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Abstract Motivated by the starvation and overflow of queues, we study du-
ality relations in finite queues when the arrival and service processes are inter-
changed. In particular we study the relations between arrival and departure
Palm distributions and their relations to stationary distributions. We consider
both the case of point process inputs as well as fluid inputs. We obtain in-
equalities between the probability of queue being empty and the probability
of queue being full for both the time stationary and Palm distributions by
interchanging arrival and service processes. In the fluid queue case we show
that there is an equality between arrival and departure distributions. The tech-
niques are based on monotonicity arguments and coupling. The usefulness of
the bounds is illustrated via numerical results.

Keywords Queues - Duality - Point processes - Palm distributions -
Stationary distributions - Fluid

1 Introduction

Explicit results for stationary distributions in finite capacity queueing models
with general arrival and service processes are rare, and yet, as applications
evolve there is the need to move beyond classical Markovian queueing models.
However, in many applications, we are interested in specific measures such as
the overflow probability in finite queues for which there exist many results
under fairly general hypotheses on the input processes via the use of large
deviations or heavy traffic limits as the loading on the queues increases. Re-
cently, motivated by applications in energy systems and multimedia streaming,
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the probability of starvation of finite buffer queues has become the focus of
attention. The probability of starvation corresponds to the probability that
a queue becomes empty, i.e., the end of a busy period. For instance, [1] re-
lates the starvation of storage units in energy systems to the starvation of
finite buffer queues. Similarly, in [19], authors are interested in maximizing
the quality of experience (QoE) of media streaming service by optimizing the
number of prefetched packets in video streaming in order to avoid having pe-
riods of buffer starvation with no packets to playback. A key measure is the
distribution of the number of buffer starvations within a sequence of N consec-
utive packet arrivals and they propose a trade-off between the start-up delay
and the starvation.

Starvation in queues is defined in many ways and different applications
use different notions. Furthermore, due to the nature of applications, different
assumptions on the nature of the queueing models are more appropriate. In
classical queueing models where the arrivals are point processes, the proba-
bility of a departure leaving no customers in the queue and the stationary
probability of queue being empty provide useful information about the star-
vation. Similarly, in a fluid flow model, underflow rate is of interest in most
applications. Unfortunately, explicit results for these quantities are very diffi-
cult to obtain. Moreover, although one can relate the probability of a queue
being empty to the probability of loss in the point process model using

p(l1—=Pr)=1-m(0)

where p is the traffic intensity, Py, is the probability of loss, and 7(0) is the
stationary probability of the queue being empty, this equality is of no practical
use. This is because,in the heavy traffic case, p(1 — Pr) =~ 1 and the bounds
obtained for 7(0) are not very useful. However, motivated by the M/M/1/K
queueing model, it is of interest to relate the starvation probability measures
to the overflow probabilities in a queue with the arrival and service processes
switched since well known and powerful methods that are valid for general
stationary inputs can be exploited especially if we require the starvation prob-
ability to be small. The relationship between these two measures for queues
with arrival and service distributions interchanged are what we refer to as
duality in queueing models. Duality results concerning the stationary queue
length distribution seen at arbitrary times and departure instances, stationary
distribution of workload process, and underflow and overflow rates can be very
useful in studying the starvation of finite buffer queues by relating the quanti-
ties of interest to other known and more tractable quantities. Duality has been
studied in other contexts as for example in risk models [17,2] where the dual
or risk process corresponds to processes with negative jumps and is a dual pro-
cess of the workload process with point process inputs and one of the measures
of interest is the hitting probability to the origin corresponding to bankruptcy.

Let us begin by describing the problem and defining quantities of interest
in our analysis. In this paper, we consider classical queueing models with both
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discrete point process arrivals and fluid queues with continuous arrivals of
work. In this paper the primal queue is assumed to be a G1/G3/1/K and will
be called S1 and its dual is a system in which the inter-arrival times have
the same distribution as the service times in the primal queue and vice versa.
In other words, the dual queue is a G3/G1/1/K queue and denoted by S2.
Let {T'A[n]} denote the arrival times and {Tp[n]} the departure times. Let us
denote the queue length at time ¢ by Q(t), and the queue length at arrival and
departure instances by Qa[n] = Q(Ta[n]) and Qpln] = Qp+[n] = Q(Tpn])
respectively. Let 7w(.) = IP(Q = .) denote the stationary distribution. Let us
denote the event of the arrival of a customer by [AAg = 1], the event of the
departure of a customer by [ADy = 1], and the event of customer entering
the queue by [AQy = 1]. Note that because an arrival might get rejected,
[AQQ = 1] C [AAO = 1] Then, 7TA(TL) = ]PA{QO— = TL} = IP(QO_ = ’IL|AAO =
1), and mp(n) = 7p-(n+ 1) = P(Qo— = n+ 1|ADy = 1) denote the Palm
probabilities associated with the arrivals and departures. In this paper, we
will use mp(.) to denote mp,(.),the Palm distribution just after a departure.
For single server queues with FIFO discipline and finite buffer size of K, the
following relationship holds between the various distributions [3,12].

ma(n)

mp(n) = m (1)
Anm(n) = Aama(n) (2)
pn(n) = Apmp(n — 1) (3)
A7 () = pinam(n + 1) (4)

where \,, and pu,, denote the conditional arrival intensity and conditional de-
parture intensity in state n and A4 and Ap denote the mean arrival rate and
mean departure rate. A\, and p,, are not known in general and difficult to cal-
culate for general input and service distributions. Equation (1) follows from an
argument similar to the one proposed in [12, p.40] for infinite buffer queues.
Note equation (1) holds for all work-conservative disciplines.

For the fluid flow model, we will use a notation similar to [18] and denote
the cumulative input fluid and available processing in interval [0, ¢] respectively
by {C(t) : t > 0} and {S(t) : t > 0}. Let W(t) denote workload at time ¢, K
denote the buffer size of the queue, U(t) £ fot {W(s) = K}d(C(s) — S(s))
denote the overflow process (the amount of flow that is lost up to time ¢),
and L(t) £ fot 1{W(s) = 0}d(S(s) — C(s)) denote the underflow process.
Moreover, let us denote the overflow and underflow rates, respectively by
A = limy_ t71U(t) and v = limy_o, t "1 L(t). Furthermore, as in the point
process model, we will call the primal queue S1 and the dual, which has a
cumulative available processing distributed as the cumulative input fluid in
the primal queue and vice versa, S2.

