ
∑

i=1

(ai+1 − ai)
i
∑

j=1

1

(ak − aj)δ

n
∑

p=ℓ+1

1

(ap − aj)δ
Pkℓ

}

= max
{Pkℓ}

log e

2σ2

{

n
∑

ℓ=2

ℓ−1
∑

k=1

n
∑

j=ℓ

(aj − aℓ−1)

(aj − ak)δ

ℓ−1
∑

p=1

1

(aj − ap)δ
Pkℓ (45)

+
n−1
∑

ℓ=1

n
∑

k=ℓ+1

ℓ
∑

j=1

(aℓ+1 − aj)

(ak − aj)δ

n
∑

p=ℓ+1

1

(ap − aj)δ
Pkℓ

}

,

where the last two equalities follow by exchanging the order of summation.
Now, under the total power constraint (42), we can show that CT is upper bounded by

the total power Ptotal to within a constant factor if the coefficients of all the Pkℓ in (45) are
uniformly bounded by a constant. Hence we proceed to show that the following terms are
uniformly bounded:

n
∑

j=ℓ

(aj − aℓ−1)

(aj − ak)δ

ℓ−1
∑

p=1

1

(aj − ap)δ
, ∀1 ≤ k < ℓ ≤ n, and (46)

ℓ
∑

j=1

(aℓ+1 − aj)

(ak − aj)δ

n
∑

p=ℓ+1

1

(ap − aj)δ
, ∀1 ≤ ℓ < k ≤ n. (47)
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First, for δ > 3/2, we have the following uniform upper bound for all the terms in (46):

max
1≤k<ℓ≤n

n
∑

j=ℓ

(aj − aℓ−1)

(aj − ak)δ

ℓ−1
∑

p=1

1

(aj − ap)δ

= max
1<ℓ≤n

n
∑

j=ℓ

(aj − aℓ−1)

(aj − aℓ−1)δ

ℓ−1
∑

p=1

1

(aj − ap)δ

= max
1<ℓ≤n

n
∑

j=ℓ

1

(aj − aℓ−1)δ−1

ℓ−1
∑

p=1

1

(aj − ap)δ

(a)

≤ 1

ρ2δ−1
min

max
1<ℓ≤n

n
∑

j=ℓ

1

[j − (ℓ − 1)]δ−1

ℓ−1
∑

p=1

1

(j − p)δ

≤ 1

ρ2δ−1
min

max
1<ℓ≤n

n
∑

j=ℓ

1

[j − (ℓ − 1)]δ−1

{

1

[j − (ℓ − 1)]δ
+

1

(δ − 1)[j − (ℓ − 1)]δ−1

}

≤ 1

ρ2δ−1
min

[

1 +
3

2δ − 2
+

1

(δ − 1)(2δ − 3)

]

.

where the inequality (a) follows from the minimum distance constraint, and the last two in-
equalities follow from the fact (37).

Similarly, we can prove that the same upper bound holds for all the terms in (47). This
leads to the following theorem.

Theorem 4.5 Under the total power constraint, for δ > 3/2, the transport capacity is always
upper bounded by the total power to within a constant factor:

CT ≤ c1(δ) log e

σ2ρ2δ−1
min

Ptotal, (48)

where

c1(δ) = 2

[

1 +
3

2δ − 2
+

1

(δ − 1)(2δ − 3)

]

. (49)

The following theorem of linear scaling law under the individual power constraint follows
immediately by setting Ptotal = n · Pind.

Theorem 4.6 Under the individual power constraint, for δ > 3/2, the transport capacity is
always upper bounded by the number of nodes n to within a constant factor:

CT ≤ c1(δ) log e

σ2ρ2δ−1
min

Pind · n, (50)

where c1 is defined in (49).
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Next, we show that δ > 3/2 is almost the weakest requirement for any linear scaling law
that we can prove with Theorem 4.1. That is, we will show that for any δ < 3/2, under the
individual power constraint (31), there exists a topology a1 < a2 < · · · < an of the network,
and {θij}, such that the right-hand-side (R.H.S.) of (29) is not upper bounded by the number
of nodes n to within any constant factor, i.e.,

R.H.S. of (29)

n
→ ∞, as n → ∞. (51)

Consider any ρ0 ≥ max{ρmin, 1}. Let ai+1 − ai ≡ ρ0, i = 1, 2, . . . , n− 1, and let θij ≡ 0, ∀i 6= j.
Choose

Pkℓ ≡
Pind

n − 1
and φkℓ ≡ 0 for all k 6= ℓ, (52)

where it is easy to check that the individual power constraint (31) is satisfied. For this choice,
the R.H.S. of (29) simplifies to

Pind log e

(n − 1)σ2ρ2δ−1
0

n−1
∑

i=1







n
∑

j=i+1

i+1
∑

ℓ=2

[

ℓ−1
∑

k=1

1

(j − k)δ

]2

+
i
∑

j=1

n−1
∑

ℓ=i

[

n
∑

k=ℓ+1

1

(k − j)δ

]2






.

