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Abstract—For broadcast channels, a power allocation scheme is pro-
posed to maximize the number of active receivers, for each of which,
a minimum rate Rmin > 0 can be achieved. Under the assumption
of independent Rayleigh fading channels for different receivers, as the
total number of receivers n goes to infinity, the maximum number of
active receivers is shown to be arbitrarily close to ln(P ln n)/Rmin with
probability approaching 1, where P is the total transmit power.

Index Terms—Broadcast channels, fading channels, minimum rate
constraint, power allocation, scaling laws, user capacity.

I. INTRODUCTION

In a broadcast system where the transmitter can allocate different
portions of its total transmit power to different receivers according
to their channel states, there is a basic trade-off between the total
throughput and the minimum rate achievable for all the receivers.
To increase the total throughput, it is always favorable to allocate
more power to receivers with better channel states, while in order
to increase the minimum rate, obviously, more power should be
allocated to receivers with worse channel states.

In a dynamic environment, where the channel states are time-
varying, opportunistic power allocation schemes can be exploited
to increase the total throughput while maintaining an average rate
constraint for each receiver. The basic idea is to adapt the power
allocation to the variations of the channel states. The transmission rate
for a receiver is increased when its channel state becomes better, thus
higher rates can be achieved at the expense of less power. However,
in delay-sensitive applications, it may not be admissible for a receiver
to wait too long before its rate is increased. Basically, this raises an
issue of the trade-off between ergodic capacity and outage capacity,
for which, extensive studies have been given in [1], [2], [3] in the
context of broadcast channels.

In this paper, we consider a power allocation scheme with a
minimum rate constraint Rmin > 0. Since for a fixed Rmin, in a
time-varying fading environment, it may not be always possible for
all receivers to achieve this minimum rate simultaneously, we propose
a scheme to maximize the number of active receivers, for each of
which, such a minimum rate can be supported, while allocating no
power to the other inactive receivers.

By adjusting the value of Rmin, different trade-offs between
the total throughput and the delay can be achieved. Specifically,
by increasing Rmin, the power is shared among fewer receivers
with relatively better channel states, thus resulting in higher total
throughput; However, this also results in delay for more inactive
receivers, thus longer delay for each receiver on average. On the
other hand, by choosing Rmin small enough, it is possible to make
it simultaneously achievable for all the receivers, thus resulting in
no delay for any receiver; However, it may be too costly to save
receivers at extremely bad channel states.

While the number of supportable active receivers depends on the
specific channel states, we analyze the asymptotic behavior when
the total number of receivers n is large. Under the assumption of
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independent Rayleigh fading channels for different receivers with unit
noise variance, we show that the maximum number of active receivers
m is very close to ln(P ln n)/Rmin with probability approaching 1,
where P is the total transmit power, and Rmin is in the unit of nats.
Actually this approximation is surprisingly close in the sense that
both the lower and upper bounds of m differ only by ε > 0, which
can be made arbitrarily small.

II. MAIN RESULTS

Consider a broadcast system with one transmitter and n receivers
with the following channel model in the time block t = 1, 2, . . . , T :

Yi(t) = giX(t) + Zi(t), i = 1, 2, . . . , n, (1)

where X(t) ∈ C is the signal sent by the transmitter, and Yi(t) ∈ C is
the signal received by receiver i. The noise Zi(t) ∈ C, i = 1, . . . , n,
t = 1, . . . , T are assumed to be i.i.d. complex Gaussian distributed
according to CN (0, 1). The channel gains gi ∈ C, i = 1, . . . , n are
assumed to be constant during this time block, and known to the
transmitter and all the receivers.

Equivalently, the model (1) can be written as

Y ′
i (t) = X(t) + Zi(t)/gi, i = 1, 2, . . . , n (2)

where the noise Zi(t)/gi is still complex Gaussian distributed, but
with variance 1/|gi|2.

Let Ni = 1/|gi|2. Without loss of generality, assume that N1 ≤
N2 ≤ · · · ≤ Nn. It is well known [4, Sec.14.6] that the broadcast
channel (2) is stochastically degraded, and the capacity region is given
by

Ri < ln

(
1 +

Pi∑i−1
j=1 Pj + Ni

)
, i = 1, . . . , n (3)

where Ri is the achievable rate for receiver i, to which, the power
Pi ≥ 0 is allocated by the transmitter under the total transmit power
constraint:

∑n
i=1 Pi = P .

