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Abstract

We consider adaptive control of discrete-time nonlinear systems with a single un-

known parameter in this paper. We demonstrate that the necessary and sufficient

condition for the existence of a feedback stabilizer that is robust to bounded noise

is that the nonlinear growth rate of the system dynamics is less than 4. This result

further confirms the conclusion of [1] which addresses unbounded noise in a stochas-

tic setting. Also in our worst-case approach, we find that much simpler adaptive

stabilizers can be constructed when the nonlinear growth rate is less than 4.
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1 Introduction

On nonlinear adaptive control, much less results are available in the literature for discrete-

time systems, compared with continuous-time systems. The difficulty involved with adap-

tive control of discrete-time nonlinear systems was clearly demonstrated by the negative

conclusion drawn in [1], which states that it is impossible in general to stabilize a discrete-

time nonlinear system with even only one unknown parameter if the nonlinear growth rate

is too high. In contrast, for a continuous-time counter-part, no matter how high the non-

linear growth rate is, it can always be stabilized by, say, a nonlinear damping controller

with a higher order.

The benchmark model considered by [1] is as follows:

yt+1 = θyb
t + ut + wt+1, t = 0, 1, . . . (1)

where, ut, yt and wt are the system input, output and noise respectively, θ is an unknown

parameter, and the exponent b ≥ 1 is a known real number and is regarded as the nonlinear

growth rate of the system.

For the system (1), under the assumption that both the unknown parameter θ and the

noise {wt} are Gaussian distributed, [1] proved that if the nonlinear growth rate b ≥ 4,

then for any causal feedback control, there always exists a set with positive probability, on

which the closed-loop dynamics is unstable. On the other hand, if b < 4, it was shown in [1]

that the standard least-square-based adaptive control scheme can ensure the closed-loop

stability almost surely.

Later on, [4] extended the negative conclusion of [1] to systems with multiple unknown

parameters, and proved a polynomial rule, which implies that generally linear growth

condition is indispensable for almost sure stability if no constraint is exerted on the number

of unknown parameters. [5] further demonstrated that the same polynomial rule holds even

if the uncertain parameters are known a priori to lie in a bounded region.
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All these results mentioned above assume Gaussian distributed noise. It would be inter-

esting to ask what happens if the noise are bounded. Are there still negative conclusions

that prevent the existence of a stabilizing feedback controller for any nonlinear growth

rate? If yes, do they have the same constraints on the nonlinear growth rate?

We still take the model (1) as the starting point to answer these questions. Here in

this paper, instead, we assume bounded noise. One may suspect that the boundedness

assumption on the noise wt would be helpful for designing feedback stabilizers, which

would at least result in a looser requirement on the nonlinear growth rate b. In fact, we

will demonstrate the contrary. We will show that b < 4 is still necessary for the existence

of a feedback stabilizer, even if the noise are assumed to be uniformly bounded and with

the bound known a priori. However, the boundedness assumption on the noise will indeed

be helpful in designing much simpler feedback stabilizers when b < 4.

Other related works include some papers considering noise-free models (see e.g. [2, 3,

7]). But there is a fundamental drawback with such models. The trick lies in that without

noise, the parameters are completely solvable with linear equations. For example, without

w1 in (1), θ can be completely determined by y1, y0 and u0 with the equation

y1 = θyb
0 + u0.

Of course this kind of equation-solving methods are not useful in practice due to that

they are not robust to the noise. While all the authors realized this and thereby came up

with some other (mostly recursive) types of parameter estimation algorithms, it is always

impossible to justify the robustness of those algorithms thus obtained without explicitly

considering noise. A good example is the weighted-least-square-based adaptive controller

constructed in [3], which was shown capable of stabilizing (1) for any nonlinear growth

rate b ≥ 1, but with all wt = 0. Interestingly, one implication of the results in this paper

is just that such a controller cannot be robust to bounded noise at least for the case b ≥ 4.
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2 Main Results

Consider the system (1) with the following assumptions.

A1) At the time t = 0, the a priori knowledge about the unknown parameter θ is that it

can be any value on some interval [θ, θ] ⊂ R1.