Let

B(n, δ) :=
1

(n − 1)ρ2δ−1
0

n−1
∑

i=1

n
∑

j=i+1

i+1
∑

ℓ=2

[

ℓ−1
∑

k=1

1

(j − k)δ

]2

(53)

Since ρ0 ≥ 1, B(n, δ) is a decreasing function of δ. Therefore, we only need to show that for
any 1 < δ < 3/2,

B(n, δ)

n
→ ∞, as n → ∞. (54)

Although a little messy, the following straightforward calculations lead directly to (54).
First,

B(n, δ) ≥ 1

(n − 1)ρ2δ−1
0

n−1
∑

i=⌈n/2⌉

n
∑

j=i+1

i+1
∑

ℓ=⌈j/2⌉+1

[

ℓ−1
∑

k=1

1

(j − k)δ

]2

≥ 1

(n − 1)ρ2δ−1
0

n−1
∑

i=⌈n/2⌉

n
∑

j=i+1

i+1
∑

ℓ=⌈j/2⌉+1

[∫ ℓ−1

0

1

(j − x)δ
dx

]2

.
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Since j − (ℓ − 1) < j/2 for any ⌈j/2⌉ + 1 ≤ ℓ ≤ i + 1, we have

i+1
∑

ℓ=⌈j/2⌉+1

[
∫ ℓ−1

0

1

(j − x)δ
dx

]2

=
i+1
∑

ℓ=⌈j/2⌉+1

{

1

(δ − 1)[j − (ℓ − 1)]δ−1
− 1

(δ − 1)[2(j/2)] δ−1

}2

≥
i+1
∑

ℓ=⌈j/2⌉+1

{

1

(δ − 1)

(

1 − 1

2δ−1

)

1

[j − (ℓ − 1)]δ−1

}2

=
1

(δ − 1)2

(

1 − 1

2δ−1

)2 i+1
∑

ℓ=⌈j/2⌉+1

1

[j − (ℓ − 1)]2δ−2

≥ 1

(δ − 1)2

(

1 − 1

2δ−1

)2 ∫ i

x=⌈j/2⌉

1

[j − x]2δ−2
dx (55)

= α1(δ)
[

(j − ⌈j/2⌉)3−2δ − (j − i)3−2δ
]

,

where

α1(δ) =
1

(δ − 1)2

(

1 − 1

2δ−1

)2
1

(3 − 2δ)
> 0. (56)

Therefore

B(n, δ) ≥ 1

(n − 1)ρ2δ−1
0

α1(δ)
n−1
∑

i=⌈n/2⌉

n
∑

j=i+1

[

(j − ⌈j/2⌉)3−2δ − (j − i)3−2δ
]

≥ 1

(n − 1)ρ2δ−1
0

α1(δ)
n−1
∑

i=⌈n/2⌉

n
∑

j=i+1

[

(j/2 − 1)3−2δ − (j − i)3−2δ
]

. (57)
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Again, approximation of a summation by an integral in (57) leads to

n−1
∑

i=⌈n/2⌉

n
∑

j=i+1

[

(j/2 − 1)3−2δ − (j − i)3−2δ
]

≥
n−1
∑

i=⌈n/2⌉

[
∫ n

x=i+1

(x/2 − 1)3−2δdx −
∫ n+1

x=i+1

(x − i)3−2δdx

]

=
1

4 − 2δ

n−1
∑

i=⌈n/2⌉

[

2(n/2 − 1)4−2δ − 2[(i + 1)/2 − 1]4−2δ − (n + 1 − i)4−2δ + 1
]

≥ 1

4 − 2δ

{

2
(n

2
− 1
)5−2δ

−
∫ n

x=⌈n/2⌉
2

[

(x + 1)

2
− 1

]4−2δ

dx

−
∫ n−1

x=⌈n/2⌉−1

(n + 1 − x)4−2δdx + 1

}

≥ 1

4 − 2δ

{

1

24−2δ
(n − 2)5−2δ − 1

5 − 2δ

1

24−2δ
(n − 1)5−2δ

− 1

5 − 2δ
(n − ⌈n/2⌉ + 2)5−2δ + 1

}

≥ 1

4 − 2δ

{

1

24−2δ
(n − 2)5−2δ − 1

5 − 2δ

1

24−2δ
(n − 1)5−2δ

− 1

5 − 2δ

1

25−2δ
(n + 4)5−2δ + 1

}

= α2(δ)n
5−2δ + o(1), (58)

where

α2(δ) =
1

4 − 2δ

{

1

24−2δ
− 1

5 − 2δ

1

24−2δ
− 1

5 − 2δ

1

25−2δ

}

> 0. (59)

Finally, by (57) and (58), we obtain that for any 1 < δ < 3/2,

B(n, δ)

n
≥ 1

n(n − 1)ρ2δ−1
0

α1(δ)α2(δ)n
5−2δ + o(1) → ∞, as n → ∞.

The above example shows that only with Theorem 4.1, under the individual power con-
straint, we cannot expect to prove that the transport capacity is always upper bounded by the
number of nodes n to within a constant factor for any δ < 3/2.