The concept of duality in queues was first proposed by N.U. Prabhu in [4]
and later discussed in [5]. In [5] a loop cyclic queueing system is described in



4 Nasser Barjesteh et al.

which K customers circulate between two finite buffer queueing systems and
customers that leave one queue enter the other. Since then this notion has
been studied by many authors. These authors have primarily focused on in-
vestigating the relationship between the stationary queue length distribution
of G1/G2/1/K seen at an arbitrary time and its counterpart in G3/G1/1/K,
and very few results are proposed for the relationship between the stationary
queue length distribution seen by arrivals or departures in the above-mentioned
queues. M. Hlynka in [6] showed that (i) = m2(K — i), Vi holds only for a
M/M/1/K queueing system and the equality fails to hold for more general
arrival processes and service times. He showed that there exists a quasi-dual
queue for which the equality holds. The so-called quasi-dual queue has a mod-
ified first service time, meaning that the first service time of each busy period
has a different distribution, and its arrivals stop when the queue is full. The
results of [6] were used in [7] to obtain duality results for queue length dis-
tribution in queueing systems with arrival and service control and in [8] to
compute the loss probability of an overloaded GI/M/1/K queue.

In this paper, we show some new duality results for queue length distri-
bution of queues with more general arrival processes and service times, seen
at arbitrary times and at departure instances. We will also investigate dual-
ity results concerning finite buffer fluid queues. In the sequel the probability
distribution seen at arbitrary times will simply be referred to as the (time) sta-
tionary distribution while the Palm probabilities associated with arrivals and
departures will be called arrival and departure distributions. Our approach is
via monotonicity arguments and coupling whereby we construct processes on
a common probability space to compare them.

The paper is organized as follows. In Section 2 we begin by defining the
interrupted arrival and virtual service disciplines and recall the results of [7]
for duality in queues with such disciplines. We also provide some new results
for queues with a virtual service discipline. Next, we compare the queue length
distribution of a GI/GI/1/K queue under FIFO and interrupted arrival dis-
cipline and use the results to obtain some new relationships (bounds) between
the dual quantities in finite buffer FIFO queues. In Section 2.1, we consider
the special case of M/G/1/K queues and in Section 3, we investigate duality
results concerning finite buffer fluid flow queues in the general case and the
special case of fluid queues with ON-OFF fluid input and constant available
processing. Section 4 presents some numerical results for finite buffer queues
that confirm our results as well how good the bounds are. Section 5 provides
a summary of the results.

2 Duality between overflow and starvation in classical queueing
models

As stated in [6], an exact duality relation in the form 7y (i) = 7o (K — i), Vi
does not hold for queues with general arrivals or service times. The lack of
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equality is because when a queue in empty, its server stays idle and waits for
an arrival, but when the queue is full, the arrival process does not stop and only
the packets that find the queue full at the time of their arrival are rejected. In
other words, the time till next departure from the moment a packet arrives at
an empty queue is distributed as a service time, but the time till next arrival
from the moment a packet leaves the full queue has a residual inter-arrival
time distribution. Thus, if one desires to find an equivalent dual queue i one
must consider queues with controlled arrivals and services as suggested in [7].
We now define two concepts introduced in [7] that are used in this paper.

Definition 1

1. Virtual service discipline: The server does not become idle when the queue
length is zero but starts a virtual service. If an arrival occurs during a
virtual service, then service time of the first arrival is not a regular service
time but the remaining time of the ongoing virtual service. If no arrivals
occur, the server starts another virtual service. In other words, the first
customer served in a busy period receives a special service while the rest
of the customers receive regulars services.

2. Interrupted/Stopped arrival discipline: The arrival stream is turned off
when the buffer is full and turned on when the buffer space becomes avail-
able. Therefore, no customer losses occur and the time till next arrival
from the moment a customer leaves the full queue has an inter-arrival time
distribution, as opposed to a queue with FIFO discipline, in which cus-
tomers are rejected when queue is full and the time till next arrival from
the moment a customer leaves the full queue has a residual inter-arrival
time distribution.

In [7, Thm 1] a duality relation between the queue length distributions of
G1/G2/1/K and G3/G1/1/K with interrupted arrivals is given and in [7,
Lem 1] it is shown that a similar relation holds between the queue length of
S1 seen at arrivals and the queue length of the dual at departure instances. In
[7, Thm 2], it is shown that a similar duality relation holds for the stationary
queue length seen at arbitrary times for queues with a virtual service disci-
pline. The paper does not discuss the queue length seen at arrival or departure
instances.

Here in Theorem 1 , we will recall the results in [7] and provide a duality
relation between the queue length of S1 seen at departure instances and the
queue length of its dual at departure times.

Theorem 1

1. Let s1 denote a G1/G2/1/K queue with an interrupted arrival discipline,
and s2 a Go/G1/1/K queue with the same discipline. Then, the corre-
sponding stationary and Palm distributions at departure times distributions
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satisfy:
Ts1(i) = T2 (K — i) , VO<i < K (5)

and
ﬂpsl(i):ﬂAsz(K—l—i):ﬂ'DSQ(K—l—i),VOSiSK—l (6)

2. Similarly, let v1 denote a G1/G2/1/K with a virtual service discipline and
v2 a G3/G1/1/K with the same discipline. Then,

o1 (i) = Mo (K — i) , Y0 <i<K (7)
mp, (i) =mp,(K—1—4) , V0O<i<K—1 (8)

Proof Equation (5) and the left hand side equality of (6) are essentially the
results presented in Theorem 1 and Remark 1 of [7] and do not need proof.
Since queues with interrupted arrival discipline do not reject arrivals, similar
to infinite buffer queues, w4, (m) = mp_(m) for all m. Hence, we obtain the
right hand side equality of equation (6).