A2) The noise are assumed to be bounded with the bound w > 0, i.e.,

sup
t≥1

|wt| ≤ w. (2)

We are interested in designing a feedback control law which robustly stabilizes the

system (1) with respect to any possible θ and {wt} under the assumptions A1)-A2).

First, we restate the definition of a feedback control law, which has appeared in [6].

Definition 2.1 A sequence {ut} is called a feedback control law if at any time t ≥ 0, ut is

a (causal) function of all the observations up to the time t: {yi, i ≤ t}, i.e.,

ut = ht(y0, · · · , yt) (3)

where ht(·) : IRt+1 → IR1 can be any (nonlinear) mapping.

Although there is no unified definition of adaptive control, it is generally thought of

as a combination of two parts: online parameter estimation plus controller design with

updated parameter estimates. Anyway, it must be causal. That is, whatever the adaptive

control law designed, it is one feedback control law in Definition 2.1.

Definition 2.2 The system (1) under the assumptions A1)-A2) is said to be robust feed-

back stabilizable, if there exists a feedback control law {ut} such that for any y0 ∈ R1

and any θ, {wt} satisfying A1)-A2), the outputs of the closed-loop system are bounded as

follows:

sup
t≥0

|yt| < ∞. (4)
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Remark 2.1 The stability defined in Definition 2.2 applies to any possible y0 ∈ R1 and

any possible realization of θ and {wt} which satisfy A1)-A2). A robust feedback stabilizer

should be able to deal with any possible realization of y0, θ and {wt}. We don’t assume

any statistical behavior of these unknown parameters. Hence this stability is defined in the

sense of the worst case that can happen, although it may only be one specific sample path.

This is one key difference between our approach and the stochastic setting in [1]. But the

stability in Definition 2.2 is very week in that the bounds (4) need not be the same for all

the realizations of y0, θ and {wt}.

Theorem 2.1 The system (1) under the assumptions A1)-A2) is robust feedback stabiliz-

able if and only if b < 4.

Next, consider a more general model:

yt+1 = θf(yt) + ut + wt+1 (5)

where f : R1 → R1 is a known nonlinear mapping. We consider the following assumptions

on f(·).

A3) There exist a1 > 0, b > 0 and M1 > 0 such that

|f(x)| ≤ a1|x|b, for |x| ≥ M1; (6)

and sup
|x|≤M1

|f(x)| < ∞. (7)

A4) There exist a2 > 0, b > 0 and M2 > 0 such that

|f(x)| ≥ a2|x|b, for |x| ≥ M2. (8)

Intuitively, the assumption A3) exerts an upper bound on the growth rate of the system

dynamics; and conversely, the assumption A4) exerts a lower bound on the growth rate of

the system dynamics. For either of them, we have one corresponding conclusion as follows.
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Theorem 2.2 The system (5) under the assumptions A1)-A3) is robust feedback stabiliz-

able if b < 4.

Theorem 2.3 The system (5) under the assumptions A1)-A2) and A4) is not robust feed-

back stabilizable if b ≥ 4.

The combination of Theorems 2.2 and 2.3 immediately leads to the following conclusion.

Corollary 2.1 The system (5) under the assumptions A1)-A4) is robust feedback stabiliz-

able if and only if b < 4.

3 Proof of the Theorems

Proof of Theorem 2.1: Sufficiency: We show a simple adaptive control law, which

robustly stabilizes the system (1) for any b < 4. We will also see that to implement this

algorithm, the bounds [θ, θ] and w need not to be known.

Without loss of generality, suppose y0 6= 0.

For any t ≥ 1, let

it := argmax
0≤i≤t−1

|yi|. (9)

That is,

|yit | = max
0≤i≤t−1

|yi|. (10)

The parameter estimate at the time t ≥ 1 is chosen to be

θ̂t :=
yit+1 − uit

yb
it

. (11)

It is easy to check by (1) that the estimation error is

θ̃t := θ − θ̂t =
−wit+1

yb
it

. (12)
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Now we define the control sequence as the following.

u0 = 0,

ut = −θ̂ty
b
t , for t ≥ 1.