Different rates can be achieved by different power allocations in
(3). To increase the total throughput

∑n
i=1 Ri, it is always favorable

to allocate more power to receivers with smaller Ni, as demonstrated
by the following lemma.

Lemma 2.1: For any two power allocation schemes {Pi, i =
1, . . . , n} and {P ′i , i = 1, . . . , n} in (3), where for some 1 ≤ i1 <
i2 ≤ n and ∆ > 0, P ′i1 = Pi1 + ∆, and P ′i2 = Pi2 − ∆, and
Pi = P ′i for any i /∈ {i1, i2}, the following inequality always holds:

n∑
i=1

ln

(
1 +

Pi∑i−1
j=1 Pj + Ni

)
≤

n∑
i=1

ln

(
1 +

P ′i∑i−1
j=1 P ′j + Ni

)
(4)

where “=” holds if and only if Ni1 = Ni1+1 = · · · = Ni2 .
The proof of Lemma 2.1, as well as the proofs of all the

conclusions in this section, are presented in the Appendix.
Obviously, in order to maximize the total throughput, all power

should be allocated to receiver 1, which has the maximum channel
gain |g1|, or the minimum equivalent noise variance N1. However, as
explained in the Introduction, in order to maintain a trade-off between
throughput and delay, we consider the following power allocation
scheme:




max{m} (5)

ln

(
1 +

P1

N1

)
≥ Rmin (6)

ln

(
1 +

Pi∑i−1
j=1 Pj + Ni

)
= Rmin; 2 ≤ i ≤ m (7)

m∑
i=1

Pi = P (8)
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where Rmin > 0 (in nats) is a pre-set minimum rate constraint for
all active receivers.

The reason for setting “=” instead of “≥” in (7) is that once the
minimum rate is satisfied, any redundant power should be given to
receiver 1 in order to maximize the total throughput, as implied by
Lemma 2.1.

A simple algorithm to solve the optimization problem (5)-(8) is as
the following.

First, the maximum m can be determined by recursively defining
P ′i , i = 1, 2, . . ., according to the following equations:

Rmin = ln

(
1 +

P ′i∑i−1
j=1 P ′j + Ni

)
, i = 1, 2, . . . , (9)

until some integer m such that
∑m

i=1 P ′i ≤ P but
∑m+1

i=1 P ′i > P ,
or m = n.

After the maximum m is determined, the optimal power allocation
can be obtained by letting Pi = 0 for i = m+1, . . . , n, and choosing
Pi, i = m, m − 1, . . . , 2 recursively according to the following
equations:

Rmin = ln

(
1 +

Pi

P −∑m
j=i Pj + Ni

)
, i = m, . . . , 2,

and at last, setting P1 = P −∑m
j=2 Pj .

Obviously, with fixed P and Rmin, the maximum number of
active receivers completely depends on the equivalent noise variance
Ni = 1/|gi|2, i = 1, . . . , n. When the channel gains gi obey some
statistical distribution, asymptotic behavior of the maximum m can
be determined when the total number of receivers n becomes large.

For example, consider independent Rayleigh fading channels for
different receivers, i.e., the gains gi, i = 1, . . . , n are independent
realizations of the complex Gaussian distribution CN (0, 1). We have
the following theorem.

Theorem 2.1: Under the assumption of independent Rayleigh fad-
ing channels for different receivers with the gain gi ∼ CN (0, 1),
the maximum number of active receivers m determined by (5)-(8) is
bounded as: for any ε > 0,

P(bν(n)− εc ≤ m ≤ ν(n) + ε) → 1, as n →∞, (10)

where, bxc denotes the maximum integer no greater than x, n is the
total number of receivers, and

ν(n) = ln(P ln n)/Rmin. (11)

Remark 2.1: The probability in (10) converges to 1 at the follow-
ing rates:1

P(m < bν(n)− εc) = o

(
exp

(
− n1−λ

2 + σ

))
(12)

and
P(m > ν(n) + ε) = o

(
n

1− 1
λ(1+σ)

)
(13)

where λ
∆
= e−εRmin < 1, and σ > 0 can be arbitrarily small.