Although equation (7) has been shown in [7], we provide a similar proof based
on coupling alongside equation (8), which is new and used subsequently. Imag-
ine system vl is in tandem with some other queueing system with virtual ser-
vice discipline that we will call system 2’. Moreover, the sum of the number
of customers in the two tandem queues is K. Therefore, customers that arrive
at system vl and are accepted correspond to the departures of system 2'.
Moreover, we enforce that the customers that are rejected in system vl cor-
respond to virtual departures (the instances in which virtual service times
finish) of system 2’ and vice versa. Hence, inter-arrival times of system vl
are distributed as service times of system 2’ and vice versa. Then, since
Qu1(t) + Q2 (t) = K, mp1(i) = m (K — i) for all 0 < ¢ < K. Moreover,
Tp,, (1) = ma,, (K —1—1i|AQo =1) 0 <i < K — 1. Hence,

A, (K —1—1)

S, ()
Ta, (K —1—14) ma, (K—1-1)

T l—ma,(K)  1-P )

D, (1) = Ta, (K —1—ilAQ = 1) =

and vice versa. Substituting equation (1), that holds for all work conserving
disciplines, into equation (9) results in 7p, (i) = 7p,, (K — 1 — i) for all
0 < i < K—1. Next, notice that the inter-arrival and service times of system v2
are distributed as their counterparts in system 2'. Thus, systems 2’ and 2 are
stochastically equivalent. Hence, equations (7) and (8) hold for any distribution
of G1 and Gs. a

Remark 1 The above proof does not require the inter-arrival and service time
distributions to be independent and hence holds for stationary queues with
general stationary arrivals and services that could be state-dependent.
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As stated before, an exact duality theorem (in the form of an equality) does
not exist for FIFO queues with general arrival processes and service times. This
is because of the lack of symmetry between the arrivals to a full queue (that
are lost) and lack of departures from the empty queue. Theorem 1 suggests
that a duality relation is possible if we alter the behaviour of the queues when
they are full [empty] to resemble the behaviour of their duals when they are
empty [full] by using an interrupted arrival [virtual service| discipline.

We now provide a comparison between the queue length distribution of a
G1/G2/1/K queueing system with interrupted arrival or virtual service disci-
pline with a G1/G2/1/K queueing system with FIFO discipline via stochastic
majorization.

In the sequel, when use the notation X < [>s:] Y to denote stochastic dom-
inance, i.e. X is stochastically smaller [greater| than random variable Y if
P{X > a} < [>]P{X > a} Va > 0.

Theorem 2 Let queue-I denote a G1/G2/1/K queue with interrupted ar-
rivals and queue-I1 denote a G1/G2/1/K queue also with interrupted arrivals.
Let RAIngl denote the time till next arrival from the moment a customer
leaves the full queue and let A be a random wvariable that is distributed as
reqular inter-arrival times of the arrival process of system I.

1. IfRAngfl <st A, then
P{Qp,[n] <i} < P{Qp,[n]<i} , VO<i<K-1  (10)
P{Q:(t) <i} < P{Qu(t)<i} , VO<i<K (11)

2. Conversely, if R K1 >st A, then

AlQ
P{Qp,(t) <i} = P{Qp,(t) <i} , VO<i<K-1  (12)

P{Qi(1) <i} > P{Qu() <i} , V0<i<K (13)

Proof Let us denote the counting process associated with the arrivals by G 4(t),
the counting process associated with the departure process by Gg(t), the prob-
ability distribution of a given stochastic process B(t) by L(B), the service time
of the n-th accepted customer by S[n], the length of the inter-arrival time at
the end of which the n-th accepted customer arrives at the queue by Aln],
queue length at the time of the n-th accepted customer by @Qa/[n], and the
residual inter-arrival time at time ¢ by Ralt].

The argument is similar to the argument presented in [10, Thm 1]. We con-
struct two new queueing systems on the same probability space such that
Qp, [n] > QDII[n] for all n, L(QDI) = L(QDI)’ and L(QDII) = L(QDII)' To
do this, use any arrival and service processes for system I such that L(G4,) =
L(G,,) and L(Gs,) = L(Gs,) and by construction, take A;;[n] = A;[n] if
Quay[n] < K —1, Arsln] > Ag[n] if Q4 [n] = K — 1, and Sy[n] = Si[n] for all
n.

Let us show that if a proper starting point is assumed for the queues, this
construction guarantees that for all n, either Qp,[n] > @p,,[n] or @p,[n] =
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Qp,,[n] and R4, (Tp,[n]) < Ra,,(Tp,,[n]). Let us use mathematical induc-
tion and show that if the above property holds for n, it holds for n + 1, as
well. Consider ¢;[n] = Tp,[n + 1] = S;[n], which is equal to Tp,[n] if and only

1fQD[]>O IfQD[]fo Ql(l[ ]) =1 and Ra,(t [])71[ +2]. It is
straight forward to show that the above  property holds at t = t;[n]. Thus, for

any 0 < ¢ < Si[n + 1] we have either Q[(TDI[ | +t) > QH(TDH[ | +1t) or
QI(TDI[ l ) = QII(TDII[ ] + t) and RAI (TDI[ ] + t) < RAII (TDII [n] + t)
because A;[n] < Ar[n] and S;[n] = S;;[n]. Hence, the property holds for
n+ 1, as well. Therefore, Qp,[n] > Qp,,[n] for all n. Thus, 1{Qp, [n] < j} <
1{Qp,,[n] < j}. From the finiteness of the queues and the strong law of large
numbers, we conclude that P{Qp,[n] < i} < P{Qp,,[n] < i}; meaning that
equation (10) holds.

Furthermore for m > 0, we have

Tp,[n+1] ti[n]
/~ 1{Qi(s) > m}ds :/ 1{Qi(s) > m}ds

Tp,[n] Tp,[n]

TDi [n+1] _
+ / 1{Qi(s) > m} (s)ds

i[n]
Where ff”[n[]n] 1{Q:(s) > m}ds = 0, f“[n] 1{Q(s) > m}ds > 0, and
II

ITDII [n+1] ]l{@[[(s) > m}ds < ftl[nf][”ﬂ] 1{Q:(s) > m}ds. Therefore,

trr[n]

T, n+1] Tp,[n+1]
/~ 1{Qr1(s) > m}ds < /~ 1{Q:(s) > m}ds VYn>1

TDII [TL] TD[ [TL]

Hence,

ED[/O h HQri(s) > m}ds] < ED[/O o 1{Qr(s) > m]ds}

Where T, is the stationary inter-point time of ()p,. Moreover, since Tp aln+
1] = Tp,,[n] > Tp,[n + 1] — Tp,[n] for all n, Ep[Tph,,] > Ep[Tp,]. Thus,
Ap;; < Ap,, where Ap, is the mean rate of (Jp,. Using the Palm inversion
formula introduced in [12], we obtain that

Tpy,
]P{QII > m} = E[]].{QII > m}] = )\D” IE)D[‘/0 ]].{Q[[(S) > m}ds]

