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Outline of Lecture
• Historical definitions of performance 
• Amdahl’s law
• “Iron law” of computer performance
• Instruction set design
• Pipelining
• Instruction-level parallelism (not in lecture slides)
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Outline of Chapter 1
Processor Design

• 1.1 The Evolution of Microprocessors
• 1.2 Instruction-Set Processor Design
• 1.3 Principles of Processor Performance
• 1.4 Instruction-Level Parallel Processing
• 1.5 Summary
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Origins of Measuring Performance
• In early decades of computers, each new generation 

required a new technique to evaluate performance.

Mid 1960s
• Mainstream computers:

• had reasonably similar instruction sets
• each instruction took same length of time to perform

• Performance measure: time to perform a single 
instruction (e.g. add)
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Gibson Mix (1970)
• Computers evolved so that some instructions took longer 

to execute than others.
• Gibson proposed: time to execute an average instruction, 

based on weighted average of different instructions.

• Weights based on analyzing collection of typical programs

• Instruction frequency: static vs dynamic 
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Whetstone (1973)
• Pipelining, caches, etc caused time to perform a single 

instruction dependent upon instructions before and after.
• Late 1960s: UK National Physical Laboratory 

benchmarked programs using the Whetstone interpreter 
for Algol 60.  

• 1971: portable benchmark with real programs was 
becoming too time consuming

• Whetstone: synthetic benchmark program
• Relatively short (quick and easy to run)
• Reflected distribution and order of typical scientific 

program
• Measure was KWIPS, then KMIPS, then MIPS
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MIPS
• MIPS = 
• Different types of MIPS

• Fastest instruction (e.g. NOP)
• Typical instruction (e.g. ADD)
• Weighted average (Gibson, Whetstone, Dhrystone)

• Advantages of MIPS:
• simpler to explain to management
• bigger is better.
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Relative MIPS (1977)
• IBM marketing claimed IBM 370/158 was (first?) 1MIPS 

computer
• DEC VAX 11/780 developers ran programs on IBM 

370/158 and on VAX 11/780
• Programs took same time on both computers, 

therefore performance of VAX 11/780 was 1 MIPS
• No one actually measured MIPS for VAX 11/780
• VAX 11/780 become de facto standard for 1 MIPS

• 1981: Joel Emer from DEC measured VAX 11/780 as 
0.5 MIPS
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Dhrystone (1984)
• Synthetic benchmark program
• Focus on integer performance
• Created by Reinhold Weicker (Seimens AG)
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What Really Matters
• The real definition of performance is how long it takes to 

run your programs.
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SPEC Benchmarks
• Collection of real programs run for realistic lengths of time
• Updated roughly every 5 years
• Benchmarks for integer, floating point, graphics, 

multiprocessors, Java client/server, mail servers, network 
file systems, web servers.

• spec.org: great resource before you buy your next 
computer!
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Defining Equations for Performance

• To double performance
• do the same amount of work in half the time
• OR: do twice the work in the same amount of time

• Time is easy to measure
• Challenge is to define or measure work
• Benchmarketing is all about defining work to make your 

product appear faster than your competitors’

Time
WorkPerformance
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“Iron Law” of Performance

H&P , S&L 1.3

Time
Program

Instrs
Program

Cycles
Instr

Time
Cycle
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Tradeoffs

H&P , S&L 1.3.2

Instrs
Program

Cycles
Instr

Time
Cycle
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Other Performance Equations

Speedup

n%faster

TSlow
TFast

Speedup 1

1TSlow
TFast

TSlow
TFast

TFast

WeightedAvg ∑
i=1

n
%i × Ti
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Example: Integer and Floating Point
• Average time to execute an integer and floating-point 

instruction on two computers:

CPU1
CPU2

Int Float
2.0ns 3.5ns
2.5ns 3.0ns

• Q: Which CPU has greater performance for integer 
programs, and how much faster is it?

• Q: If the average program is 90% integer instructions and 
10% floating-point instructions, which CPU has greater 
performance, and how much greater is the performance?
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Example: Integer and Floating Point
• Q: If we want to optimize the slower CPU to match the 

performance of the faster CPU, should we optimize 
integer or floating-point instructions?