Remark 2.2: Theorem 2.1 states that the number of active receivers
is close to ν(n) with high probability. Actually, for any ε < 1

2
, there

are at most two integers during the range bν(n)−εc ≤ m ≤ ν(n)+ε.
An interesting observation of the equation (11) is that the number of
active receivers will almost double by halving Rmin, with the total
power P and the total number of receivers n fixed.

1As standard notation, o(·) and O(·) have the following interpretations:
for any positive infinite sequences f(n) and g(n), n = 1, 2, . . ., f(n) =

o(g(n)) means lim
n→∞

f(n)
g(n)

= 0; f(n) = O(g(n)) means lim sup
n→∞

f(n)
g(n)

<

∞.

Basically, Theorem 2.1 states a double logarithmic scaling law.
That is, the maximum number of active receivers scales double
logarithmically with the total number of receivers. This is a rather
slow scaling, and is basically determined by the tail of the Rayleigh
distribution. Comparatively, (11) can also be written as

ν(n) = (ln P + ln ln n)/Rmin

which shows that the maximum number of active receivers scales
logarithmically with the total transmit power, and as remarked before,
is inversely proportional to the minimum rate constraint.

According to Theorem 2.1, there are about ν(n) active receivers,
for each of which, a minimum rate Rmin can be achieved. Hence,
the total throughput scales at least as

ν(n)Rmin = ln(P ln n). (14)

It is interesting to compare (14) with the maximum achievable total
throughput when all the power is allocated to the best receiver,
which can be shown (see the Appendix) to be upper bounded with
probability approaching 1 by

ln(1 + βP ln n) (15)

where the constant β > 1 can be arbitrarily close to 1. Obviously, as
n increases, the difference between (14) and (15) decreases to ln β,
which can be made arbitrarily small. The essential reason for such
a negligible difference is that for large n, the gains of the best ν(n)
receivers are very close to each other. It should also be pointed out
that the smaller ln β is, the slower the probability converges to 1, as
can be seen from the proof.

Besides Rayleigh fading, one can also consider Ricean and Nak-
agami fading models. The analytic techniques developed for the
Rayleigh distribution as presented in the Appendix can be similarly
applied. Especially, noting that the scaling behavior only depends
on the tails of the distribution function, both Ricean and Nakagami
fading channels obey the double logarithmic scaling law. The analyt-
ical details are more complicated than the Rayleigh case presented in
this paper and space limitations prevent their presentation here. The
details will appear elsewhere.

III. SIMULATIONS

Consider a system with channel bandwidth of B = 100K Hz.
Then a transmission rate of 100K bits per second is equivalent to
100K/2B = 0.5 bits per real sample, or 1 bit per complex sample
as in model (1).

Figure 1 shows the optimal number of active users versus the total
number of users for both fixed (P = 104, or equivalently, SNR =
40 dB for model (1)) and linearly increasing (P = n, or equivalently,
SNR = 10 log10 n dB) transmit power. The value of ν(n) given by
(11) is also indicated in Figure 1. As shown in Figure 1 and mentioned
in Remark 2.2, the number of active users is almost doubled as Rmin

is halved.
For a further comparison, the optimal number of active users versus

different Rmin for fixed SNR = 40dB and n = 1000 is shown in
Figure 2, where the curve of ν(n) is also drawn.

It is worth explicitly pointing out that the curves drawn in Figures
1 and 2 are single realizations, not the Monte-Carlo averages. This is
consistent with Theorem 2.1, which concludes on most single sample
paths individually, instead of only on their mean. That such a regular
pattern can exhibit for a single sample path is because each sample
path already consists of a large number of independent users. For
further illustration, Figure 3 shows that as n increases, the sample
paths will become more concentrated.
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Fig. 1. The optimal number of active receivers versus the total number of users for model (1) and Rmin = 50, 100 Kbp, (a) Fixed total transmit power:
P = 104, or equivalently, SNR = 40 dB, (b) Linearly increasing transmit power: P = n, or equivalently, SNR = 10 log10 n dB.