< b, .IED[/O " 1{Qi(s) > mYds] = B1{Q1 > m}] = P{Q; > m}
Thus,

]P{Q[[ Sm}zl—IP{QH >m} > I—P{Q[ >m}:]P{Q1 Sm}

Hence, equation (11). Proof of part 2, follows in a similar manner. O
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Now, we investigate the relationship between the residual inter-arrival time
R ygx—1 and the inter-arrival time under the Palm distribution. Let us denote
the residual inter-arrival time seen by a departure that leaves i customers in
the queue by R AlQY and the residual service time seen by an arrival that
finds ¢ customers in the queue by RS‘QZA . To the best of our knowledge, the
distribution of the residual times defined above, for queues with general arrival
processes and service times is unknown. In fact, according to [13], one can
extract the queue length distribution of a GI/GI/1/K queueing system if one
can calculate E[Rq: | and E[Rg|qs ]. The residual life of a renewal process
seen at arbitrary times has been well studied and the ratio of the expectation of
the residual life to the expectation of a regular inter-point time is a function of
the coefficient of variation (C) of the inter-point times, see [5,12,?] for example.
For C <1, the mean residual life is less than or equal to the mean inter-point
time and for C' > 1, the opposite. One can even compare the random variables
in the stochastic ordering sense. There are no general stochastic orderings
available for the residual life and they depend on the form of the distribution,
i.e. whether it is more or less variable than the exponential case. In order to
do so, we need the following stochastic orders [15].

Definition 2 [15]

1. The random variable X is IFR if and only if, [X —¢|X > t] > [X —t1]X >
t1] whenever ¢t < t; and X is DFR if and only if, [X — ¢|X > t] <
[X —t1|X > t1] whenever t < t;. 1

2. The non-negative random variable X is NBU if and only if X > [X —
t|X > t] for all t > 0 and X is NWU if and only if, X < [X —t|X > ¢
for all t > 0.2

According to the definition, IFR [DFR] random variables are a subclass of
NBU [NWU] random variables.

We have the following result.

Theorem 3 If the inter-arrival times in a GI/GI/1/K queueing system are
NBU [NWUJ, the residual inter-arrival time RAlQK—l is stochastically smaller
D

[greater] than a regular inter-arrival time.

Proof Let us denote the distribution of the backward recurrence times of the
arrival process at the instances of interest by Fp,(x) = P{B4s < z}, and
the distribution of the inter-arrival times by Fa(z) = P{A < xz}. Then if
RA‘ngl Sst A;

P{R4 zx}:/ P{R4 > x,B4 = a}da
0

= / P{R4 > z|Ba = a}P{B4 = a}da
0

1 By IFR [DFR], we mean Increasing[Decreasing] Failure Rate
2 By NBU [NWU], we mean New Better[Worse] than Used
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oo

_ /OO P{A— By >a|A > a}P{Ba = a}da < / P{A > 2}P{B4 = a}da
:P{Azx}-/OOIP{BA ~ a}da = P{A > 2}

The proof of R QK >4 A for NWU inter-arrival times follows similarly. O
D

Combining the above results, gives us the opportunity to compare the
queue length distribution of a GI/GI/1/K queueing system with the queue
length distribution of its dual under certain conditions on the inter-arrival and
service time distributions.

Theorem 4 Let us call G1/G2/1/K as system 1 and the queue Go/G1/1/K
as system 2. The following properties hold,

1. If the inter-arrival and service times are NBU, then

K-1
IP{QDI < Z} - ZWD1 = Z T Dy (j)
j=K—-1—1i
:IP{QDZ()EK—l—zL VO<i<K-—1 (14)

and

P{@:1(t) <i} = Zm < > m())

K3

:P{QQ()EK—Z}, vzogisK (15)

2. If the inter-arrival and service times are NWU, then

]P{QDI < Z} - Zle ) 2 Z 7TD2

j=K—-1—3
:]P{QDQ()ZKflfl}, VO<i<K-1 (16)
and
K
P{Q:.(t) <i} = Zﬂl > Y m())
j:K %
:P{Qz()zKﬂ}, VO<i<K (17)

Proof The proof is straightforward. We will prove part 1 and part 2 follows
similarly. Assume there exists a G1/G2/1/K queue with interrupted arrival
discipline that we will call system 1’ and a G3/G1/1/K queue with interrupted
arrival discipline that we will call system 2. Using Theorems 2 and 3 for the
primal queue, we have
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P{Q:(t) <i} < P{Qv(t)<i} , VO<i<K
Similarly, for the dual queue, we have

P{Qp, () <i} < P{Qp,(t)<i} , VO<i<K-—1

P{Qa(t) < i} < P{Qu(H) <i} ., VO<i<K,

Moreover, Theorem 1 asserts that

[ K-1
P{Qp, (t) <i}=> 7p,()) = > 70,
j=1 j=K—-1—i

—P{Qp,(t) > K —-1—i}, YO<i<K-1

and

i K
P{Qu() it =3 mG) = > m())
=P{Qy(t)> K —i}, Y0<i<K

Substituting the equations resulted from Theorems 2 and 3 into the result of
Theorem 1, concludes the proof. a

Corollary 1 Theorem 4 relates P{Q1(t) < i} to P{Q2(t) > K —i}. Using
Z;iOIP{Q(t) = j} = 1, we can extract the same result for P{Q2(t) < i}
and P{Q(t)y > K — i}. The same holds for the queue length distribution at
departure instances.

Corollary 2 A special case of Theorem 4, i = 0, results in Ps, = wp,(0) <
T, (K — 1) and m1(0) < mo(K — 1) for NBU inter-arrival and service times.
The opposite holds for NWU inter-arrival and service times. Such bounds are
very helpful in studying the starvation of finite buffer queues.

Since a exact duality theorem in the form of an equality does not hold for FIFO
queueing systems with general arrival and service times, we have combined the
duality relations introduced in Theorem 1 and stochastic orders to get some
useful bound for the queue length distribution of a FIFO queueing system.

Remark 2 Though the relations proposed in Theorem 4 only hold for two spe-
cific classes of inter-arrival and service times, they encompass many common
models such as queues with deterministic, uniform, Erlang-K , and exponential
inter-arrival and service times. Moreover, the exponential random variable is
the only random variable that is both NBU and NWU. Hence, in M/G/1/K
queues, we need only consider the service time distribution.
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2.1 M/G/1/K

In this section, we consider a M/G/1/K queueing system as an example.
Instead of using the duality result of queues with interrupted arrival discipline,
we will prove a theorem similar to Theorem 2 for the special case of queues
with Poisson arrivals.

Theorem 5 Let system I be a M/G/1/K queue with FIFO discipline, and
system IT a M/G/1/K with virtual service discipline. Let Rg|qo, denote the
service time of the first customer of each busy period in system II and let a
reqular service time be denoted by S.