• Q: If you have to fire all of your computer architects 
because your stock price plummets, how can you get the 
slower CPU to match the performance of the faster CPU?
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Amdahl’s Law
• Supercomputers in 70s and 80s:

• multiple processors
• scalar instructions: run on main processor
• vector instructions: run on all processors

(useful for matrix and array operations)
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A
ct

iv
e

pr
oc

es
so

rs

Time

A
ct

iv
e

pr
oc

es
so

rs

100%

s

100% -- s

• Amdahl’s definition of efficiency

N

1×s + N×(100% -- s)
N
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Amdahl’s Speedup

1-f
f

Time
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s
N

TSlow

f = percentage of work done in vector mode
100% -- f = percentage of work done in scalar mode

TFast = Time if have N processors
TSlow = Time if have just 1 processor

Speedup = 
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Amdahl and Pipelining
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Performance and Time
• In the computer field, performance increases at an 

exponential rate.
• On average, doubles every 18 – 24 months.
• Moore’s law says that number of available transistors 

doubles every 18 – 24 months.  
• It’s up to the compiler writers, computer architects, 

computer engineers, and electrical engineers to use the 
ever increasing number of transistors to improve 
performance.

• Equation for performance increasing by factor of n every k 
units of time:

P(t) = n(t/k)
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Example: Perf. and Time to Market
• Q: If performance doubles every 2 years, how much does 

it increase each week?

• Q: You are considering a performance optimization that 
will delay your schedule by 4 weeks, but increase your 
performance by 5%, should you do the optimization?

25

Overview of Instruction Sets
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Levels of Abstraction
• ESL (electronic system level): several processors, 

software, custom hardware.  Software model of entire 
system to predict behaviour and performance.

• Transaction level: example transaction = (transfer packet 
from main-cpu to cryptography engine; encrypt; transfer 
packet back to main-cpu)

• ISA (instruction-set architecture)
• architecture: 5—15 blocks per processor
• microarchitecture: building blocks are pipeline stages and 

memory arrays
• HLM (high-level model): behavioural description of 

hardware
• RTL (register-transfer level): 100k – 1M lines of code per 

processor
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Levels of Abstraction (2)
• Structural: HDL description of gates (e.g. C <= A + B)
• Gates / Cells: graphical description of design, often with 

sizing information
• Transistors
• Masks
• Silicon
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Application Domains for Processors
• Servers
• Desktop
• Embedded

• Low-power
• Signal processing
• Graphics
• Network
• (Re)configurable

29

ISA Features
• To justify a new instruction set, it must offer twice the 

performance of existing instruction sets
• Hardware architecture optimization must provide 3% 

improvement
• Performance increases 1% per week on average
• Takes up to ten years to design an ISA before production, 

and then at least five years from first product release to 
full deployment with complete software distribution
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ISA History
• IBM 360: 195x
• Intel x86: 1971
• Motorola 6400,68000, coldfire 1974 
• ARM 1985 (??)
• IBM Power: 1990
• PA-Risc: 1990
• MIPS 1990 (?)
• Sun SPARC 1990 (?)
• DEC Alpha 1990
• Itanium 1998
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Dynamic (HW) vs Static (SW) 
• ISA defines dynamic/static (e.g. hw/sw) interface (Yale 

Patt??)
• Static: program is static, doesn’t change
• Dynamic: execution trace of program in hardware is 

dynamic: can get different behaviour in different runs of 
the program

• Static optimizations done by compiler
• Dynamic optimizations done on-the-fly by hardware at 

runtime
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Static (SW) (Dynamic (HW)
Data
structures

Effective
addresses

Algorithms

Window
of instrs
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Ex: Instruction Sets and Performance
Evaluate performance impact of adding a 

combined multiply/add instruction
• Half of the multiply instructions are followed by an add 

that can be combined into a single multiply/add instruction
• ADD: CPI=0.8, 15%
• MUL: CPI=1.2,  5%
• Other: CPI=1.0, 80%
• Option1: No change
• Option2: add MAC instr, increase clock period by 20%, 

MAC has same CPI as MUL
• Option3: add MAC instr, keep same clock period, CPI of 

MAC is 50% greater than MUL
• Q: Which option is faster, and by how much?
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Performance Simulation
• Analytical models of performance are accurate only for 

very simple processors
• Most analysis done by performance simulation (aka

“instruction set simulators”)
• Goals of performance simulation are to measure

• number of clock cycles to execute a program
• monitor resource usage

• % of stalled cycles
• % of time that a unit (e.g. adder) is idle

• Often don’t care about computing a real result
• Want simulator to run as fast as possible

• more experiments = explore more design options
• more benchmarks = more accurate estimate of 

performance
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Perforamance Simulation
• Two types of simulators

• Execution driven: simulator actually executes the code 
and computes results

• Trace driven: 
• Record execution trace as run program on a simulator on on

instrumented hardware
• Run trace through performance simulator
• Don’t compute results, just compute how long each instruction 

takes

• Most simulators are now execution-driven
• Traces a require large amounts of memory
• Trace is applicable only to architectures similar to that 

used to generate the trace (e.g. can’t change branch 
prediction algo)
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Instruction Set Design Decisions
• Instructions