As a fringe benefit, it also shows that with only Theorem 4.1, under the total power con-
straint, we cannot expect to prove that the transport capacity is always upper bounded by the
total power to within a constant factor, for any δ < 3/2.
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5 Two dimensional networks

Consider a Gaussian network of n nodes N = {1, 2, . . . , n} on a plane, with coordinates (ai, bi),
i = 1, . . . , n. Let ρij be the distance between Node i and Node j. Then

ρij =
√

(ai − aj)2 + (bi − bj)2.

With the constraint of minimum separation distance ρmin, we have ρij ≥ ρmin for any i 6= j.

Let the gains gij =
eiθij

ρδ
ij

, i 6= j for some δ > 0 and θij ∈ [0, 2π) in the model (1). Set

E‖Zi(t)‖2 ≡ σ2 for i ∈ N .
We order the nodes horizontally and vertically as follows. Let (u1, u2, . . . , un) and (v1, v2, . . . , vn)

be two permutations of (1, 2, . . . , n) such that

au1 ≤ au2 ≤ · · · ≤ aun
, and bv1 ≤ bv2 ≤ · · · ≤ bvn

.

For i = 1, 2, . . . , n − 1, define subsets

A−
i := {u1, . . . , ui}, and A+

i := {ui+1, . . . , un}
B−

i := {v1, . . . , vi}, and B+
i := {vi+1, . . . , vn}

Then it is easy to see geometrically that the total achieved transport is upper bounded1 by

Q̄ =
n−1
∑

i=1

(aui+1
− aui

)
(

R(A−
i ) + R(A+

i )
)

+
n−1
∑

i=1

(bvi+1
− bvi

)
(

R(B−
i ) + R(B+

i )
)

and also is lower bounded by

√
2

2
Q̄.

Hence, applying Theorem 3.1 four times on A−
i := {u1, . . . , ui}, on A+

i := {ui+1, . . . , un},
on B−

i := {v1, . . . , vi}, and on B+
i := {vi+1, . . . , vn}, we have the following bound on the

transport capacity. We use the inequality log(1 + x) ≤ x log e for x > 0.

1An exact expression for the achieved transport can be obtained by random cuts omni-directionally on the
plane, as in [11] and [16]. But here, for the application of Theorem 3.1, the nodes need to be ordered.
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Theorem 5.1 The transport capacity is upper bounded by

CT ≤ max
{Pukuℓ

, φukuℓ
}

log e

σ2

n−1
∑

i=1

(aui+1
− aui

)







n
∑

j=i+1

i+1
∑

ℓ=2

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θukuj
+φukuℓ

)
√

Pukuℓ

ρδ
ukuj

∥

∥

∥

∥

∥

2

(60)

+
i
∑

j=1

n−1
∑

ℓ=i

∥

∥

∥

∥

∥

n
∑

k=ℓ+1

ei(θukuj
+φukuℓ

)
√

Pukuℓ

ρδ
ukuj

∥

∥

∥

∥

∥

2






+ max
{P ′

vkvℓ
, φ′

vkvℓ
}

log e

σ2

n−1
∑

i=1

(bvi+1
− bvi

)







n
∑

j=i+1

i+1
∑

ℓ=2

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θvkvj
+φ′

vkvℓ
)√P ′

vkvℓ

ρδ
vkvj

∥

∥

∥

∥

∥

2

+
i
∑

j=1

n−1
∑

ℓ=i

∥

∥

∥

∥

∥

n
∑

k=ℓ+1

ei(θvkvj
+φ′

vkvℓ
)√P ′

vkvℓ

ρδ
vkvj

∥

∥

∥

∥

∥

2






,

where φukuℓ
∈ [0, 2π), φ′

vkvℓ
∈ [0, 2π), and Pukuℓ

≥ 0, P ′
vkvℓ

≥ 0 are real numbers (1 ≤ k, ℓ ≤ n,
and k 6= ℓ) satisfying:
Total Power Constraint:

n
∑

k=1

max

{

n
∑

ℓ=k+1

Pukuℓ
,

k−1
∑

ℓ=1

Pukuℓ

}

≤ Ptotal,
n
∑

k=1

max

{

n
∑

ℓ=k+1

P ′
vkvℓ

,
k−1
∑

ℓ=1

P ′
vkvℓ

}

≤ Ptotal, or

(61)

Individual Power Constraint: For all k = 1, . . . , n,

max

{

n
∑

ℓ=k+1

Pukuℓ
,

k−1
∑

ℓ=1

Pukuℓ

}

≤ Pind, max

{

n
∑

ℓ=k+1

P ′
vkvℓ

,
k−1
∑

ℓ=1

P ′
vkvℓ

}

≤ Pind. (62)

5.1 Expected upper bound with random phases

In this section, we determine upper bounds on the transport capacity under the assumption
that the phases {θij} are random variables, but are known to all the nodes, so that {φ

ij} can
be designed based on {θij}. We assume that these random variables {θij} are all uniformly
distributed on [0, 2π), and also independent of each other.

