
1

Lec-11

Multi-Threading Concepts:

Coherency, Consistency, and

Synchronization

ECE-720-t4: Innovations in Processor Design

2008t1 (Winter)

Mark Aagaard

University of Waterloo

2

Introduction

3

Coherency vs Consistency

• Memory coherency and consistency are major concerns in the

design of shared-memory systems.

• guarantees that multiple

processors can execute a

concurrent program correctly

• guarantees that a single

processor can execute a

sequential program correctly

Consistency Coherency

• defines the relative order of

read and write operations

from multiple processors to a

single memory location.

• defines the relative order of write

operations from multiple

processors to multiple memory

locations.

4

P1 P2

1: Wr A ← α1

2: Rd A2: Wr B ← β1

3: Rd B3: Wr A ← α4

4: Wr B ← β2

P3

2: Rd A

3: Rd B

1: Wr A ← α2 1: Wr A ← α3

5

Simple Memory Coherency

• Three requirements for simple coherency

• If Pi writes α to A, and then reads from A without any intervening

writes by Pi or another processor, then the read will return α.

• If Pi writes α to A, and then after a sufficiently long time without

any intervening writes by Pi or another processor, then if Pj reads

A, the read will return α.

• If Pi writes α1 to A and Pj writes α2 to A, then all processors will

agree on the relative order of the two write operations.

6

Simple Memory Consistency

• Two requirements for simple memory consistency

• A write operation is defined to be completed when all processors

have seen the effect of the write

• Each processor preserves the order of writes with respect to both

reads and writes

7

Synchronization

• Basic idea: force multiples processors to stop at particular points in

their programs

• Purpose of synchronization in hardware:

Provide basic building blocks for messages and critical sections in

software.

synchronization point

synchronization point

P1 P2 P3

synchronization point

8

Coherency

Introduction

9

Terminology for Shared Memory

Symmetric Distributed

Location of memory

Uniform access time

Communication

mechanism

10

Multiprocessor Memory Models

Shared

Private

Symmetric Distributed

�UMA
�Ld/St
�HW coherency
�Snooping protocol

�NUMA
�Ld/St
�HW coherency
�Directory protocol

�NUMA
�Messages
�SW coherency

11

Distributed Memory Systems

• Distributed shared memory vs distributed private memory

• Shared

• HW is responsible for coherency

• HW is complicated

• SW uses normal load and store instructions to communicate

• Private

• SW is responsible for coherency

• HW is simple

• SW uses messages and remote procedure calls to communicate

• Q: Why shared = hw-coherence and private = sw-coherence?

12

HW vs SW for Coherence

• HW has dynamic view of program, SW has static view

• HW view

• small “horizon” (can see only a few instructions at a time)

• fine detail (e.g. know physical addresses)

• SW view

• large “horizon” (can see many instructions at a time)

• coarse detail (e.g. don't know physical addresses)

• To guarantee coherence, SW must treat any piece of data that might

be shared as if it were shared. HW knows at each instant whether a

piece of data is shared.

• SW must behave conservatively. For example, generate invalidate

messages that might not be needed.

13

Try SW-Coherence for Shared Memory

• Caches introduce coherency problems

• Option 1: remove caches

• Exactly one copy of each memory block

• No coherency problems! No performance!

• Option 2: only private data may be cached

• Same effect as option 1

• Option 3: software controls cache

• 3a: compiler generates cache control code

• Feasible only for specialized applications (e.g. arrays)

• 3b: programmer controls cache

• For efficiency, want to move blocks of memory

• Normal ISAs provide load/store for at most double words

14

Summary of HW vs SW

• Shared vs Private

• Shared has simple programming model

• Symmetric vs Distributed

• Symmetric uses snooping protocol, which doesn't scale

• SW coherency is difficult

• Goal: Find HW-coherency protocol for distributed shared memory

• Simple programming model

• Scales to 64 – 256 processors

• Answer: Directory protocol

• HW-based coherency protocol for distributed memory

15

Coherence Protocols: Snoop vs Directory

• Two major categories of memory coherence protocols, distinguished

by location of status information for block of physical memory

Symmetric, Snooping Distributed, Directory

C1 C2

P1 status

P2 status

M1 M2

C1

P1

C2

P2P2 P1

16

Coherence Protocols: Snoop vs Directory

• Two major categories of memory coherence protocols, distinguished

by location of status information for block of physical memory

Snooping Directory

Location of status

Update status

Shared mem type

17

Coherency:

Snooping Protocols

18

Snooping Protocols

• Each cache keeps copy of its status for each memory block that it

contains.

