Additional Problems for Discussion

Example 1. Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X_{1} be the number of failures preceding the first success, and let X_{2} be the number of failures between the first two successes. Find the joint mass function of X_{1} and X_{2}.

Solution:
Since the trials are independent of each other, X_{1} is independent of X_{2}.

$$
\begin{aligned}
P\left(X_{1}=m, X_{2}=n\right) & =P\left(X_{1}=m\right) P\left(X_{2}=n\right) \\
& =(1-p)^{m} p(1-p)^{n} p \\
& =p^{2}(1-p)^{m+n}
\end{aligned}
$$

Example 2. The joint probability density function of X and Y is given by

$$
f(x, y)=e^{-(x+y)}, \quad 0 \leq x<\infty, 0 \leq y<\infty
$$

Find (a) $P\{X<Y\}$ and $P\{X<a\}$.
Solution:
Compute marginal density first

$$
\begin{aligned}
f_{X}(x) & =\int_{y} e^{-(x+y)} d y \\
& =e^{-x} \\
f_{Y}(y) & =e^{-y}
\end{aligned}
$$

(a)

$$
\begin{aligned}
P(X<Y) & =\int_{Y} P(X<y \mid Y=y) f_{Y}(y) d y \\
& =\int_{Y}\left[\int_{0}^{y} f_{X}(x) d x\right] f_{Y}(y) d y \\
& =\int_{Y}\left[1-e^{-y}\right] e^{-y} d y \\
& =1 / 2
\end{aligned}
$$

Remark: X is independent of Y in this case because $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$.

In general, if they are not independent, the problem should be solved as follows:

$$
\begin{aligned}
P(X<Y) & =\int_{Y} P(X<y \mid Y=y) f_{Y}(y) d y \\
& =\int_{Y} \int_{0}^{y} f_{X \mid Y}(x, y) f_{Y}(y) d x d y \\
& =\int_{Y} \int_{0}^{y} f_{X, Y}(x, y) d x d y \\
& =\int_{Y} \int_{0}^{y} f_{X}(x) f_{Y}(y) d x d y \quad \text { IF X IS INDEPENDENT OF } Y
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(X<a) & =\int_{0}^{a} e^{-x} d x \\
& =1-e^{-a}
\end{aligned}
$$

Example 3. The joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
x e^{-(x+y)}, \quad x>0, y>0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Are X and Y independent? What if $f(x, y)$ were given by

$$
f(x, y)= \begin{cases}2, & 0<x<y, 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Solution:
(a)

$$
\begin{aligned}
f(x) & =\int_{y} x e^{-(x+y)} d y \\
& =x e^{-x} \\
f(y) & =\int_{x} x e^{-(x+y)} d x \\
& =e^{-y} \\
f(x, y) & =f(x) f(y) \quad \text { INDEPENDENT }
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(x) & =\int_{0}^{1} 2 d y \\
& =2 \\
f(y) & =\int_{0}^{y} 2 d x \\
& =2 y \\
f(x, y) & \neq f(x) f(y) \quad \text { DEPENDENT }
\end{aligned}
$$

Example 4. The joint density of X and Y is

$$
f(x, y)=\left\{\begin{array}{l}
x+y \quad 0<x<1,0<y<1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

(a) Are X and Y independent?
(b) Find the density function of X.
(c) Find $P\{X+Y<1\}$.

Solution:
(a) and (b)

$$
\begin{aligned}
f(x) & =\int_{0}^{1}(x+y) d y \\
& =x+1 / 2 \\
f(y) & =\int_{0}^{1}(x+y) d x \\
& =y+1 / 2 \\
f(x, y) & \neq f(x) f(y) \quad \text { DEPENDENT }
\end{aligned}
$$

(c) Let $Z=X+Y$ and the distribution of Z is given in the lecture notes by
using Jacobian transformation with $v=x$ and $z=x+y$.

$$
\begin{aligned}
f_{Z}(z) & =\int_{v} f_{X, Y}(v, z-v) d v \\
& =\int_{v} z d v \\
& = \begin{cases}\int_{0}^{z} z d v, & z \leq 1 \\
\int_{z-1}^{1} z d v, & z>1\end{cases} \\
& = \begin{cases}z^{2}, & z \leq 1 \\
2 z-z^{2}, & z>1\end{cases} \\
P(Z<1) & =\int_{0}^{1} z^{2} d z \\
& =1 / 3
\end{aligned}
$$

Example 5. If X_{1} and X_{2} are independent exponential random variables with respective parameters λ_{1} and λ_{2}, find the distribution of $Z=X_{1} / X_{2}$. Also compute $P\left\{X_{1}<X_{2}\right\}$.