Similar to the one-dimensional case (32), by exchanging the order of summation, we can
rewrite the first part of the R.H.S. of (60) as,

n−1
∑

i=1

(aui+1
− aui

)
n
∑

j=i+1

i+1
∑

ℓ=2

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θukuj
+φukuℓ

)
√

Pukuℓ

ρδ
ukuj

∥

∥

∥

∥

∥

2

=
n
∑

ℓ=2

n
∑

j=ℓ

(auj
− auℓ−1

)

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θukuj
+φukuℓ

)
√

Pukuℓ

ρδ
ukuj

∥

∥

∥

∥

∥

2

.
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Then similar to (33), using the inter-independence of {θij}, we have the following bound:

E

n
∑

j=ℓ

(auj
− auℓ−1

)

∥

∥

∥

∥

∥

ℓ−1
∑

k=1

ei(θukuj
+φukuℓ

)
√

Pukuℓ

ρδ
ukuj

∥

∥

∥

∥

∥

2

≤
ℓ−1
∑

k=1

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

]
1
2

Pukuℓ
.

Similarly, we can obtain bounds for the other three parts in the R.H.S. of (60). Therefore, as
in the one-dimensional case (34), we have

ECT ≤ max
{Pukuℓ

}

log e

σ2







n
∑

ℓ=2

ℓ−1
∑

k=1

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

]
1
2

Pukuℓ
(63)

+
n−1
∑

ℓ=1

n
∑

k=ℓ+1

n
∑

p=ℓ+1

[

ℓ
∑

j=1

(auℓ+1
− auj

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

]
1
2

Pukuℓ







+ max
{P ′

vkvℓ
}

log e

σ2







n
∑

ℓ=2

ℓ−1
∑

k=1

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(avj
− avℓ−1

)2 1

ρ2δ
vkvj

1

ρ2δ
vpvj

] 1
2

P ′
vkvℓ

+
n−1
∑

ℓ=1

n
∑

k=ℓ+1

n
∑

p=ℓ+1

[

ℓ
∑

j=1

(avℓ+1
− avj

)2 1

ρ2δ
vkvj

1

ρ2δ
vpvj

]
1
2

P ′
vkvℓ







.

Now, under the total power constraint (61), we can show that ECT is upper bounded by
the total power Ptotal to within a constant factor if the coefficients of all the Pukuℓ

and P ′
vkvℓ

in
(63) are uniformly bounded by a constant. That is, we need to show that the following terms
are uniformly bounded:

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

] 1
2

, ∀1 ≤ k < ℓ ≤ n, (64)

n
∑

p=ℓ+1

[

ℓ
∑

j=1

(auℓ+1
− auj

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

]
1
2

, ∀1 ≤ ℓ < k ≤ n, (65)

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(avj
− avℓ−1

)2 1

ρ2δ
vkvj

1

ρ2δ
vpvj

]
1
2

, ∀1 ≤ k < ℓ ≤ n, (66)

n
∑

p=ℓ+1

[

ℓ
∑

j=1

(avℓ+1
− avj

)2 1

ρ2δ
vkvj

1

ρ2δ
vpvj

]
1
2

, ∀1 ≤ ℓ < k ≤ n. (67)
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Towards this end, we will use the following bound: For any node i ∈ N , ρ0 ≥ ρmin and
δ > 2

∑

j∈N
ρij≥ρ0

1

ρδ
ij

(a)

≤
∑

j∈N
ρij≥ρ0

16

πρ2
min

∫ π
4

−π
4

∫
ρmin

2

0

1

(ρ2
ij + r2 − 2rρij cos θ)

δ
2

rdrdθ

(b)

≤ 16

πρ2
min

∫ π

−π

∫ ∞

ρ0− ρmin
2

1

ρδ
ρdρdθ

=
32

(δ − 2)ρ2
min

1
(

ρ0 − ρmin

2

)δ−2
, (68)

where the inequality (a) follows from the observation2 that for any θ ∈ [−π
4
, π

4
] and 0 ≤ r ≤ ρmin

2
,

1

ρδ
ij

≤ 1

(ρ2
ij + r2 − 2rρij cos θ)

δ
2

,

and the inequality (b) follows from the observation that all the open disks centered at node
j ∈ N with radius ρmin

2
are disjoint with each other.

Let 1{A} be the indicator function of the event A (defined to be one if A is true and zero
otherwise). For δ > 2, for any 1 ≤ k 6= p < ℓ ≤ n, we have

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

1{ρukuj
≤ρupuj

}

(a)

≤
n
∑

j=ℓ

1

ρ2δ−2
ukuj

1

ρ2δ
upuj

1{ρukuj
≤ρupuj

}

=
n
∑

j=ℓ

1

ρ2δ−2
ukuj

1

ρ2δ
upuj

1{ρukuj
≤ρupuj

, ρukuj
≥ρukup} +

n
∑

j=ℓ

1

ρ2δ−2
ukuj

1

ρ2δ
upuj

1{ρukuj
≤ρupuj

, ρukuj
<ρukup}

≤
n
∑

j=ℓ

1

ρ4δ−2
ukuj

1{ρukuj
≥ρukup} +

n
∑

j=ℓ

1

ρ2δ−2
ukuj

1
(

ρukup
/2
)2δ

(b)