1. IfRS|Q?4 Sst S, then
P{Qp, (t) <i}
P{Q(t) < i}
2. Conversely, if RS‘Q% >st S, then
P{Qp, (t) <i}
P{Q:(t) < i}

Due to PASTA property introduced in [16], a similar result holds for the queue
length distribution seen at arrival instances.

P{Qp,, (t)<i} , VO<i<K -1 (18)
P{Q(t)<i} , VO<i<K (19)

P{Qp, () <i} , YO<i<K—1 (20

>
> P{Qut)<i} , VO<i<K (21)

Proof We will prove part 1 and the proof of part 2 follows similarly. The
argument is similar to Theorem 2 and we will use the same notation. We will
construct two new queueing systems on the same probability space such that
the distributions of the arrival and service processes of the primal queueing
systems are preserved. Use any arrival and service processes for system I such
that L(G4,) = L(G4,) and L(Gs,) = L(Gg,). We will propose a construction
for system II that ensures that Qp,[n] > Qp,,[n] for all n. Let us use
mathematical induction. We assume that Qp,[k] > Qp,,[k] for k < m and
we want to prove that Qp,[m+1] > Qp,,[m+1]. If Qp,,[m] > 0, we choose
the (m + 1)-th service time of system II equal to the one in system I. Since
arrivals are Poisson and exponential random variables are memoryless, we can
construct the same arrivals for system II during the (m + 1)-th service time.
Hence, Qp,[m+1] > Qp,,[m+1]. On the other hand, if Qp,,[m] = 0, because
the exceptional first service time is assumed to be stochastically smaller than
a regular service time, we will choose a service time with a length less than
or equal to the length of the service time of system I for system II. Then,
because exponential random variables are memoryless, the number of arrivals
during the (m + 1)-th service time of system II will be less than or equal to
the number of arrivals in system I. Thus, Qp,[m+1] > Qp,,[m+1], meaning
that equation 18 holds.

For proving equation 19, we will use a result proposed in Theorem 1 of [9]. Let
us denote the epochs that the k-th arrival comes to enter the system by Ay, the
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epochs that the k-th admitted customer is admitted by By, and the probability
of loss by Pr. Since the arrival processes of the above-defined systems are
the same, for every sample path of system I, there exists a sample path of
system II that satisfies Ay, = Ay,,. Moreover, Theorem 1 of [9] suggests that
for the above-mentioned systems, By, > By,,. Hence, we have Pr, > Pr,,.
Therefore,

P{Qa,(t) <i} = (1 - Pr,) - P{Qp, (t) < i}
< (1 - PLII) : IP{QVDU (t) < Z} = ]P{QAII (t) < Z}

Using the PASTA property and the fact that the queue length distributions of
the constructed and primal queues are the same, we obtain equation (19). O

Thus, duality results of both the interrupted arrival discipline and the virtual
service discipline can be used to extract bounds for finite buffer FIFO queues.
Next, we propose a bound similar to the one introduced in Theorem 4.

Corollary 3 Let queue 1 be a M/G/1/K queue and its dual GI/M/1/K be
called system 2.

1. If service times of the M/G/1/K queueing system (G) are NBU,

K-—1
P{Qp, (t <Z}—Z7TD1 < 7D, (J)

j=K—-1—i
ZIP{QD2<)ZK—1—Z}, VO<i<K-—1 (22)

and

P{Q1(t) <Z}—Z7T1 < Z m2(4)

—1i

=1P{Q2()2K—Z}7 VO<i<K (23)

2. If service times of the M/G/1/K queueing system (G) are NWU,

1

K-
P{Qp, (t <Z}—Z7TD1 > > 70,0
K

:IP{QDQ()ZK—l—z}, VJ S’L;K—l (24)
and
K
P{Q:(t) < i} = Zm > Y m())
j=K—1i
P(Qu) > K-}, VO<i<K (25)

Proof We omit the proof since it is similar to Theorem 4. O
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So far using the duality relations for queueing systems with interrupted arrival
and virtual service discipline and stochastic orders, we have found some rela-
tions between the queue length distribution of a finite buffer FIFO queueing
system with NBU or NWU inter-arrival and service times and the counterpart
in its dual. Next, we will consider fluid flow queues and study duality results
in such finite buffer queues.

3 Fluid Flow Model

In this section, we will consider duality results concerning finite buffer fluid
flow queues and relate the workload distribution of a queue, which we will
call system 1, with cumulative fluid input C;(¢) and cumulative available
processing Sp(t) to the workload distribution of a queue, which we will call
system 2, with cumulative fluid input C(t) ~ S1(¢) and cumulative available
processing Sa(t) ~ C1(¢). Then, we will show an interesting relation between
the overflow and underflow rates and processes of the queues defined above.
In the end, we will propose a duality result concerning fluid flow queues with
ON-OFF fluid input and constant available processing. To analyse fluid queues
we need the notion of a fluid Palm measure. see [3,12] for details.

Proposition 1 Let us denote the fluid Palm measure of the remaining work-
load of a finite buffer fluid flow queue, associated with fluid input and output
of the queue, respectively by P 4{W < z} and Pp{W < x}. Also, let us denote
the fluid Palm measure associated with the fluid input that entered the queue
by P {W < x}. Then,

Ps{W <z} <Pa{W <z} =Pp{W <z} (26)

Proof By changing equation 2.41 of [12] to fit a finite buffer queue, we obtain
the following results, in which C} is the cumulative fluid input that has entered
the queue up to time t.

FOWL) = F(Wo) + / P W)L{W, > 0}d(C, — S,)

Taking the expectation of both sides, we obtain

B{f(W))} = B{f(Wo)} + T / FW)L{W, > 0}d(C, — 5.}

Hence,

= W)L, > 0}d(C] — 5.)} =0
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Then,
t t
]E{/O FWIL{W, > 0}dC"} = IE{/O FWIL{W, > 0}dS.)
By taking f/(W) £ 1{W > x}, we have

1 1
t.E{/ {W, > 2}dC"} = ME{/ 1{W, > 2}dS,}
0 0
Hence,
YT IPA/{WS > :L‘} =Ap - IPD{WS > IE}

And since the queue is stable, the rate of the input that is accepted to the
queue equals the output rate. In other words, A4 = Ap.