• Status:

• Invalid: must refetch block on next access

• Shared: block held by multiple caches, all are clean

• Modified: local processor has modified block

(other procs should be invalid, main mem out of date)

• Exclusive: local processor is only proc that contains block

(block is clean, main mem is up to date)

• Owned: local processor owns block and must service all

requests

• Options for status: MSI, MESI, MOSI, MOESI

19

Maintaining Coherence on Write

• Applicable to both snooping and directory protocols

• Write invalidate

• Before Pi writes to memory location A, all other processors must

invalidate location A.

• This guarantees that Pi has exclusive access to A

• Write update

• When Pi writes to memory location A, it broadcasts the write to

all other processors

• Write invalidate usually has better performance than write update

• Write invalidate much more popular than write update

20

Snooping Protocol Example

• H&P Fig 6.8: Write-through, write-invalidate, Status = {Valid, Invalid}

P1

2: Wr A ← β

1: Rd A

C1 P2

Miss A

C2 Bus

P1 ← A

Mem[A]

α

α
1: Rd A Miss A P2 ← A

α
A ← β

INV β
β

21

Snooping Protocol Example

• Write-through, write-invalidate, Status = {Valid, Invalid}

• Illustrate competing writes

P1

2: Wr A ← β

1: Rd A

C1 P2

Miss A

C2 Bus

P1 ← A

Mem[A]

α

α
1: Rd A Miss A P2 ← A

α1

A ← β
INV β

β

2: Wr A ← γ

A ← γ
INV γγ

22

Advantages of Rich Status

• Basic protocol provides Invalid status

• Q: Why add more status values?

• Shared:

• Modified:

• Exclusive:

• Owned:

23

Coherency:

Directory Protocols

24

Memory Block Status

• Shared: memory block held by multiple caches, all are clean

• Need to know which processors have memory block

• Uncached: no processor has copy of memory block

• Exclusive: exactly one processor has copy of memory block,

processor might have written to block

• Need to know which processor has memory block

• Need to know if processor has written to block

• Implementation of status

• A few bits for status

• One-hot encoding for processors

share
status P8 P7 P6 P5 P4 P3 P2 P1 P0P9

25

Directory Protocol

• Two fundamental operations: read miss, write to non-exclusive block

• Read miss

• Write to non-exclusive block

• Handle as write miss (e.g. read miss; write)

• Wait until have exclusive access before changing memory

• Complication

• Have complex interconnection network

• No longer have a single bus

• Snooping uses bus to provide consistent ordering of write

operations

26

Directory Messages (Simple Version)

local remote

home

re
ad

 m
is
s

w
rit

e
m

is
s invalidate

fetch
fetch/invalidate

da
ta

 re
pl

y

data w
riteback

source of request

owner of block data and directory

copy of block

• Possible to have:

• Local = home, Local = remote, or Remote = home

27

Directory Protocol Example

• Same scenario as first snooping protocol example in Lec-18

P1

Rd A

C1

M1

Miss A

Net

P1 RdMiss A

α

A:α

P1 ← A:α

Val Stat P1 P2

unc

✔exc

M2[A]

Val Stat P1 P2 C2 P2C1

Rd AMiss AP2 RdMiss A

A:α

P2 ← A:α ✔sh ✔

Α:α

α

α

28

Directory Protocol Example

• P2 writes to A when A is shared

P1 C1[A]

M1

NetVal Stat P1 P2

M2[A]

Val Stat P1 P2 C2[A] C1P2

Wr A ← β

✔sh ✔ A:αααA:α

P2 ← A:α

P2 WrMiss A

✔excαα

Invalidate A

INVINV

uncαα

A:α

A:β

29

Directory Protocol Example

• P1 and P2 try to write to A simultaneously

P1 C1[A]

M1

Net at M2Val Stat P1 P2

M2[A]

Val Stat P1 P2 C2[A] C1P2

Wr A ← β

uncαα

P2 ← A:α

P2 WrMiss A

✔excαα

INV A:α

A:β

Wr A ← γ P1 WrMiss A

P1 WrMiss A

FetInv P1 A

A ← β INV

✔excβP1 ← A:βA:β

A:γ

P1 WrMiss A

P1 WrMiss A

30

Performance Example

• H&P 6.12: Use distributed mem with bus communication

• 64B cache blocks, negligible I-Cache misses

• Total D-Cache miss rate 2%

• % misses to private data 60%

• % shared-data-misses that are uncached 20%

• % shared-data-misses that are dirty 80%

• Local memory hit: 100 ns

• Remote access to uncached data: 1800ns

• Remote access to dirty data: 2200ns

• 1GHz clock, CPI w/ 100% cache hit = 1.0, 40% instrs ld or st

• Find real CPI

31

Conistency

32

Quagmire of Consistency

• P1

A ← 0;

...