(13)

Then for t ≥ 1, the closed-loop dynamics is

yt+1 = θ̃ty
b
t + wt+1 =

−wit+1

yb
it

yb
t + wt+1. (14)

Therefore, noting that the noise are uniformly bounded as (2), we have

|yt+1| ≤ w

|yit|b
|yt|b + w, for any t ≥ 1. (15)

Then by (10), we have

|yt+1| ≤ w

max
0≤i≤t−1

|yi|b
|yt|b + w, for any t ≥ 1. (16)

Now we use a contradiction argument to prove that the outputs are uniformly bounded

as (4). Suppose on the contrary, there exist some y0 ∈ R1, and some θ and a sequence of

{wt} satisfying the assumptions A1)-A2) such that for the feedback control law proposed

above,

sup
t≥0

|yt| = ∞.

Then from this sequence {|yt|, t ≥ 0}, we can pick out a subsequence {|ytk |, k ≥ 1} which

monotonously increasing to the infinity and also for any k = 1, 2, . . .

|yt| ≤ |ytk | < |ytk+1
| for any tk < t < tk+1. (17)

For any k = 2, 3, . . ., by (16), we have

|ytk+1
| ≤ w

max
0≤i≤tk+1−2

|yi|b
|ytk+1−1|b + w. (18)

7



By (17), it is easy to check that

|ytk+1−1| ≤ |ytk | and max
0≤i≤tk+1−2

|yi| ≥ |ytk−1
|.

Hence, by (18), we have

|ytk+1
| ≤ w

|ytk−1
|b |ytk |b + w. (19)

Take logarithm on both sides of (19), and noting that |ytk | > |ytk−1
|, we have

log |ytk+1
| ≤ log

(
w

|ytk−1
|b |ytk |b + w

)

< log

(
2w

|ytk |b
|ytk−1

|b
)

= b (log |ytk | − log |ytk−1
|) + log(2w).

Then it follows by Lemma 3.5 in [6] that for b < 4, {log |ytk |} cannot be monotonously

increasing to the infinity, which contradicts to the definition of {|ytk |}. This concludes the

contradiction argument.

Necessity: We show that if b ≥ 4 and |y0| is sufficiently large, then for any feedback

control law, there always exist some θ and {wt} satisfying the assumptions A1)-A2) such

that the absolute values of the outputs monotonously increase to the infinity:

|yt| ↗ ∞.

First, we introduce some notation. For any interval A = [a1, a2] ⊂ R1, let |A| = a2−a1.

Let Θ0 := [θ, θ], then |Θ0| = θ − θ.

Since b ≥ 4, it is easy to see that b − 2
√

b ≥ 0. We consider sufficiently large |y0|
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satisfying the following inequalities:

1

4
|Θ0| · |y0|b ≥ 2w; (20)

1

8
|Θ0| · |y0|b−

√
b ≥ 8

w
; (21)

(
8

w

)b

|y0|b
√

b−b ≥ 8; (22)

(
8

w

)√
b−2

|y0|b−2
√

b ≥ 1. (23)

At the time t = 0, the system dynamics evolves as

y1 = θyb
0 + u0 + w1. (24)

Since θ can be any value on the interval Θ0 = [θ, θ], θyb
0 can be any value on the interval

[θyb
0, θy

b
0], which is of length |Θ0| · |y0|b. Then for any fixed choice1 of u0 ∈ R1, there always

exists some interval

Θ′
0 = [θ0, θ0] ⊂ Θ0

which depends on u0 and is of the length

|Θ′
0| ≥

1

4
|Θ0| (25)

such that for any θ ∈ Θ′
0,

|θyb
0 + u0| ≥ 1

4
|Θ0| · |y0|b.

where, “=” can be reached when u0 is set to be minus the middle point of the interval

[θyb
0, θy

b
0].