Solution:
(a)From assignment 4 question 8, we have

$$
\begin{aligned}
p_{Z}(z) & =\int_{v} p_{X_{1}}(v) p_{X_{2}}\left(\frac{v}{z}\right)\left|\frac{v}{z^{2}}\right| d v \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} v} \lambda_{2} e^{-\lambda_{2} \frac{v}{z}}\left|\frac{v}{z^{2}}\right| d v \\
& =\frac{\lambda_{1} \lambda_{2}}{z^{2}} \int_{0}^{\infty} v e^{-v\left(\lambda_{1}+\frac{\lambda_{2}}{z}\right)} d v \\
& =\frac{\lambda_{1} \lambda_{2}}{z^{2}}\left[-\left.\frac{1}{\lambda_{1}+\lambda_{2} / z} v e^{-v\left(\lambda_{1}+\frac{\lambda_{2}}{z}\right)}\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{1}{\lambda_{1}+\lambda_{2} / z} e^{-v\left(\lambda_{1}+\frac{\lambda_{2}}{z}\right)} d v\right] \\
& =\frac{\lambda_{1} \lambda_{2}}{z^{2}} \frac{1}{\lambda_{1}+\lambda_{2} / z} \int_{0}^{\infty} e^{-v\left(\lambda_{1}+\frac{\lambda_{2}}{z}\right)} d v \\
& =\frac{\lambda_{1} \lambda_{2}}{z^{2}}\left(\frac{1}{\lambda_{1}+\lambda_{2} / z}\right)^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\left(X_{1}<X_{2}\right) & =\int_{0}^{\infty} P\left(X_{1}<x_{2} \mid X_{2}=x_{2}\right) f\left(x_{2}\right) d x_{2} \\
& =\int_{0}^{\infty}\left[\int_{0}^{x_{2}} f\left(x_{1}\right) d x_{1}\right] f\left(x_{2}\right) d x_{2} \\
& =\int_{0}^{\infty}\left(1-e^{-\lambda_{1} x_{2}}\right) \lambda_{2} e^{-\lambda_{2} x_{2}} d x_{2} \\
& =\int_{0}^{\infty} \lambda_{2} e^{-\lambda_{2} x_{2}}-\int_{0}^{\infty} \lambda_{2} e^{\left(\lambda_{1}+\lambda_{2}\right) x_{2}} d x_{2} \\
& =1-\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

Example 6. Show that the jointly continuous (discrete) random variables X_{1}, \ldots, X_{n} are independent if and only if their probability density (mass) function $f\left(x_{1}, \ldots, x_{n}\right)$ can be written as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} g_{i}\left(x_{i}\right)
$$

for nonnegative functions $g_{i}(x), i=1, \ldots, n$.
Solution:
First, we prove if X_{1}, \ldots, X_{n} are independent,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} g_{i}\left(x_{i}\right) .
$$

Since X_{1}, \ldots, X_{n} are independent, we have

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)
$$

Let $g_{i}\left(x_{i}\right)=f_{X_{i}}\left(x_{i}\right)$, we prove the claim of the problem.
Next, we prove if

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} g_{i}\left(x_{i}\right) .
$$

then X_{1}, \ldots, X_{n} are independent.
Let

$$
C_{i}=\int_{-\infty}^{\infty} g_{i}(x) d x, i=1, \ldots, n
$$

Since the n-fold integral of the joint density function is equal to 1 , we obtain that

$$
\prod_{i=1}^{n} \int_{-\infty}^{\infty} g_{i}(x) d x=\prod_{i=1}^{n} C_{i}=1
$$

Integrating the joint density over all x_{i} except x_{j} gives that

$$
f_{X_{i}}\left(x_{i}\right)=g_{j}\left(x_{j}\right) \prod_{i \neq j} C_{i}=\frac{g_{j}\left(x_{j}\right)}{C_{j}}
$$