IPA/{WS > Qf} = IPD{WS > l‘}

The left hand side inequality follows from the definition of fluid Palm measure
in equation 1.22 of [12]. Fluid input A is the sum of the fluid input that entered
the queue A’ and the portion of fluid input that is lost. The portion that is
lost only sees the full queue. Hence, according to the definition of fluid Palm
measure, the fluid Palm measure of {W < z} for any « < K associated with
the fluid input is less than or equal to the fluid Palm measure associated with
the fluid input that enters the queue. a

The result of Proposition 1 resembles the relation between the queue length
distribution at arrival and departure instances of a finite buffer queue when
using the point process model.

PA{Q < i}
1-Pa{Q =K}

where, the left-most term is the queue length distribution at arrival instances,
the term in the middle is the queue length distribution at the instances of
arrivals that enter the queue, and the right-most term is the queue length
distribution at departure instances. Then we can show the following duality
results for general fluid flow queues.

Pu{Q<i} < Pa{Q<i} 2 — Pp{Q<i},Vi<K

Theorem 6 Let us call the fluid queue with cumulative input C1(t) and avail-
able processing S1(t) system 1 and its dual with cumulative input Ca(t) ~ S1(t)
and available processing Sa(t) ~ C1(t), system 2. Then,

P{W:(t) < 8} = P{W>(t) > K — 3} (27)
Pp{Wi(t) < 8} =Pp{Wa(t) > K — 3} (28)
PA{Wi(t) < B} < Pa{Wa(t) > K — 3} (29)

P{Ui(t) < a} = P{L2(t) < a} (30)

(31)

v = tlirgot_lLl(t) = tllrgot—lUQ(t) = /Ay
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Proof Let us use the ”role inversion” model introduced in [5] and later used
in [6]. This model inverts the roles of a customer and an empty space in
finite buffer queues. In other words, empty buffer spaces of system 1 can
be thought of as the occupied spaces (customers) in a second queue, which
we will call system 1’, and vice versa. The input fluid to system 1 is the
available processing for system 1’ and vice versa. Thus, systems 1’ and 2 are
stochastically equivalent, meaning that their remaining workloads have the
same distribution. Therefore, since remaining workload of systems 1 and 2
are related as Wi(t) = K — Wy (t), for every sample path of system 1, there
exists a sample path of system 2 that satisfies Wi (t) = K — Wa(¢), hence
equation (27).

Note that when system 1 is full, the fluid input sees a full system with a rate
equal to the instantaneous fluid input rate® but the fluid output of system 1’
sees an empty queue with a rate equal to the instantaneous rate of its fluid
input, which is less than or equal to the instantaneous available processing
because system 1’ is empty. Thus,

Pa{Wi(t) < B} =Pp{Wu(t) > K - 3}

Using Theorem 1 and the fact that systems 1 and 2 are stochastically equiv-
alent, we obtain (28). Moreover, using equation (28) and the inequality of
Theorem (1), we obtain (29).

Based on the definition of underflow and overflow processes and the role in-
version model, Uy(t) = Ly/(t). Then, since systems 1’ and 2 are stochasti-
cally equivalent, for every sample path of the overflow process of system 1,
there exists a sample path of the underflow process of system 2 that satisfies
Ui (t) = La(t) and vice versa. Hence, we obtain (30) and (31) follows by defi-
nition of the rates. O

In some cases, it is of interest to compare the fluid Palm measure of the
remaining workload associated with the input of the primal queue with the
fluid Palm measure associated with the output of its dual. Corollary 4 studies
this relation.

Corollary 4 For systems 1 and 2 defined in Theorem 6, we have
Pa{Wi(t) = K — 8} > Pp{W>(t) < 8} (32)

Proof Substituting the inequality proposed in Proposition 1 into equation (28)
results in

Pa{Wi(t) < B} < Pp{Wa(t) > K — 3}

Since this inequality holds for all values of 3, it also holds for 3’ = § — 2

n’

where ¢ is some positive real number that satisfies 3 — % >0 for alln > 1.

3 the rate is the derivative of Cy
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Since the sequences of events {Cy,} £ {W1(t) < 3— 2} and {D,,.} £ {Wa(t) >
K- (- %)} are increasing,

PA{|J Cn} = lim P, {Cy}

n=1
Pp{|J Dn} = lim Pp{D,}
n=1

By substituting this into the inequality above, we obtain

IPA{Wl(t) < ,3} = IPA{Uzozl Cn} = lim,, oo IPA{Cn}
=lim,, oo Pa{Wi(t) < B — 2}

and

Pp{Wa(t) > K — (8- 2)} = Pp{U;Z, Dn} = lim, oo Pp{Dy}
= limy, oo Pp{Wa(t) > K — (3 — 2)}

Let us define sequences of real numbers a, = Po{W;(t) < 3 — %} and
by, £ Pp{Ws(t) > K — (8 — £)}. Since a, < b, for all n > 1, their limit

must follow the same ordering, meaning that lim, ., Pa{W1(¢) < 5 — %} <
limy, oo Pp{W2(t) > K — (8 — £)}. Hence,

IPA{Wl(t) < ﬂ} < IPD{WQ(t) > K — ﬁ}
Then,

Po{Wi(t) > 8} =1—=Ps{Wi(t) < B} > 1 -Pp{Wy(t) > K — 5}
= Pp{Wa(t) < K-}

By interchanging 8 and K — (3, we obtain equation (32). O

Remark 3 In Theorem 4, duality relations for point process inputs are given
by inequalities, while theorem 6 relates the remaining workload distribution of
a fluid queue to the remaining workload distribution of its dual via an equality.

Finite buffer fluid queues with an ON-OFF fluid input and constant avail-
able processing have received much attention recently due to applications
in modern communication systems and energy systems. We will study these
queues as a special case of the more general fluid input case. Before doing so, let
us define a few new quantities. Define the loss event L, to be the event that the
fluid queue is full and the instantaneous input rate is greater than the instan-
taneous available processing. In other words, {L} = {W(t) = K} N{C(¢¥) >
S(t)}. Similarly, define the starvation event S to be the event that the fluid
queue is empty and the instantaneous input rate is less than the instantaneous
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available processing. In other words, {L} = {W(¢) = 0} ({C(t) < S(t)}. The
loss and starvation rates are define as follows.

. 1 t U@

R 2 i o /0 Lw(s) € LH(C() = 8() = Jim e (33)
2 lim 1 t w(s s) = C(s)) = lim @

R i, 5 J, Moo € SHUSE) —Cl) = Jim 5l 30

In other words, the loss rate is the long run portion of the lost input and the
starvation rate is the long run portion of the unused (lost) processing.

