Assignment 1 Solution

Problem 6
(a) There are $2^{4}=16$ sequences in total. The probability of getting each sequence is $1 / 16$. Thus, $P(T T T T)=1 / 16$
(b) There are 4 sequences with three heads and one tail. The probability of getting this pattern is $4 / 16=1 / 4$
(c) There are two patterns satisfying "more heads than tails": no tails or one tail. $P($ more heads than tail $)=P($ no tail $)+P(3$ heads and one tail $)=$ $1 / 16+1 / 4=5 / 16$
(d) $P($ more heads than tails \mid at least one tail $)=\frac{P(\text { more heads than tails } \bigcap \text { at least one tail })}{P(\text { at least one tail })}$
$=\frac{P(3 \text { heads and one tail })}{P(\text { at least one tail })}=\frac{1 / 4}{1-1 / 16}=4 / 15$
(e) $P($ more heads than tails \mid fewer than two tails $)=1$

Problem 7
(a) $P(T)=1-P\left(T^{c}\right)=0.3$
(b) $P(S \bigcap T)=P(S)+P(T)-P(S \bigcup T)=0.4+0.3-0.7=0$
(c) $P\left(S^{c} \mid T^{c}\right)=\frac{P\left(S^{c} \bigcap T^{c}\right)}{P\left(T^{c}\right)}=\frac{1-P(S \bigcup T)}{P\left(T^{c}\right)}=\frac{0.3}{0.7}=3 / 7$

Problem 8
Assume the total population is $2 n$
(a) $P($ Jack's sibling is female \mid Jack is male $)=\frac{n}{2 n-1}$