≤ 32

(4δ − 4)ρ2
min

1
(

ρukup
− ρmin

2

)4δ−4
+

32

(2δ − 4)ρ2
min

1
(

ρmin − ρmin

2

)2δ−4

1
(

ρukup
/2
)2δ

=
8

(δ − 1)ρ2
min

1
(

ρukup
− ρmin

2

)4δ−4
+

24δ

(δ − 2)ρ2δ−2
min

1

ρ2δ
ukup

,

2Consider a triangle with ρij and r as the lengths of two sides, with an angle θ between them. Then the
third side has a length of (ρ2

ij + r2 − 2rρij cos θ)1/2, by the triangle formula. When ρij ≥ ρmin, θ ∈ [−π
4
, π

4
] and

0 ≤ r ≤ ρmin

2
, the length of the third side is no more than ρij .
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where the inequality (a) follows since (auj
− auℓ−1

) ≤ (auj
− auk

) ≤ ρukuj
, and the inequality (b)

follows by the bound (68). Similarly, we can prove the same bound for

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

1{ρukuj
>ρupuj

}.

Hence, we have

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

≤ 16

(δ − 1)ρ2
min

1
(

ρukup
− ρmin

2

)4δ−4
+

24δ+1

(δ − 2)ρ2δ−2
min

1

ρ2δ
ukup

.
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Therefore, for δ > 2, we have the following uniform upper bound for all the terms in (64):

max
1≤k<ℓ≤n

ℓ−1
∑

p=1

[

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

] 1
2

= max
1≤k<ℓ≤n











∑

1≤p≤ℓ−1

p6=k

[

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
upuj

]
1
2

+

[

n
∑

j=ℓ

(auj
− auℓ−1

)2 1

ρ2δ
ukuj

1

ρ2δ
ukuj

]
1
2











≤ max
1≤k<ℓ≤n

∑

1≤p≤ℓ−1

p6=k







[

16

(δ − 1)ρ2
min

1
(

ρukup
− ρmin

2

)4δ−4

] 1
2

+

[

24δ+1

(δ − 2)ρ2δ−2
min

1

ρ2δ
ukup

] 1
2







+ max
1≤k<ℓ≤n

[

n
∑

j=ℓ

1

ρ4δ−2
ukuj

] 1
2

= max
1≤k<ℓ≤n











4

(δ − 1)
1
2 ρmin

∑

1≤p≤ℓ−1

p6=k

1
(

ρukup
− ρmin

2

)2δ−2
+

22δ+ 1
2

(δ − 2)
1
2 ρδ−1

min

∑

1≤p≤ℓ−1

p6=k

1

ρδ
ukup











+ max
1≤k<ℓ≤n

[

n
∑

j=ℓ

1

ρ4δ−2
ukuj

] 1
2

(a)

≤ 4

(δ − 1)
1
2 ρmin

128

ρ2
min

[

1

2δ − 4

1

(ρmin

4
)2δ−4

+
1

2δ − 3

ρmin

2

(ρmin

4
)2δ−3

]

+
22δ+ 1

2

(δ − 2)
1
2 ρδ−1

min

32

(δ − 2)ρ2
min

1
(

ρmin − ρmin

2

)δ−2
+

[

32

(4δ − 4)ρ2
min

1
(

ρmin − ρmin

2

)4δ−4

]
1
2

=

[

24δ

(δ − 1)
1
2 (δ − 2)

+
24δ+2

(δ − 1)
1
2 (2δ − 3)

+
23δ+ 7

2

(δ − 2)
3
2

+
22δ− 1

2

(δ − 1)
1
2

]

1

ρ2δ−1
min

,
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where the inequality (a) follows from the bound (68) and the following bound:

∑

1≤p≤ℓ−1

p6=k

1
(

ρukup
− ρmin

2

)2δ−2

≤
∑

1≤p≤ℓ−1

p6=k

64

πρ2
min

∫ π
4

−π
4

∫
ρmin

4

0

1

[(ρ2
ukup

+ r2 − 2rρukup
cos θ)

1
2 − ρmin

2
]2δ−2

rdrdθ

≤ 64

πρ2
min

∫ π

−π

∫ ∞

ρmin− ρmin
4

1

(ρ − ρmin

2
)2δ−2

ρdρdθ

=
128

ρ2
min

[

1

2δ − 4

1

(ρmin

4
)2δ−4

+
1

2δ − 3

ρmin

2

(ρmin

4
)2δ−3

]

,

which follows similarly as (68), but with smaller disks of radius ρmin

4
.

Similarly, we can prove that the same upper bound holds for all the terms in (65)-(67). This
leads to the following theorem.

Theorem 5.2 Let the phases {θij} be independent of each other, and uniformly distributed on
[0, 2π), but with their realizations known to all the nodes, i.e., all channel state informations
(CSI) are known to all transmitters and all receivers. Under the total power constraint, for
δ > 2, the expected transport capacity is always upper bounded by the total power to within a
constant factor:

E CT ≤ c̄2(δ) log e

σ2ρ2δ−1
min

Ptotal, (69)

where

c̄2(δ) =
24δ+2

(δ − 1)
1
2 (δ − 2)

+
24δ+4

(δ − 1)
1
2 (2δ − 3)

+
23δ+ 11

2

(δ − 2)
3
2

+
22δ+ 3

2

(δ − 1)
1
2

. (70)

The following theorem of linear scaling law under the individual power constraint follows
immediately by noting that Ptotal = n · Pind.