Hence, by (20)-(21), it is obvious that for any θ ∈ Θ′
0 and any w1 ∈ [−w,w],

|y1| = |θyb
0 + u0 + w1| ≥ |θyb

0 + u0| − w ≥ 1

8
|Θ0| · |y0|b ≥ 8

w
|y0|

√
b. (26)

1This choice can only be a causal function of the observed data so far, i.e., {y0}. It cannot depend on

the unknown parameter θ.
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Then by (22) and (26), we have

|y1|b
|y0|b ≥

(
8

w

)b

|y0|b
√

b−b ≥ 8, (27)

which implies that |y1| > |y0|.
Let us consider the case θ ∈ Θ′

0. At the time t = 1, with a new observation y1 which

satisfies the inequality (26), the uncertainty of θ can be further reduced as follows: Since

θ satisfies the equation (24), i.e.,

θ =
y1 − u0

yb
0

− w1

yb
0

, (28)

with the data {y1, y0, u0} available and with no more knowledge about w1 than |w1| ≤ w,

a natural estimate of θ would be

θ̂1 :=
y1 − u0

yb
0

.

Here, we only consider the case where θ̂1 falls in the interval Θ′
0. This corresponds to some

possible values of y1.

Then by (28), due to that w1 can be any value on the interval [−w,w], θ̂1 can be any

value on the interval

Θ1 :=

[
θ − w

|y0|b , θ +
w

|y0|b
]
∩Θ′

0.

Since by (20) and (25)

|Θ′
0| ≥

2w

|y0|b ,

it is easy to check that

|Θ1| ≥ w

|y0|b . (29)

The proceeding analysis exhibits the following fact: For any θ ∈ Θ1, there always exists

some w1 ∈ [−w,w] such that the output at the time t = 1 is the y1 observed. Therefore,

any θ ∈ Θ1 is possible with no contradiction to the data {y1, y0, u0}.2
2In other words, based on the observed data {y1, y0, u0}, the uncertainty interval of θ can at most be

reduced from Θ0 to Θ1.
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Then, with Θ1 as the uncertainty interval of θ at the time t = 1, again by the system

dynamics

y2 = θyb
1 + u1 + w2, (30)

for any fixed choice3 of u1 ∈ R1, there always exists some interval

Θ′
1 ⊂ Θ1

with the length

|Θ′
1| ≥

1

4
|Θ1| (31)

such that for any θ ∈ Θ′
1,

|θyb
1 + u1| ≥ 1

4
|Θ1| · |y1|b ≥ w

4

|y1|b
|y0|b (32)

where the last inequality follows from (29). Then we have for any θ ∈ Θ′
1 and any w2 ∈

[−w,w],

|y2| = |θyb
1 + u1 + w2|≥w

4

|y1|b
|y0|b − w≥w

8

|y1|b
|y0|b

≥
(

8

w

)√
b−1

|y1|b−
√

b =

(
8

w

)√
b−2

|y1|b−2
√

b · 8

w
|y1|

√
b

≥ 8

w
|y1|

√
b (33)

where the first inequality follows from (32), the second inequality follows from (27), the

third inequality follows from (26), and the fourth inequality follows from (23) and |y1| >

|y0|. And furthermore, it is obvious by (33) and (22) that

|y2|b
|y1|b ≥

(
8

w

)b

|y1|b
√

b−b >

(
8

w

)b

|y0|b
√

b−b ≥ 8, (34)

which implies that |y2| > |y1|.
3This choice can only be a causal function of the observed data so far, i.e., {y0, y1, u0}. It cannot

depend on the unknown parameter θ.
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Let us consider the case θ ∈ Θ′
1. First, note that by (27), (29) and (31)

|Θ′
1| ≥

1

4
|Θ1| ≥ w

4|y0|b ≥
2w

|y1|b .

At the time t = 2, similarly to the time t = 1 analyzed before, there exists some interval

Θ2 ⊂ Θ′
1 with |Θ2| ≥ w

|y1|b such that for any θ ∈ Θ2, there always exists some w2 ∈ [−w,w]

such that the output at the time t = 2 is the y2 observed. Therefore, any θ ∈ Θ2 is possible

with no contradiction to the data {y2, y1, y0, u1, u0}. Then, with Θ2 as the uncertainty

interval of θ at the time t = 2, by the system dynamics

y3 = θyb
2 + u2 + w3, (35)

no matter what was the choice of u2, there always exists some interval

Θ′
2 ⊂ Θ2

with the length

|Θ′
2| ≥

1

4
|Θ2| (36)

such that for any θ ∈ Θ′
2,

|θyb
2 + u2| ≥ 1

4
|Θ2| · |y2|b ≥ w

4

|y2|b
|y1|b .

