
1

1

Lec-04: Data and Control Hazards
for Simple Pipelines

ECE-720-topic4: Innovations in
Processor Design

2008t1

Mark Aagaard

2

Data Hazards

3

When are hazards detected?
• the process of letting an instruction move from the

instruction decode stage (ID) to the execution stage (EX)
is called instruction issue

• an instruction in the EX stage is said to have been issued

• hazards are usually checked during the ID stage

• when a hazard is detected, the instruction will not be
issued until the hazard has been resolved

4

Scheduling: Software vs Hardware
objective: rearrange instructions so that data

hazards caused by loads are eliminated or
reduced

needed regardless of whether a hardware
interlock is provided

• hardware interlocks lead to stall cycles
• in the absence of a hardware interlock, NOP instructions

must be put in unschedulable load delay slots

5

Effectiveness of Scheduling
• without scheduling 42-65% of loads cause a stall
• with scheduling 14-31% of loads cause a stall
• Note: other optimizations affect these results. E.g.,

optimizations which reduce the total number of loads and
stores will cause the fraction of loads causing stalls to
increase

6

Data Hazard Hardware
• Detection

• comparators to check if either source register index is
the same as the destination index

• Resolution
• additional inputs to bypass MUXes on the ALU
• extra paths from the data output to bypass MUXes

2

7

Control Hazards

8

Reducing Control Hazard Stalls
determine the new PC value ASAP

• add PC to offset field as soon as IR is loaded

determine whether the branch is taken ASAP
• Simple RISC ISAs have test only for zero/non-zero

a pipeline with a one cycle stall

9

Branch Penalties

the branch delay is the length of the duration of
the control hazard

an unresolved branch delay leads to a branch
penalty

typically, the deeper the pipeline, the higher the
branch penalty

10

Branch Instruction Stats
branch/jump instruction frequencies

unconditional conditional
DLX 2% 11%
x86 7% 14%
VAX 8% 17%

approx 53% of conditional branches executed are
taken

approx 75% of branches executed go forward

11

Reducing Pipeline Branch Penalties
simple option--do nothing

• stall the pipeline until the target address has been
computed and the condition tested

make a prediction
• static

• architecture implementation

• compile time

• dynamic

12

Static Predict-Not-Taken
assume branches are not taken

continue filling pipeline from sequential
instructions until branch outcome is determined

if branch is not taken
• a win!

if branch is taken
• squash instructions in the pipeline

• a pipeline bubble

3

13

Predict-Not-Taken--Success
1 2 3 4 5 6 7 8 9

WB

MEM

EX

ID

IF

14

Predict-Not-Taken--Fail
1 2 3 4 5 6 7 8 9

WB

MEM

EX

ID

IF

15

Static Predict-Taken (continued)

Problem: If branch target requires register read,
then by the time the target address is computed
the branch outcome is also known

• no benefit

16

Delayed Branch
• instead of adding hardware, the architect can simply

decree that it is a feature of the architecture that the PC
will not be modified until, say, one instruction after the
branch has completed

• delayed branch
• the slots in the pipeline following a branch during which

time the new PC has not been computed are called
branch delay slots

• it is the responsibility of the programmer or compiler to
ensure that branch delay slots are filled with useful work

17

Delayed-Branch Scheduling Strategies

From before branch
• requirements: branch

does not depend on the
rescheduled instructions

• improves performance
always

ADD R1, R2, R3
BEQZ R2, target

BEQZ R2, target
ADD R1, R2, R3

delay slot

target:

target:

18

Delayed-Branch Scheduling Strategies
From target

• requirements: must be ok
to execute scheduled
instructions even if
branch is not taken

• improves performance
when branch is taken

ADD R1, R2, R3
BEQZ R2, target

delay slot

target:

target:

SUB R4, R5, R6

ADD R1, R2, R3
BEQZ R2, target
SUB R4, R5, R6

4

19

Delayed-Branch Scheduling Strategies
From fall through

• requirements: must be ok to
execute scheduled instructions
when branch is taken

• improves performance when
branch not taken

ADD R1, R2, R3
BEQZ R2, target

delay slot

target:

target:

SUB R4, R5, R6

ADD R1, R2, R3
BEQZ R2, target
SUB R4, R5, R6

20

Effectiveness of Scheduling
with one delay slot

• delay slots filled by scheduling: 53-60%

• delay slots usefully filled by scheduling: 45-50%

• unfilled slots contain NOPs

with two or more delay slots
• fraction of slots filled decreases dramatically

21

Performance Implications
Recall

Assume CPI = 1

Assume stalls are due to branches

cycles stall of# CPI ideal
length pipeline CPI ideal speedup pipeline

+
×

=

penalitybranch frequency branch cycles stall of# ×=

penaltybranch frequencybranch 1
pipelength speedup pipeline

×+
=

22

Speedup Statistics
scheduling branch effective pipeline pipeline
Scheme penalty CPI speedup over speedup over

unpipelined stall pipeline
machine on branch

stall pipeline 3 1.42 3.5 1.0
predict taken 1 1.14 4.4 1.26
predict not taken 1 1.09 4.5 1.29
delayed branch 1.0 1.07 4.6 1.31