• Operations
• Data types
• Addressing modes

• State (Registers and Memory)
• Encoding
• Legality rules

• Sequencing
• Alignment

37

Operations
• Normal operations

• Special operations
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Computation and Memory 
Instructions

39

Operation and Memory Decisions
• Operand and result locations
• Operand and result addressing
• Memory addressing modes
• Data types
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Operand and Result Location
• Memory
• General purpose registers
• Stack
• Accumulator
• Special purpose registers 

• PC
• CCR
• Link register
• Top of stack register
• Return address register
• Loop count register
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Operand and Result Addressing
• Implicit

• Stack
• Accumulator
• Special purpose registers 

• Explicit
• Memory
• General purpose registers

• Types of registers
• Data / Addr
• Int / FP
• Predicate / Numeric
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Memory Addressing
• Alignment

• Byte, Half-word, Word, Double-word
• Addressing modes

• Register
• Immediate
• Displacement
• Register indirect
• Indexed
• Direct (or absolute)
• Memory indirect
• Pre/Post inc/dec rement
• Scaled
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Data Width
• Most common data widths:

• 8b byte
• 16b short
• 32b word
• 64b double

• Special cases
• Internal registers of greater width to improve precision 

of arithmetic
• Vectors

• MMX vs general vector instructions

• CISC strings
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Control Flow Instructions

45

Programming Language Control Flow
Programming language constructs that lead to 

control flow instructions
• Case/switch
• If-then-else
• Subroutine, procedure, function call
• Subroutine, procedure, function return
• Loop
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Control Instruction Design Decisions
• All types of control instructions:

• Addressing modes for target
• Conditional branches:

• Locations that can be tested
• Tests that can be performed

• Procedure call and return
• State save / restore
• Argument / result passing
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Types of Control-Flow Instructions

• Conditional branches
• Jumps
• Procedure / function / subroutine calls
• Procedure / function / subroutine returns

• Special case of conditional branches:
• Loop closing

• Recent innovation
• Predicated instructions (e.g. conditional move)

8%

10%

82%

19%

6%

75%
Int FP
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Addressing Modes
• Performance advantage to calculate branch target quickly

• Why?

• Most common addressing mode for control instructions: 
displacement
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Locations to Test
• CCR

• General Purpose Register

• Predicate Register
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Tests
• Flag set / unset
• Comparison
• <0, ≤0, =0, ≥0, >0
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State Save/Restore
• What’s the problem?

• In CISC processors, often could save or restore state with 
a single instruction. 

• VAX Calls instruction: extremely general, extremely 
slow, not used.

• RISC approach: 
• let compiler do the work
• establish compiler conventions

• caller-save or callee-save
• registers for stack pointer and link pointer

• Register windows
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Argument/Result Passing
• Similar to state save/restore

• CISC: special purpose instructions
• RISC: let the compiler do the work

• RISC alternative: register windows
• Berkeley RISC I, SUN Sparc, Intel Itanium
• Architectural carbunkle or elegant alternative to 

register renaming?
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Example: Braniac vs Speed Demon
• AMD Athlon 1.2 GHz, 409 SPECint
• Fujitsu SPARC64: 675 MHz, 443 SPECint
• Assume that it requires 20% more instructions to write a 

program in Sparc64 than in IA-32
• Q: Which processor has higher performance?

• Q: What is the ratio between the CPIs?

• Q: What is the CPI of the AMD Athlon?
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Ex: Instruction Encoding
• Design a simple 16-bit instruction set

• Number of instructions:
• Number of addresses per instruction:
• Number of registers:
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A Simple RISC ISA
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Defining an Instruction Set
• Instructions

•
•
•

•
•
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Operations: Arith and Control
• Arithmetic: func Rdst Rsrc1 Rsrc2

• Regs[Rdst] ← Regs[Rsrc1] func Regs[Rsrc2]
• Branch:  Bcond (Rtst)imm

• Conds: <0, <=0, =0, !=0, >=0, >0
• if cond(Regs[Rtst]) then { PC ← PC + 4 +imm } 

else { PC ← PC+4 }
• Jump: 

• J #imm : PC ← PC + 4 + imm
• JR Rtgt : PC ← Regs[Rtgt]
• JAL #imm : R31 ← PC+4; PC ← PC+4+imm
• JALR Rtgt : R31 ← PC+4; PC ← Regs[Rtgt]
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Operations: Load and Store
• Load:  Lwidth/type Rdst Raddr imm

• Widths: Byte, Half-word, Word, Double
• Type: signed or Unsigned
• Regs[Rdst] ← Mem[ Regs[Raddr]+imm ]

• Store: Swidth Raddr Rsrc imm
• Widths: Byte, Half-word, Word, Double
• Mem[ Regs[Raddr]+imm ] ← Regs[Rdst]