Then by (34) and (35), it is obvious that for any θ ∈ Θ′
2 and any w3 ∈ [−w,w],

|y3| = |θyb
2 + u2 + w3| ≥ w

4

|y2|b
|y1|b − w ≥ w

8

|y2|b
|y1|b

≥
(

8

w

)√
b−1

|y2|b−
√

b =

(
8

w

)√
b−2

|y2|b−2
√

b · 8

w
|y2|

√
b

≥ 8

w
|y2|

√
b (37)

where the last two inequalities follow from (33), (23) and that |y2| > |y1| > |y0|. And

furthermore, it is obvious by (37) and (22) that

|y3|b
|y2|b ≥

(
8

w

)b

|y2|b
√

b−b >

(
8

w

)b

|y0|b
√

b−b ≥ 8, (38)
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which implies that |y3| > |y2|.
This process can be continued infinitely for the times t = 3, 4, . . . and we can similarly

construct the intervals

Θ′
t ⊂ Θt ⊂ Θ′

t−1 with |Θt| ≥ w

|yt−1|b and |Θ′
t| ≥

1

4
|Θt|

such that any θ ∈ Θt is possible with no contradiction to the data {yt, . . . , y0, ut−1, . . . , u0},
and for any θ ∈ Θ′

t and any wt+1 ∈ [−w,w],

|yt+1| ≥ 8

w
|yt|

√
b and

|yt+1|b
|yt|b ≥ 8.

Finally, Θ∞ := limt→∞ Θ′
t 6= ∅ and it happens to any θ ∈ Θ∞ with no contradiction

to the data {y0, y1, . . . , u0, u1, . . .} (or in other words, a suitable sequence of {wt} can be

found) that

|yt| ↗ ∞.

Proof of Theorem 2.2: Let u0 = 0. Starting from t=1, let ut = 0 if f(yt−1) = 0.

Let t0 ≥ 1 be the first time such that f(yt0−1) 6= 0. (If f(yt−1) = 0 for all t ≥ 1, then

it is easy to check by (5) that supt≥0 |yt| ≤ w. Hence we only need to consider the case

where t0 < ∞.) Then for t ≥ t0, we do parameter estimation and design the corresponding

certainty equivalence controller as follows.

The parameter estimation method is similar to that in the proof of Theorem 2.1. The

only difference is that here f(yi) is in place of yb
i .

For any t ≥ t0, let

it := argmax
0≤i≤t−1

|f(yi)|. (39)

The parameter estimate at the time t ≥ t0 is chosen to be

θ̂t :=
yit+1 − uit

f(yit)
.
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The control sequence is defined as

ut = −θ̂tf(yt), for t ≥ t0.

Then for t ≥ t0, the closed-loop dynamics is

yt+1 =
−wit+1

f(yit)
f(yt) + wt+1.

Therefore, noting that the noise are uniformly bounded as (2), we have

|yt+1| ≤ w

|f(yit)|
|f(yt)|+ w, for any t ≥ t0.

Then by (39), we have

|yt+1| ≤ w

max
0≤i≤t−1

|f(yi)| |f(yt)|+ w, for any t ≥ t0. (40)

Now we use a contradiction argument to prove that the outputs are uniformly bounded

as (4). Suppose on the contrary, there exist some y0 ∈ R1, and some θ and a sequence of

{wt} satisfying the assumptions A1)-A2) such that for the feedback control law proposed

above,

sup
t≥0

|yt| = ∞.

Then by t0 < ∞, we have

sup
t≥t0

|yt| = ∞.

If for this sequence {yt, t ≥ t0} , supt≥t0 |f(yt)| ≤ F < ∞, then by (40) and the definition

of t0, it is easy to check that for any t ≥ t0,

|yt+1| ≤ wF

|f(yt0−1)| + w < ∞.