Theorem 5.3 Let the phases {θij} be independent of each other and uniformly distributed on
[0, 2π), but with their realizations known to all the nodes, i.e., the information states of all
channels are known to all nodes. Under the individual power constraint, for δ > 2, the expected
transport capacity is always upper bounded by the number of nodes n to within a constant factor:

E CT ≤ c̄2(δ) log e

σ2ρ2δ−1
min

Pind · n, (71)

where c̄2 is defined in (70).
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5.2 Uniform upper bounds irrespective of phases

In this section, we develop uniform upper bounds on the transport capacity for all possible
realizations of the phases {θij}.

The following theorem follows immediately from the bound (60).

Theorem 5.4 The transport capacity is upper bounded by

CT ≤ max
{Pukuℓ

}

log e

σ2

n−1
∑

i=1

(aui+1
− aui

)





n
∑

j=i+1

i+1
∑

ℓ=2

(

ℓ−1
∑

k=1

√

Pukuℓ

ρδ
ukuj

)2

+

i
∑

j=1

n−1
∑

ℓ=i

(

n
∑

k=ℓ+1

√

Pukuℓ

ρδ
ukuj

)2




+ max
{P ′

vkvℓ
}

log e

σ2

n−1
∑

i=1

(bvi+1
− bvi

)





n
∑

j=i+1

i+1
∑

ℓ=2

(

ℓ−1
∑

k=1

√

P ′
vkvℓ

ρδ
vkvj

)2

+
i
∑

j=1

n−1
∑

ℓ=i

(

n
∑

k=ℓ+1

√

P ′
vkvℓ

ρδ
vkvj

)2


 ,

(72)

where the nonnegative powers Pukuℓ
and P ′

vkvℓ
(1 ≤ k, ℓ ≤ n, and k 6= ℓ) satisfy:

Total Power Constraint:

n
∑

k=1

max

{

n
∑

ℓ=k+1

Pukuℓ
,

k−1
∑

ℓ=1

Pukuℓ

}

≤ Ptotal,
n
∑

k=1

max

{

n
∑

ℓ=k+1

P ′
vkvℓ

,
k−1
∑

ℓ=1

P ′
vkvℓ

}

≤ Ptotal, or

(73)

Individual Power Constraint: For all k = 1, . . . , n,

max

{

n
∑

ℓ=k+1

Pukuℓ
,

k−1
∑

ℓ=1

Pukuℓ

}

≤ Pind, max

{

n
∑

ℓ=k+1

P ′
vkvℓ

,
k−1
∑

ℓ=1

P ′
vkvℓ

}

≤ Pind. (74)

Similarly to the inequality (44), we have

(

ℓ−1
∑

k=1

√

Pukuℓ

ρδ
ukuj

)2

≤
ℓ−1
∑

k=1

1

ρδ
ukuj

ℓ−1
∑

p=1

1

ρδ
upuj

Pukuℓ
,

(

n
∑

k=ℓ+1

√

Pukuℓ

ρδ
ukuj

)2

≤
n
∑

k=ℓ+1

1

ρδ
ukuj

n
∑

p=ℓ+1

1

ρδ
upuj

Pukuℓ
,

(

ℓ−1
∑

k=1

√

P ′
vkvℓ

ρδ
vkvj

)2

≤
ℓ−1
∑

k=1

1

ρδ
vkvj

ℓ−1
∑

p=1

1

ρδ
vpvj

P ′
vkvℓ

,

(

n
∑

k=ℓ+1

√

P ′
vkvℓ

ρδ
vkvj

)2

≤
n
∑

k=ℓ+1

1

ρδ
vkvj

n
∑

p=ℓ+1

1

ρδ
vpvj

P ′
vkvℓ

.

As in the one dimensional case, we can substitute the above inequalities into (72) so that CT
is upper bounded by the total power Ptotal to within a constant factor, if the coefficients of all
the Pukuℓ

and P ′
vkvℓ

are uniformly bounded by a constant. That is, similarly to (46) and (47),
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we need to show that the following terms are uniformly bounded:

n
∑

j=ℓ

(auj
− auℓ−1

)

ρδ
ukuj

ℓ−1
∑

p=1

1

ρδ
upuj

, ∀1 ≤ k < ℓ ≤ n, (75)

ℓ
∑

j=1

(auℓ+1
− auj

)

ρδ
ukuj

n
∑

p=ℓ+1

1

ρδ
upuj

, ∀1 ≤ ℓ < k ≤ n, (76)

n
∑

j=ℓ

(bvj
− bvℓ−1

)

ρδ
vkvj

ℓ−1
∑

p=1

1

ρδ
vpvj

, ∀1 ≤ k < ℓ ≤ n, (77)

ℓ
∑

j=1

(bvℓ+1
− bvj

)