A ← 1;

if (B == 0) {

print “P2 is slow”

}

• P2

B ← 0;

...

B ← 1;

if (A == 0) {

print “P1 is slow”

}

• Q: possible for both P1 and P2 to think that the other is slow?

• Issue is consistency: relative order of accesses to A and B by a

single processor.

33

Tradeoffs in Consistency

• There are many definitions of consistency

• Strict (strong) definitions: make everything sequential

• easy to understand

• less parallelism, hurts performance

• Loose (weak) definitions: lots of parallelism and out-of-orderedness

• hard to understand

• improves performance

34

Sequential Consistency

• Overal order of operations is consistent with the order seen by each

individual processor

• Example:

• P1: a; b; c; d; e; f;

• P2: m; n; o; p; q;

• OK: a; b; c; d; e; f; m; n; o; p; q;

• OK: a; m; n; b; o; c; p; d; q; e; f;

• BAD: a; m; n; b; p; c; o; d; q; e; f;

• Sequential consistency is incompatible with loads-passing-stores in

out-of-order execution.

• Idea: weak ordering models of consistency

35

Weak Orderings

• Idea:

• allow operations to different addresses to complete out of order

• use synchronization where need to enforce order

• Relaxation modes:

• total-store ordering (relax RAW order)

• partial-store ordering (relax WAW order)

• weak ordering (relax WAR and RAR order)

Alpha ordering

PowerPC ordering

• Programming with relaxed ordering is very stressful

36

Speculation with Sequential Ordering

• An alternative to weak ordering

• Speculate that performing memory operations out-of-order

operations will produce the same result as preserving sequential

order

•• P1

A ← 0;

A ← 1;

Ld R3 B

BNZ R3 end

print “P2 is slow”

end:

• P2

B ← 0;

B ← 1;

Ld R3 A

BNZ R3 end

print “P1 is slow”

end:

37

Synchronization

38

Synchronization

• Basic idea: force multiples processors to stop at particular points in

their programs

• Purpose of synchronization in hardware:

Provide basic building blocks for messages and critical sections in

software.

• Requirements on primitive operation for synchronization:

• Read a memory location

• Change the value of the memory location

• Either guarantee that, or test if, (read;change) is atomic

synchronization point

synchronization point

P1 P2 P3

synchronization point

39

Challenges

• Correctness (Solution to bugs)

• Hardware provides simple, fast primitives

• Low-level programmers build libraries on top of ISA-specific

primitives that provide high-level constructs to programmers

• Performance

• When no contention: minimize latency

• When high contention: minimize communication

40

Historical Approaches

• Hardware provides single instruction that is guaranteed to be atomic

• test-and-set reg addr

• reg ← M[addr]

• M[addr] ← #1

• fetch-and-increment reg addr

• reg ← M[addr]

• M[addr] ← M[addr] + 1

• atomic exchange reg addr

• tmp ← M[addr]

• M[addr] ← reg

• reg ← tmp

41

Historical Approaches

• Disadvantage: requires that a read-write sequence is atomic

• Memory coherence requires that no other memory operations

occur between the read and the write

• Potential problems with deadlock

P1

Ex R3 A

C1

M1

Miss A

Net

P1 WrMiss A

Val Stat P1 P2

M2[A]

Val Stat P1 P2 C2 P2

Ld R3 (R1)

R1 = sqrt

P2 RdMiss (R1)

Q: what's the problem?

42

Modern Approaches

• Don't guarantee atomicity of (read; write)

• Instead: provide two operations

• read

• write and test if (read;write) was atomic

• If test returns FALSE,

then (read;write) was not atomic so try (read;write) again

43

Load-Link + Store-Conditional (Idea)

• Load-linked: load mem value into reg and special link register

• LL reg addr

reg ← M[addr]

link ← reg

• Store conditional:

if mem value = link-reg then store reg value in memory else fail

• SC reg addr

if M[addr] = link {

M[addr] ← reg

} else {

reg ← #0

}

Q: what's the problem with SC?