Theorem 7 Consider two ON-OFF fluid queues with constant available pro-
cessing and call them systems 1 and 2. Denote the ON periods, OFF peri-
ods, input rate during the ON period, and the constant available processing
of system i by A;, B;, H;, and C;, respectively. Moreover, assume As ~ By,
BQ ~ Al, H2 == H1 and CQ == H1 - Cl. Then,

P{W1(t) < B} = P{Ws(t) = K — (3} (35)
P{U1(t) < o} = P{Ly(t) < a} (36)
v = lim t7 L (1) = Jim t7 UL (1) = Ay (37)

H, - C . E[A;] + E[Bi]
H,y E[A4]
Notice that a relation similar to equations 28 and 29 does not hold for the

aforementioned queues.

RL1 S : RSQ (38)

Proof From Theorem 6, dual of system 1 is a fluid queue with a constant
input of C7 and an ON-OFF available processing with ON and OFF periods
distributed respectively as A; and B; with a constant available processing
during the ON periods of H1. We will call the dual queue, system 3. Now, let us
define a third queue, which we will call system 2, with an ON-OFF fluid input,
constant input rate during the ON period, and a constant available processing
such that Wy (t) = W3(t). For this to hold, the third queue must be ON when
the available processing in the dual queue is OFF and vice versa. Furthermore,
constant available processing and input rate during the ON periods in the
third queue must respectively be equal to H; — C; and C to ensure that
the two queues have the same remaining workload processes. Hence, based on
Wo(t) = W3(t) and equation (27), the relation (35) follows. Moreover, since
systems 2 and 3 both overflow at an instantaneous rate of C; and underflow at
an instantaneous rate of H; — Cy, and Wy(t) = W5(t), we have Lo(t) = L3(t)
and Us(t) = Us(t). By substituting this into equation (30), we obtain equations
(36) and (37).
Based on the definition of system 2, we have

E[S:(t)]  (Hi—Ci)-t  Hy—C E[A)]+E[B] (39)

] BTN < 5 MR E[41]
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Then, since Ls(t) = L3(t), by the definition of the starvation and loss rates,
we have
H, —Ci1 E[A] +E[Bi]

RSL; = H1 : E[Al] : RSQ (40)

Moreover, using equation (30) and the fact that C1(¢t) = S3(¢), because they
are duals, we obtain Ry, = Rg, and hence (38).
O

Using the above equation, we can translate the problem of finding the
overflow /underflow rate of a fluid queue with ON-OFF input and constant
available processing to the problem of finding the underflow/overflow in an-
other fluid queue. We can thus generalize the theorem to fluid queues with
bounded fluid inputs. We define a bounded fluid input process to be a fluid
process in which the derivative of the cumulative input is bounded. In other

dc(t)
words, =~ < M.

Corollary 5 Consider two fluid queues with constant available processing and
fluid inputs bounded by the value of M and call them systems 1 and 2. More-
over, assume that Co(t) ~ M-t —Cy(t), S1(t) = C-t, and S3(t) = (M —C)-t.
Then,

P{W1(t) < B} = P{Wa(t) > K — B} (41)
P{Ui(t) < a} = P{Ly(t) < a} (42)
vy = tlig)lo tilLl(t) = tllglo tilUQ(t) = A2 (43)

Proof Similar to Theorem 7, the dual of system 1 is a fluid queue, which we will
call system 3, with cumulative fluid input C5(t) = S1(¢) = C-t and cumulative
available processing S3(t) = C1(t). Now, let us define a third queue, which we
will call system 2', with constant available processing such that Wy (t) =
Wi5(t). For this to hold, we must have Co/(t) = M -t — S3(t) = M -t — Cy(t)
and Sy (t) = (M — C) - t. Based on Wa (t) = Ws(t), and equation (27), we
obtain P{W1(t) < 8} = P{Wa(t) > K — }. Moreover, systems 2’ and 2
are stochastically equivalent. Hence, we obtain equation (41). Moreover, since
Ca(t) =M -t —S5(t), Sor(t) = (M —C) - t, and Cs(t) = C - t, systems 2" and
3 overflow and underflow at equal instantaneous rates. Thus, Lo/ (t) = L3(t)
and Uy (t) = Us(t). By substituting this and the fact that systems 2’ and 2
are stochastically equivalent into equation (30), we obtain equations (42) and
(43).

O

This result can be particularly helpful in queues that have a fluid input with a
finite number of states (the state of the input can be dependent on an external
chain) and constant input rate during each state.
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4 Numerical Results

In this section, we present numerical results for a few finite buffer models, and
investigate the tightness of the bounds that have been obtained.

4.1 Point Process Model

We consider four different NBU random variables for the inter-arrival and ser-
vice times of the finite buffer queues. IN particular we consider exponential,
deterministic,uniform and bimodal random variables. The first three are NBU
while bimodal random variable is not NBU for all values of its CV*%. Hence,
its parameters are chosen such that they ensure that the random variable is
NBU. Tables 1 and 2 present the numerical results for the queue length distri-
bution seen at departure instances of a finite buffer queue with a buffer size of
10 and Table 3 exhibits the numerical results for the stationary queue length
distribution seen at an arbitrary time for a queue of the same buffer size.
Since the inter-arrival and service times of all queues are NBU, queue length
distributions of the primal and dual FIFO queues must satisfy equations (24)
and (25). Since the values in the second columns of the tables are less than
or equal to the values in the corresponding third columns, the aforementioned
equations hold true. Moreover, the numerical results show that the bounds are
tight.

One of the primary uses of the results presented in section 2 is bounding quan-
tities such as 7(0) = P{Q = 0} and 7p(0) = Pp{Q = 0}, that characterize
the starvation of finite buffer queues, by more well-known quantities of its
dual. According to Theorem 4, we can find upper or lower bounds for 7(0)
and 7p(0) of some finite buffer queueing systems using 7(K) and 7p (K — 1)
of their duals. Table 4 provides some numerical results for 7(0) of a D/M/1/K
and 7(K) of its dual, M/D/1/K, where K = 10. Let us call the D/M/1/K
and M/D/1/K queueing systems systems 1 and 2, respectively. From to the
PASTA property, mo(K) = Pa{Q2 = K} = Pp,. Therefore, since numerous
results for computing the probability of loss of finite buffer queues especially
in the case of queues with Poisson arrivals are already well known in the litera-
ture, we can find tight bounds for 71 (0). Similarly, we can obtain a lower bound
for w(0) of a queueing system with NWU inter-arrival times and exponential
service times using the probability of loss of its dual.