ρδ
vkvj

n
∑

p=ℓ+1

1

ρδ
vpvj

, ∀1 ≤ ℓ < k ≤ n. (78)

By the bound (68), for δ > 5/2, we have the following uniform upper bound for all the
terms in (75):

max
1≤k<ℓ≤n

n
∑

j=ℓ

(auj
− auℓ−1

)

ρδ
ukuj

ℓ−1
∑

p=1

1

ρδ
upuj

≤ max
1≤k<ℓ≤n

n
∑

j=ℓ

(auj
− auℓ−1

)

ρδ
ukuj

32

(δ − 2)ρ2
min

1
[

(auj
− auℓ−1

) ∨ ρmin − ρmin

2

]δ−2

≤ 32

(δ − 2)ρ2
min

max
1≤k<ℓ≤n

{

n
∑

j=ℓ

[

(auj
− auℓ−1

) ∨ ρmin − ρmin

2

]3−δ

ρδ
ukuj

(79)

+
n
∑

j=ℓ

ρmin

2

ρδ
ukuj

1
[

(auj
− auℓ−1

) ∨ ρmin − ρmin

2

]δ−2

}

,

where for any x, y ∈ R1, x ∨ y := max{x, y}.
If 5/2 < δ < 3, then since auj

− auℓ−1
≤ auj

− auk
≤ ρukuj

for any k < ℓ ≤ j, the R.H.S.
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of (79) is upper bounded by

32

(δ − 2)ρ2
min

max
1≤k<ℓ≤n

{

n
∑

j=ℓ

ρ3−δ
ukuj

ρδ
ukuj

+
n
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ρmin

2

ρδ
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1
(

ρmin

2
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}

=
32
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min
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1≤k<ℓ≤n

{

n
∑
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1

ρ2δ−3
ukuj

+
(ρmin

2

)3−δ
n
∑

j=ℓ

1

ρδ
ukuj

}

≤
[

32

(δ − 2)ρ2
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]2
{

1
[
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2

]2δ−5
(80)

+
(ρmin

2

)3−δ 1
[

(auℓ
− auℓ−1

) ∨ ρmin − ρmin

2

]δ−2

}

≤
[

32

(δ − 2)ρ2
min

]2
{

1
(

ρmin

2

)2δ−5
+
(ρmin

2

)3−δ 1
(

ρmin

2

)δ−2

}

=
22δ+6

(δ − 2)2ρ2δ−1
min

,

where the inequality (80) follows from the bound (68).
If δ ≥ 3, then the R.H.S. of (79) is upper bounded by

32

(δ − 2)ρ2
min

max
1≤k<ℓ≤n

{

(

2

ρmin

)δ−3 n
∑

j=ℓ

1

ρδ
ukuj

+

(

2

ρmin

)δ−3 n
∑

j=ℓ

1

ρδ
ukuj

}

≤
[

32

(δ − 2)ρ2
min

]2
2δ−2

ρδ−3
min

1
[

(auℓ
− auℓ−1

) ∨ ρmin − ρmin

2

]δ−2
(81)

≤
[

32

(δ − 2)ρ2
min

]2
2δ−2

ρδ−3
min

(

2

ρmin

)δ−2

=
22δ+6

(δ − 2)2ρ2δ−1
min

,

where the inequality (81) follows from the bound (68).
Similarly, we can prove that the same upper bound holds for all the terms in (76), (77) and

(78).
This leads to the following theorem.

Theorem 5.5 Under the total power constraint, for δ > 5/2, the transport capacity is always
upper bounded by the total power to within a constant factor:

CT ≤ c2(δ) log e

σ2ρ2δ−1
min

Ptotal, (82)
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where

c2(δ) :=
22δ+8

(δ − 2)2
. (83)

The following theorem establishing a linear scaling law under the individual power constraint
follows immediately from Ptotal = n · Pind.

Theorem 5.6 Under the individual power constraint, for δ > 5/2, the transport capacity is
always upper bounded by the number of nodes n to a constant factor:

CT ≤ c2(δ) log e

σ2ρ2δ−1
min

Pind · n, (84)

where c2 is defined in (83).

Next, we show that δ > 5/2 is almost the weakest requirement for linear scaling law that we
can prove with Theorem 5.1. That is, we will show that for any δ < 5/2, under the individual
power constraint (62), there exists a topology of the network such that the right-hand-side
(R.H.S.) of (60) is not upper bounded by the number of nodes n to within any constant factor,
i.e.,

R.H.S. of (60)

n
→ ∞, as n → ∞. (85)

Choose any ρ0 ≥ max{ρmin, 1}. Consider regular planar networks with separation distance ρ0,
i.e., n nodes arranged with coordinates

(iρ0, jρ0), for i = 1, . . . ,m and j = 1, . . . ,m,

where the integer m satisfies m2 ≤ n < (m + 1)2. The other n − m2 nodes can be placed
arbitrarily and they won’t be counted in our calculations. Let θij ≡ 0, ∀i 6= j. For any two
different nodes (i1, j1) and (i2, j2) (we denote the nodes by their coordinates), let

P(i1,j1),(i2,j2) =
Pind

m2
, and P ′

(i1,j1),(i2,j2)
= φ(i1,j1),(i2,j2) = φ′

(i1,j1),(i2,j2) = 0.