Therefore,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{\prod_{i=1}^{n} g_{i}\left(x_{i}\right)}{\prod_{i=1}^{n} C_{i}=1}=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)
$$

which shows that the random variables are independent.
Example 7. Let X_{1}, X_{2}, X_{3} be independent and identically distributed continuous random variables. Compute
(a) $P\left\{X_{1}>X_{2} \mid X_{1}>X_{3}\right\}$;
(b) $P\left\{X_{1}>X_{2} \mid X_{1}<X_{3}\right\}$;
(c) $P\left\{X_{1}>X_{2} \mid X_{2}>X_{3}\right\}$;
(d) $P\left\{X_{1}>X_{2} \mid X_{2}<X_{3}\right\}$.

Solution:
(a) $P\left\{X_{1}>X_{2} \mid X_{1}>X_{3}\right\}=\frac{P\left\{X_{1}=\max \left(X_{1}, X_{2}, X_{3}\right)\right\}}{P\left\{X_{1}>X_{3}\right\}}=\frac{1 / 3}{1 / 2}=\frac{2}{3}$
(b) $P\left\{X_{1}>X_{2} \mid X_{1}<X_{3}\right\}=\frac{P\left\{X_{3}>X_{1}>X_{2}\right\}}{P\left\{X_{1}<X_{3}\right\}}=\frac{1 / 3!}{1 / 2}=\frac{1}{3}$
(c) $P\left\{X_{1}>X_{2} \mid X_{2}>X_{3}\right\}=\frac{P\left\{X_{1}>X_{2}>X_{3}\right\}}{P\left\{X_{2}>X_{3}\right\}}=\frac{1 / 3!}{1 / 2}=\frac{1}{3}$
(d) $P\left\{X_{1}>X_{2} \mid X_{2}<X_{3}\right\}=\frac{P\left\{X_{2}=\min \left(X_{1}, X_{2}, X_{3}\right)\right\}}{P\left\{X_{2}<X_{3}\right\}}=\frac{1 / 3}{1 / 2}=\frac{2}{3}$

We calculate $P\left\{X_{1}>X_{3}\right\}, P\left\{X_{1}=\max \left(X_{1}, X_{2}, X_{3}\right)\right\}$, and $P\left\{X_{1}>X_{2}>\right.$ $\left.X_{3}\right\}$ here, others can be obtained in a similar way. Since X_{1}, X_{2}, X_{3} be independent and identically distributed, assume probability density function and probability distribution function of $X_{i}, i=1,2,3$ to be $f(x)$ and $F(x)$ respectively, then we obtain that

$$
\begin{aligned}
P\left\{X_{1}>X_{3}\right\} & =\int_{-\infty}^{\infty} P\left\{X_{1}>t \mid X_{3}=t\right\} f(t) d t=\int_{-\infty}^{\infty}[1-F(t)] d F(t) \\
& =1-\left.\frac{1}{2} F^{2}(t)\right|_{-\infty} ^{\infty}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
P\left\{X_{1}=\max \left(X_{1}, X_{2}, X_{3}\right)\right\} & \left.=P\left\{X_{1} \geq X_{2}, X_{1} \geq X_{3}\right)\right\} \\
& =\int_{-\infty}^{\infty} P\left\{X_{2} \leq t, X_{3} \leq t \mid X_{1}=t\right\} f(t) d t \\
& =\int_{-\infty}^{\infty} F^{2}(t) d F(t)=\left.\frac{1}{3} F^{3}(t)\right|_{-\infty} ^{\infty}=\frac{1}{3} \\
P\left\{X_{1}>X_{2}>X_{3}\right\} & =\int_{-\infty}^{\infty} P\left\{t>X_{2}>X_{3} \mid X_{1}=t\right\} f(t) d t \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{t} P\left\{t>X_{2}>s \mid X_{1}=t, X_{3}=s\right\} f(t) f(s) d t d s \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{t}[F(t)-F(s)] d F(s) d F(t) \\
& =\int_{-\infty}^{\infty} \frac{1}{2} F^{2}(t) d F(t)=\frac{1}{2} \cdot \frac{1}{3}
\end{aligned}
$$