• Other operations (e.g. traps, exceptions, special 
registers, floating point) are not included in this 
lecture
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Architectural and Physical State
• Architectural State

• PC program counter
• R register file
• Mem memory

• Physical (hidden) state
• IR instruction register
• Imm immediate data
• ALUoutput
• LMD load memory data
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Basic Steps of Execution
• Fetch: get instruction from memory
• Issue: begin decoding, enter pipeline
• Dispatch: wait until operands are ready, 

send to execution units
• Execute: perform computation
• Writeback: put result in speculative state
• Retire: put result in non-speculative state

• Notes: 
• “dispatch” = “disperse” = “schedule”
• “retire” = “commit” = “finalize”
• “state” = registers and/or memory

in
-fl

ig
ht
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Basic Steps of Execution
• IR ← Mem[PC]
• A ← Regs[ IR.src1 ]
• B ← Regs[ IR.src2 ]
• Imm ← IR.imm
• ALUoutput ← A func B

ALUoutput ← A func Imm
• PC ← PC+4

PC ← PC+4+imm
PC ← A

• LMD ← Mem[ B ]
• Mem[ ALUoutput] ← B
• Regs[ IR.dst ] ← ALUoutput

Regs[ IR.dst ] ← LMD

OR:

OR:

OR:

func = arith func, address calc, 
or condition test}

OR:
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A Simple Processor
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Perform an ALU Reg-Reg instr
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Perform an ALU Reg-Imm instr
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Perform a Store
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Perform a Load
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Perform a Branch
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Perform a Jump
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Perform a Jump Register
Mem

IR
A

B
ALUoutput

Imm

LMD

A
dd

r
D

at
a

PC

4

Src1
Src2

A
dd

r
D

at
a

A
dd

r
D

at
a

Regs

Dst

A
dd

r
D

at
a

A
dd

r
D

at
a



18

70

Allocate Ops in Stages
• IR ← Mem[PC]
• A ← Regs[ IR.src1 ]
• B ← Regs[ IR.src2 ]
• Imm ← IR.imm
• ALUoutput ← A func B

ALUoutput ← A func Imm
• PC ← PC+4

PC ← PC+4+imm
PC ← A

• LMD ← Mem[ B ]
Mem[ ALUoutput] ← B 

• Regs[ IR.dst ] ← ALUoutput
Regs[ IR.dst ] ← LMD
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A Simple Pipelined Processor
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A Simple Pipelined Processor
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A Simple Pipelined Processor
IMem

IR
A

B
ALUoutput

Imm

LMD

A
dd

r
D

at
a

PC

4

Src1
Src2

A
dd

r
D

at
a

A
dd

r
D

at
aRegs

Dst

A
dd

r
D

at
a

WB

DMem

A
dd

r
D

at
a



19

74

Reservation-Table View
clock cycle
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Execution-Pattern View
clock cycle
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Pipelining: Ideal vs Reality
• Previous two slides showed ideal pipeline behaviour: 

• no hazards
• speedup = __________________________

• Hazards 
• reduce speedup
• complicate hardware (and maybe software) design
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Hazards in Our Simple Pipeline
• _____________ Hazards

• _____________ Hazards

• _____________ Hazards
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clock cycle
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Back-to-Back Arith Instrs

ADD: R8   ← R2   +    R1
SUB: R10 ← R8   – R2
AND: R12 ← R8 AND R3
OR  : R13 ← R8  OR  R4
XOR: R14 ← R8 XOR R5
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Dealing Data Hazards
• Hardware techniques

•

•

•

• Software techniques
•
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Pipelining--The Basic Idea
• break task into smaller pieces

• pipe stages or pipe segments 

latency: time for an instruction to pass through the pipeline 

f1 f2 f3 f4 f5 f6

f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1

f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1

f1 f2 f3 f4 f5 f6

throughput: number of instructions that exit the pipeline 
per unit time

81

Data-Dependencies on Loads

AND R6,R1,R7
SUB R5,R1,R8
ADD R4,R1,R7
LW R1,32(R6)

1 2 3 4 5 6 7 8 9

WB

MEM

EX

ID

IF
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Control Hazards--Branches/Jumps
1 2 3 4 5 6 7 8 9

WB

MEM

EX
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IF
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Control Hazards--Branches/Jumps
1 2 3 4 5 6 7 8 9

WB

MEM

EX

ID

IF
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Branch Instruction Stats
branch/jump instruction frequencies

unconditional conditional
DLX 2% 11%
x86 7% 14%
VAX 8% 17%

approx 53% of conditional branches executed are 
taken 
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Predict-Not-Taken--Success
1 2 3 4 5 6 7 8 9
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MEM
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Predict-Not-Taken--Fail
1 2 3 4 5 6 7 8 9
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