APPENDIX

Proof of Lemma 2.1: Obviously, by induction, we only need to
prove the case when i2 = i1 + 1, for which, (4) is equivalent to

i1+1∑
i=i1

ln

(
1 +

Pi∑i−1
j=1 Pj + Ni

)
≤

i1+1∑
i=i1

ln

(
1 +

P ′i∑i−1
j=1 P ′j + Ni

)

which is equivalent to
(

1 +
Pi1∑i1−1

j=1 Pj + Ni1

) (
1 +

Pi1+1∑i1−1
j=1 Pj + Pi1 + Ni1+1

)
≤

(
1 +

Pi1 + ∆∑i1−1
j=1 Pj + Ni1

) (
1 +

Pi1+1 −∆∑i1−1
j=1 Pj + Pi1 + ∆ + Ni1+1

)

which is equivalent to
∑i1

j=1 Pj + Ni1∑i1
j=1 Pj + Ni1+1

≤
∑i1

j=1 Pj + Ni1 + ∆
∑i1

j=1 Pj + Ni1+1 + ∆

which holds obviously for any ∆ > 0 and Ni1 ≤ Ni1+1, where “=”
holds if and only if Ni1 = Ni1+1.

¤
Proof of Theorem 2.1: Consider the broadcast channel (1), with

the independent gains gi ∼ CN (0, 1), for i = 1, . . . , n. For the
equivalent model (2), the noise variance Ni = 1/|gi|2 is of the
following distribution function:

F (y) = P(Ni < y) = P(1/|gi|2 < y) = P(|gi|2 > 1/y)

=

∫ ∞

1/y

e−xdx = e
− 1

y , for y > 0.

For any fixed N0 > 0, we can characterize the number of “good”
channels with the equivalent noise variance Ni less than N0 as the
following.

Let p0 = F (N0) = e
− 1

N0 . Then with probability p0, a channel is
good. Consider a Bernoulli sequence:

xi =

{
1, with probability p0

0, with probability 1− p0

for i = 1, 2, . . . , n. Then the number of good channels has the
same distribution as X =

∑n
i=1 xi, which satisfies the binomial

distribution B(n, p0).
For any integer m ≥ 1, obviously,

P(X ≤ m− 1) =

m−1∑
j=0

(
n

j

)
pj
0(1− p0)

n−j

which, however, is not easy to analyze. But if m − 1 ≤ np0 (this
condition can be verified later for m ≤ ν(n) − ε), we can use the
Chernoff inequality [5, page 70]:

P(X ≤ m− 1) ≤ exp

(
− 1

2p0

(np0 −m + 1)2

n

)
.

Hence,

P(X ≥ m) ≥ 1− exp

(
− 1

2p0

(np0 −m + 1)2

n

)
. (16)

Now, consider the following power allocations for the m best
receivers:

Pi =
c

αm−i
, for i = 1, . . . , m,

where α = eRmin > 1, and c = (1− 1/α)P . It is easy to check that
the total power constraint is satisfied:

m∑
i=1

c

αm−i
= c

1− (1/α)m

1− 1/α
≤ c

1

1− 1/α
= P.

If max1≤i≤m Ni ≤ P/αm, then we have the following uniform
lower bound for the SINRs at all these m receivers: for i = 1,

P1

N1
≥ c/αm−1

P/αm
= α− 1,

and for any i = 2, . . . , m,

Pi∑i−1
j=1 Pj + Ni

≥ c/αm−i

∑i−1
j=1 c/αm−j + P/αm

=
1/αm−i

(1/α)m−i+1−(1/α)m

1−1/α
+ (1/α)m

1−1/α

= α− 1.
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Fig. 2. The optimal number of active users versus the minimum rate for
n=1000 and SNR = 40 dB.

Then obviously, the minimum rate constraint is satisfied for all these
m receivers, since

ln (1 + (α− 1)) = ln α = Rmin.

Next, we show that for any ε > 0, if m ≤ ν(n) − ε,
max1≤i≤m Ni ≤ P/αm holds with probability approaching one as
n tends to infinity. Let N0 = P/αm. Then,

p0 = F (N0) = exp

(
−αm

P

)
≥ exp

(
−αν(n)−ε

P

)

= exp
(−α−ε ln n

)
= n−λ,

where λ = α−ε < 1. Then it is obvious that as n →∞,

1

2p0

(np0 −m + 1)2

n
∼ n2p2

0

2np0
=

np0

2
≥ n1−λ

2
→∞. (17)

Hence, by (16), the probability of max1≤i≤m Ni ≤ αmP approaches
1 as n →∞.