So we only need to consider the case where supt≥t0 |f(yt)| = ∞. From this sequence

{|f(yt)|, t ≥ t0}, we can pick out a subsequence {|f(ytk)|, k ≥ 1} which monotonously

increasing to the infinity and also for any k = 1, 2, . . .

|f(yt)| ≤ |f(ytk)| < |f(ytk+1
)| for any tk < t < tk+1, (41)
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and |f(yt1)| > sup|x|≤M1
|f(x)|, which by (7) means that

|ytk | > M1, k = 1, 2, . . . . (42)

Now, for any k = 2, 3, . . ., by (40), we have

|ytk+1
| ≤ w

max
0≤i≤tk+1−2

|f(yi)| |f(ytk+1−1)|+ w.

By (41), it is easy to check that

|f(ytk+1−1)| ≤ |f(ytk)| and max
0≤i≤tk+1−2

|f(yi)| ≥ |f(ytk−1
)|.

Hence, we have

|ytk+1
| ≤ w

|f(ytk−1
)| |f(ytk)|+ w. (43)

Take logarithm on both sides of (55), and noting that |f(ytk)| > |f(ytk−1
)|, we have

log |ytk+1
| ≤ log

(
w

|f(ytk−1
)| |f(ytk)|+ w

)

< log

(
2w

|f(ytk)|
|f(ytk−1

)|
)

= log |f(ytk)| − log |f(ytk−1
)|+ log(2w).

Then by the assumption A3) and (42), we have

log |f(ytk+1
)| ≤ b

(
log |f(ytk)| − log |f(ytk−1

)|) + log
(
(2w)ba1

)
. (44)

Then it follows by Lemma 3.5 in [6] that for b < 4, {log |f(ytk)|} cannot be monotonously

increasing to the infinity, which contradicts to the definition of {|f(ytk)|}. This concludes

the contradiction argument.

Proof of Theorem 2.3: We show that if b ≥ 4 and |y0| is sufficiently large, then for

any feedback control law, there always exist some θ and {wt} satisfying the assumptions

A1)-A2) such that the absolute values of the outputs monotonously increase to the infinity:

|yt| ↗ ∞.
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The proof is similar to that of Theorem 2.1. Hence, we only mention the differences

here. Let

f ′(x) := a
1

b−1

2 f(x) and w′ := a
1

b−1

2 w. (45)

We consider sufficiently large |y0| satisfying the following inequalities:

1

4
|Θ0| · |f(y0)| ≥ max{2w, 2M2}; (46)

1

8
|Θ0| · |f ′(y0)| b−

√
b

b ≥ 8

w′ ; (47)

(
8

w′

)b

|f ′(y0)|
√

b−1 ≥ max{8, 8M2

w
}; (48)

(
8

w′

)b(
√

b−2)

|f ′(y0)|b−2
√

b ≥ 1. (49)

At the time t = 0, the system dynamics evolves as

y1 = θf(y0) + u0 + w1. (50)

Similarly, for any u0, there exists Θ′
0 ⊂ Θ0 with |Θ′

0| ≥ 1
4
|Θ0| such that for any θ ∈ Θ′

0,

|θf(y0) + u0| ≥ 1

4
|Θ0| · |f(y0)|.

Hence by (46) it is obvious that for any θ ∈ Θ′
0 and any w1 ∈ [−w,w],

|y1| = |θf(y0) + u0 + w1| ≥ |θf(y0) + u0| − w ≥ 1

8
|Θ0| · |f(y0)| ≥ M2. (51)

Then by (8)

|f(y1)| ≥ a2

(
1

8
|Θ0|

)b

· |f(y0)|b. (52)

Hence by (45) and (47)

|f ′(y1)| ≥
(

1

8
|Θ0|

)b

|f ′(y0)|b ≥
(

8

w′

)b

|f ′(y0)|
√

b. (53)

Then by (53) and (48), we have

|f(y1)|
|f(y0)| =

|f ′(y1)|
|f ′(y0)| ≥

(
8

w′

)b

|f ′(y0)|
√

b−1 ≥ max{8, 8M2

w
}. (54)
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Next, the generation of the interval Θ1 ⊂ Θ′
0 is similar to the process in the proof of

Theorem 2.1, only with yb
0 replaced by f(y0):

Θ1 :=

[
θ − w

|f(y0)| , θ +
w

|f(y0)|
]
∩Θ′

0.