44

Use of Load-Link

• Assembly code to implement atomic exchange with load-link

• The code is the equivalent of:

 atomic-exchange R4 (R1)

• Assembly code

try: R3 ← R4 -- R3 holds working copy of R4

LL R2 (R1) -- R2 ← M[R1]

SC R3 (R1) -- M[R1] ← R3 (if succeed)

BEQZ R3 try -- jump to try if failed

R4 ← R2 -- R4 ← M[R1]

• Q: why do we need R3, rather than using just R4?

45

Load-Link + Store-Conditional (Reality)

• Load-linked: load mem value into reg

and copy address into special link register

• LL reg addr

reg ← M[addr]

link ← addr

• Store conditional:

if addr = link-reg then store reg value in memory, else fail

• SC reg addr

if addr = link {

M[addr] ← reg

} else {

reg ← #0

}

46

Atomicity of LL+SC

• Link register is special

• Processor must reset link register if the memory location that the link

register points to might have been modified

P1

SC R3 A

Link1 Net C2[A] P2

LL R2 A

C1[A] M[A] Link2

α

αA

ST A β

P1 RdMiss A

P1 ← A:α

P2 WrMiss A

Inv P1 A

P2 ← A:α

0 INV

R3 = ___

α
β

status of M[A] = ___

status of M[A] = ___

47

Spin-Lock

• Locks are used to guarantee mutual exclusion

• With spin-lock, process spins in tight loop until can acquire lock

• Pseudo code for use of a spin-lock in mutual exclusion:

while (locked = #1) {}; -- loop waiting for locked = #0

-- know that locked = #0

locked ← #1; -- set locked to prevent others

--

-- critical section

--

locked ← #0; -- release locked

48

Spin-Lock with LL+SC

• --

loop: LL R2 locked -- loop waiting for locked = #0

BNEZ R2 loop

--

R2 ← #1 -- set locked to prevent others

SC R2 locked

--

BEQZ R2 loop -- jump back to top if store failed

--

--

-- critical section

--

--

ST locked #0 -- release locked

Q: what would happen if replaced SC with ST?

49

Caches and Spin-Lock with LL+SC

P1 Link1 Net C2[A] P2

LL R2 A

C1[A] M[A] Link2

1

A

ST A 0

P1 RdMiss A

P1 ← A:1

P2 WrMiss A

Inv P1 A

P2 ← A:1

0 INV

LL R2 A

LL R2 A

LL R2 A

1

1

0

P1 RdMiss A

LL R2 A

P1 RdMiss A

P1 RdMiss A

P1 RdMiss A

50

Performance Analysis

• Bus and memory traffic low while spinning (good)

• Lots of communication when transfer lock (bad)

• Must invalidate all copies of lock when released (ST)

• Must invalidate all copies of lock when acquired (SC)

• Observation: only one processor will acquire lock

• For losing processor:

• locked=0

• INV

• RdMiss

• locked=0

• Idea: Pick winning processor, don't talk to losers (Queuing lock)

51

Queuing Lock

• Augment memory directory with queue of processors waiting for lock

P1 P2 P3 P4
Mem

req;

locker queue

req

req

req

P1

P3

P2

P4

P3 P2 P4

P2 P4

P4

acq

rel

acq

rel

acq

rel

acq

rel

52

Exponential Backoff

• Another technique to reduce memory/bus traffic with spin locks

• Each time that fail to aquire lock, wait twice as long before re-trying

• Implement in low-level software library, no change to hardware

53

Barrier Synchronization

• Barrier: point in a program where all processors must synchronize

• Force all processors to wait at barrier

• Release all processors after last has arrived at barrier

• Implement barrier with two spin-locks

• protect critical section that counts arrivals

• processors spin-lock at barrier waiting for barrier to be unlocked

• Performance problem with many processors

• Queuing lock: forces serialization of arrival counter

• Idea: Use combining-tree of locks, rather than a single lock

54

Combining Tree

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

All processors have arrived,

now unlock the barrier

Can also use combining tree for spin-lock

to allow processors past barrier.

Q: when beneficial?

Spin-lock to

protect counter

for P1— P3