Therefore, we proved that as n →∞, with probability approaching
1, there are at least m = bν(n)−εc good channels with Ni ≤ P/αm,
for which the minimum rate constraint is satisfied.

Next, we prove the upper bound, i.e., m ≤ ν(n) + ε holds with
probability approaching 1.

First, we show that for any δ > 0, for sufficiently large m, the
best receiver should have the equivalent noise variance N1 ≤ Pδ/αm,
with Pδ := P + δ. Otherwise, if min1≤i≤n Ni > Pδ/αm, then by
the minimum rate constraint, i.e.,

Pi∑i−1
j=1 Pj + Ni

≥ α− 1, for i = 1, 2, . . . , m,

we have
P1 ≥ (α− 1)N1 > (α− 1)Pδ/αm,

and inductively, for i = 2, . . . , m,

Pi ≥ (α− 1)
(∑i−1

j=1 Pj + Ni

)

> (α− 1)
(∑i−1

j=1(α− 1)Pδ/αm−j+1 + Pδ/αm
)

= (α− 1)Pδ/αm−i+1,

which violates the total power constraint since
m∑

i=1

Pi >

m∑
i=1

(α− 1)Pδ/αm−i+1 = (1− 1/αm)Pδ > P
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Fig. 3. The histogram of the number of active receivers for Rmin = 50 Kbps,
SNR = 40 dB, and (a) n = 30, and (b) n = 1000.

for sufficiently large m.
Therefore, to show that

P(m ≤ ν(n) + ε) → 1,

i.e.,
P(m > ν(n) + ε) → 0,

we only need to show that

P(N1 ≤ Pδ/αν(n)+ε) → 0.

Let c1 = Pδ and p1 = F (c1/αν(n)+ε). Then, (1 − p1)
n is the

probability that all the receivers have equivalent noise variance greater
than Pδ/αν(n)+ε. Hence,

P(N1 ≤ Pδ/αν(n)+ε) = 1− (1− p1)
n, (18)

which tends to 0 if and only if
(

1− exp

(
−αν(n)+ε

c1

))n

→ 1. (19)
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Since

(
1− exp

(
−αν(n)+ε

c1

))exp

(
αν(n)+ε

c1

)

→ e−1,

(19) holds if

n · exp

(
−αν(n)+ε

c1

)
= n · exp

(
−Pαε ln n

P + δ

)
→ 0, (20)

which holds by choosing δ < (αε − 1)P .
¤

Proof of Remark 2.1: Following the proof of Theorem 2.1,
especially noting (16), to prove (12), we only need to show that
for m = bν(n)− εc,

1

2p0

(np0 −m + 1)2

n
≥ n1−λ

2 + σ
, for sufficiently large n,

which actually follows from (17) with the following modification

1

2p0

(np0 −m + 1)2

n
≥ n2p2

0

(2 + σ)np0
, for sufficiently large n.

To prove (13), noting (18), we have

P(m > ν(n) + ε) ≤ P(N1 ≤ Pδ/αν(n)+ε)

= 1−
(

1− exp

(
−αν(n)+ε

c1

))n

= O

(
n · exp

(
−αν(n)+ε

c1

))

= O

(
n · exp

(
− P ln n

λ(P + δ)

))

= o
(
n

1− 1
λ(1+σ)

)
,

where, σ > 0 can be arbitrarily small, since δ > 0 can be arbitrarily
small.

¤
Proof of the upper bound (15): First, it follows from (18)-(20)

that for any 0 < δ < (αε − 1)P

P(N1 ≤ Pδ/αν(n)+ε) → 0.

Hence,

P(N1 > Pδ/αν(n)+ε) → 1.

Since

Pδ/αν(n)+ε = (P + δ)/αν(n)+ε = (αεP − η)/αν(n)+ε

where η = (αε − 1)P − δ > 0 can be arbitrarily small, the maxi-
mum achievable total throughput is upper bounded with probability
approaching 1 as

ln

(
1 +

P

N1

)
< ln

(
1 +

P

Pδ/αν(n)+ε

)

= ln

(
1 +

Pαν(n)+ε

αεP − η

)

= ln
(
1 + βαν(n)

)

= ln (1 + βP ln n)

where β = αεP
αεP−η

> 1 can be arbitrarily close to 1.
¤
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