And we also have

|Θ1| ≥ w

|f(y0)| . (55)

Then by the following equation

y2 = θf(y1) + u1 + w2, (56)

for any u1, there always exists some interval Θ′
1 ⊂ Θ1 with |Θ′

1| ≥
1

4
|Θ1| such that for any

θ ∈ Θ′
1,

|θf(y1) + u1| ≥ 1

4
|Θ1| · |f(y1)| ≥ w

4

|f(y1)|
|f(y0)|

where the last inequality follows from (55). Then by (54), it is obvious that for any θ ∈ Θ′
1

and any w2 ∈ [−w, w],

|y2| = |θf(y1) + u1 + w2| ≥ w

4

|f(y1)|
|f(y0)| − w ≥ w

8

|f(y1)|
|f(y0)|

≥ w

8

(
8

w′

)b

|f ′(y0)|
√

b−1

≥ M2.

Then by (8), (45), (53) and (49)

|f ′(y2)| = a
1

b−1

2 |f(y2)| ≥ a
b

b−1

2 |y2|b

≥ a
b

b−1

2

(
w

8
· |f(y1)|
|f(y0)|

)b

=

(
w′

8
· |f

′(y1)|
|f ′(y0)|

)b

≥
(

8

w′

)b(
√

b−1)

|f ′(y1)|b−
√

b

=

(
8

w′

)b(
√

b−2)

|f ′(y1)|b−2
√

b ·
(

8

w′

)b

|f ′(y1)|
√

b

≥
(

8

w′

)b

|f ′(y1)|
√

b.
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And furthermore, it is obvious by (48) that

|f ′(y2)|
|f ′(y1)| ≥

(
8

w′

)b

|f ′(y1)|
√

b−1 >

(
8

w′

)b

|f ′(y0)|
√

b−1 ≥ max{8, 8M2

w
}. (57)

This process can be continued infinitely for the times t = 2, 3, . . . and we can similarly

construct the intervals

Θ′
t ⊂ Θt ⊂ Θ′

t−1 with |Θt| ≥ w

|f(yt−1)| and |Θ′
t| ≥

1

4
|Θt|

such that any θ ∈ Θt is possible with no contradiction to the data {yt, . . . , y0, ut−1, . . . , u0},
and for any θ ∈ Θ′

t and any wt+1 ∈ [−w,w],

|f ′(yt+1)| ≥
(

8

w′

)b

|f ′(yt)|
√

b,
|f ′(yt+1)|
|f ′(yt)| ≥ max{8, 8M2

w
},

and |yt+1| ≥ w

8

(
8

w′

)b

|f ′(yt−1)|
√

b−1. (58)

Finally, Θ∞ := limt→∞ Θ′
t 6= ∅ and it happens to any θ ∈ Θ∞ with no contradiction

to the data {y0, y1, . . . , u0, u1, . . .} (or in other words, a suitable sequence of {wt} can be

found) that

|f ′(yt)| ↗ ∞,

which by (58) implies

sup
t≥0

|yt| = ∞.

References

[1] L. Guo. On critical stability of discrete-time adaptive nonlinear control. IEEE Trans.

Autom. Contr., 42:1488–1499, 1997.

[2] L. Guo and C. Wei. LS-based discrete-time adaptive nonlinear control: Feasability and

limitations. Science in China, Series E, 39(3):255–269, 1996.

18



[3] I. Kanellakopoulos. A discrete-time adaptive nonlinear system. IEEE Trans. Autom.

Contr., 39:2362–2364, 1994.

[4] L.-L. Xie and L. Guo. Fundamental limitations of discrete-time adaptive nonlinear

control. IEEE Trans. Autom. Contr., 44:1777–1782, 1999.

[5] L.-L. Xie and L. Guo. Adaptive control of discrete-time nonlinear systems with struc-

tural uncertainties. In Lectures on Systems, Control, and Information, pages 49–90.

AMS/IP, 2000.

[6] L.-L. Xie and L. Guo. How much uncertainty can be dealt with by feedback? IEEE

Trans. Autom. Contr., 45:2203–2217, 2000.

[7] J. Zhao and I. Kanellakopoulos. Active identification for discrete-time nonlinear

control—Part I: output-feedback systems. IEEE Trans. Autom. Contr., 47:210–224,

2002.

19