4.2 Fluid Flow Model
Now, let us present the numerical results for a finite buffer fluid flow queue.

Figure 1 depicts the normalized fluid Palm measure of the remaining workload
associated with the input in a finite buffer fluid queue with ON-OFF input

4 coefficient of variation
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Table 1 Queue length distribution seen by departures in the primal and the dual queue -
U/B (U and B stand for uniform and bipolar distributions) - with an accuracy of 106

U/BJ1/10, p=0.3 BJUJ/1/10, p = 3.33
P{QL(t) <0} | 0.832274 | 0.88759 | P{Q%(¢) > 9}
P{QL(t) < 1} | 0.981835 | 0.989923 | P{Q%(t) > 8}
P{QL(¢) < 2} | 0.998573 | 0.999213 | P{Q%(
P{QL(t) <3} | 0.999875 | 0.999944 | P{Q%(
P{QL(t) <4} | 0.999991 | 0.999997 | P{Q%(

3 <5} | 0.999995 | 0.999998 IP{Q%E
) (
) (
) (

I 2

<6}
<7} 1 1

P{QL(H <8} | 1 T [Py
<9} 1 1

Table 2 Queue length distribution seen by departures in the primal and the dual queue
(M/D) with an accuracy of 1076

D/M/1/10 , p = 0.769 M/D/1/10, p = 1.3
P{QL,(t) <0} [ 0.001862 | 0.002845 | P{Q%(t) > 9}
P{QL () <1} | 0.006775 | 0.007920 | P{Q%(t) > 8}
P{Q},(t) <2} | 0.015696 | 0.017263 | P{Q%(t) > 7}
P{QL(t) <3} | 0.030897 | 0.032487 | P{Q%(t) > 6}
P{QL,(t) <4} | 0.057794 | 0.058865 | P{Q%(t) > 5}
P{QL(t) <5} | 0.104764 | 0.105497 | P{Q%(t) > 4}
P{QL,(t) <6} | 0.186994 | 0.187076 | P{Q% (t) > 3}
P{QL () <7} | 0.328818 | 0.329275 | P{Q%(t) > 2}
P{QL (1) <8} | 0.574113 | 0.574638 | P{Q% (t) > 1}
P{Qp(t) <9} 1 1 P{Q}(t) > 0}

Table 3 Queue length distribution seen at an arbitrary time in the primal and the dual
queue (U/D) with an accuracy of 1076

U/D/1/10 , p=0.8 D/U/1/10, p = 1.25

P{Q(t) <0} [ 0.199828 | 0.321988 | P{Q?(t) > 10}
P{Q'(t) <1} | 0.720737 | 0.844115 | P{Q>*(t) > 9}
P{Q(t) <2} | 0.961449 | 0.97949 | P{Q?(t) > 8}
P{Q(t) <3} | 0.994831 | 0.997313 | P{Q>*(t) > 7}
P{QT(t) <4} ] 0.999273 | 0.999649 | P{Q>*(t) > 6}
P{Q'(t) <5} [ 0.999902 | 0.999954 | P{Q?(t) > 5}
P{Q(t) <6} | 0.999992 | 0.999994 | P{Q>*(t) > 4}
P{Q'(t) <7} [ 0.999999 1 P{Q?(t) > 3}
P{Q'(t) <8} 1 1 P{Q*(t) > 2}
P{Q'(t) <9} 1 1 P{Q*(t) > 1}
P{Q'(t) < 10} 1 1 P{Q*(t) > 0}
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Table 4 Bounding 7! (0) with 72(K), where S1 is D/M/1/K and S2is M/D/1/K (K = 10)

0.1 0.5 0.9 1.3 1.5

p
71(0) = P{Q'(t) = 0} | 0.89977 | 0.49989 | 0.11269 | 0.00162 | 0.00018
72(K) = P{Q%(t) = K} | 0.90021 | 0.50008 | 0.11353 | 0.00210 | 0.00027

and constant available processing alongside the counterpart of its dual.> The
blue curve is the cumulative fluid Palm measure of the primal queue and the
red curve is the tail of the fluid Palm measure of its dual. As a direct result
of equation (29), the blue curve falls below the red one. Hence, one can be
used to obtain an upper or lower bound on the other. Moreover, since the
fluid Palm measure associated with the output equals the fluid Palm measure
associated with the input that enters the queue, the only difference between
the fluid Palm measure associated with the output and the the fluid Palm
measure associated with the input is the portion of the input that is lost. This
portion is usually very smaller in comparison to the overall input. Hence, the
fluid Palm measure of the remaining workload associated with the input in
the primal queue should be very close to the tail of the fluid Palm measure of
the remaining workload associated with the input in the dual queue. This is
depicted in Figure 1.

5 Conclusion

In this paper we have studied duality relationships for finite G1/G2/1/K
queues. The queue length duality relationship of queueing systems with con-
trolled arrival and service processes was extended to FIFO queueing systems
with NBU and NWU inter-arrival and service times. These results were used
to obtain bounds for the queue length distribution seen at arbitrary times
and at departure instances. Such results can be utilized in many applications
including multimedia streaming and energy systems. For instance, Theorem
4 suggests that in queueing systems with NBU [NWU]J inter-arrival and ser-
vice times, m1(0) < [>]m2(K) and 7p,(0) < [>]rp2(K — 1). In general, we
cannot relate the probability of starvation, Ps = mwp(0), of the primal sys-
tem to the probability of loss, P, = m4(K), of its dual. But, in the special
case of queueing systems with Poisson arrival process and NWU service times,
Ps, > w4(0) = 7m1(0) > mo(K) = Pr,. Hence, one can use the results on prob-
ability of loss to compute an upper bound on the probability of starvation.
Similarly, if one is interested in finding 7 (0) of a finite buffer queueing system
with NBU or NWU inter-arrival and service times, one can use the results on
m(K) to find an upper or lower bound on the quantity of interest.

The remaining workload distribution and the fluid Palm measure of the re-
maining workload associated with the input and output of the primal queue

5 ON and OFF period average lengths in the primal queues are respectively 1.101 and
1.15 seconds. The input rate in the ON period is 50 bps and available processing is 20 bps.
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ON-OFF input with uniform ON and OFF periods
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Fig. 1 Workload distribution of the primal and dual fluid queues with an ON-OFF input

were related to their counterparts in the dual queue in Theorem 6. It was
shown that a duality holds between the overflow and underflow rates for fluid
flow queues, which was specialized for fluid queues with ON-OFF inputs.
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