It is easy to check that the individual power constraint (62) is satisfied. For this choice, the
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R.H.S. of (60) simplifies to

Pind log e
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Let

B(m, δ) =
1

m2ρ2δ−1
0
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∑
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∑
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.

Since ρ0 ≥ 1, B(m, δ) is a decreasing function of δ. Therefore, we only need to show that for
any 2 < δ < 5/2,

B(m, δ)

n
→ ∞, as n → ∞. (86)

Similarly to the one dimensional case, straight-forward calculations lead directly to (86), as
follows:

First,

B(m, δ) ≥ 1
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For any ℓ ≤ j ≤ m,
∫ m
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[(x − j)2 + y2]
δ
2

dxdy

]2

≥
[

π

2δ/2+1(δ − 2)

]2 i+1
∑

ℓ=⌈j/2⌉+1

[

1

(j − ℓ + 1)δ−2
− 1

jδ−2

]2

≥
[

π

2δ/2+1(δ − 2)

]2(

1 − 1

2δ−2

)2 ∫ i

x=⌈j/2⌉

1

(j − x)2δ−4
dx (88)

= α3(δ)
[

(j − ⌈j/2⌉)5−2δ − (j − i)5−2δ
]

,

where the inequality (88) follows similarly to (55), and

α3(δ) =

[

π

2δ/2+1(δ − 2)

]2(

1 − 1

2δ−2

)2
1

(5 − 2δ)
> 0. (89)

Again, similarly to (57)-(58), we have

m−1
∑

i=⌈m/2⌉

m
∑

j=i+1

[

(j − ⌈j/2⌉)5−2δ − (j − i)5−2δ
]

≥ α4(δ)m
7−2δ + o(1),

where

α4(δ) =
1

6 − 2δ

{

1

26−2δ
− 1

7 − 2δ

1

26−2δ
− 1

7 − 2δ

1

27−2δ

}

> 0. (90)

Therefore, finally by (87), we obtain (86).
The above example shows that with only Theorem 5.1, under the individual power con-

straint, we cannot expect to prove that the transport capacity is always upper bounded by the
number of nodes n to within any constant factor, for any δ < 5/2.

As a fringe benefit, it also shows that only with Theorem 5.1, under the total power con-
straint, we cannot expect to prove that the transport capacity is always upper bounded by the
total power to a constant factor for any δ < 5/2.
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6 Concluding remarks

The results in this paper establish that for a path loss eiθ

ρδ , where θ is a random phase, the

expected transport capacity is at the best Θ(n) when δ > 2 for two-dimensional networks, or
δ > 5

4
for one-dimensional networks, even if all nodes have full information on all channel state

information such as all random phases. This also has implications for the ergodic transport
capacity of wireless networks over fading channels. It is interesting to know how far these
bounds on δ can be decreased. Furthermore, for any realization of the phases, the transport
capacity is uniformly upper bounded by a multiple of the total of the transmissions powers of
all the nodes when δ > 5

2
in the two-dimensional case, or δ > 3

2
in the one-dimensional case.

But this cannot hold true if δ < 3
2

in the two-dimensional case, or δ < 1 in the one-dimensional
case, as demonstrated by the multiple relay networks constructed in [10]. What happens in
the transition region in the interval 3

2
≤ δ ≤ 5

2
for two-dimensional networks, or 1 ≤ δ ≤ 3

2

for one-dimensional networks, is still open. These appear as fairly challenging issues given the
present state of knowledge regarding upper bounds in network information theory. It is also
useful to sharpen the pre-constants, since they specify, for example in the latter case, the energy
cost to be irreducibly paid for a single bit-meter of transport in any wireless network, and thus
a fundamental constant of much interest.

A Proof of (17)

The proof idea follows from [14, p.37], which also appeared in [13]. First,

‖γXY ‖2
E‖X‖2

E‖Y ‖2 = ‖EXY ∗‖2

= ‖E[XE(Y ∗|X)]‖2

≤ E‖X‖2
E‖E(Y ∗|X)‖2,

where the last inequality follows from the Cauchy-Schwarz Inequality, and “=” holds if (X,Y )
is circularly symmetric complex Gaussian distributed with zero mean. Hence,

‖γXY ‖2
E‖Y ‖2 ≤ E‖E(Y |X)‖2. (91)

Furthermore,

E‖Y ‖2 = E[E(‖Y ‖2|X)]

= E
{

E[‖Y − E(Y |X) + E(Y |X)‖2|X]
}

= E
{

E[‖Y − E(Y |X)‖2|X] + ‖E(Y |X)‖2
}

= E
{

E[‖Y − E(Y |X)‖2|X]
}

+ E‖E(Y |X)‖2. (92)

Therefore, by (91)-(92), we have

E
{

E[‖Y − E(Y |X)‖2|X]
}

≤ (1 − ‖γXY ‖2)E‖Y ‖2, (93)

where “=” holds if (X,Y ) is circularly symmetric complex Gaussian distributed with zero mean.
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