ECE 316-Problem Set 2

Problem 1
a) $\mathrm{P}(\mathrm{A})=0.1, \mathrm{P}(\mathrm{B})=0.9, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.91$

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
\Longrightarrow & P(A \cap B)
\end{aligned}=0.09=P(A) P(B)
$$

Therefore A and B are independent
b) $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.6$,

$$
\begin{aligned}
P(A \cup B) & =0.76 \\
& =P(A)+P(B)-P(A \cap B) \\
\Longrightarrow P(A \cap B) & =0.24 \\
& =P(A) P(B) .
\end{aligned}
$$

Therefore A and B are independent.
c) $\mathrm{P}(\mathrm{A})=0.5, \mathrm{P}(\mathrm{B})=0.7$,

$$
\begin{aligned}
P(A \cup B) & =0.73 \\
& =P(A)+P(B)-P(A \cap B) \\
\Longrightarrow P(A \cap B) & =0.47 \neq P(A) P(B) .
\end{aligned}
$$

Therefore A and B are not independent.
Problem 2:
a) For any events A and $\mathrm{B}, P(A \mid A \cup B) \geq P(A \mid B)$

We know that $A \cap B \subseteq A$

$$
\begin{aligned}
\text { Hence } & P(A) \geq P(A \cap B) \\
\Longrightarrow & P(A)(P(B)-P(A \cap B)) \geq P(A \cap B)(P(B)-P(A \cap B)) \\
& (\text { Since } P(B)-P(A \cap B) \geq 0, \text { the inequality doesn't change }) \\
\Longrightarrow & P(A) P(B) \geq P(A \cap B)[P(A)+P(B)-P(A \cap B)] \\
\Longrightarrow & P(A) P(B) \geq P(A \cap B)[P(A \cup B)] \\
\Longrightarrow & \frac{P(A)}{P(A \cup B)} \geq \frac{P(A \cap B)}{P(B)} \\
\Longrightarrow & \frac{P(A \cap(A \cup B))}{P(A \cup B)} \geq \frac{P(A \cap B)}{P(B)} \\
\Longrightarrow & P(A \mid A \cup B) \geq P(A \mid B)
\end{aligned}
$$

Will your answer be true if we consider the situation

$$
P(A \mid B \cup C) \geq P(A \mid B)
$$

This is not true for arbitrary events. If $D=A^{c}$, and if we consider that the above relation is true, we can write

$$
1-P(A \mid B \cup C) \leq 1-P(A \mid B)
$$

or

$$
P(D \mid B \cup C) \leq P(D \mid B)
$$

So the relation doesn't hold for arbitrary events.
b) Define $P_{C}(A)=P(A \mid C)$ To show that it defines a probability, we need to show that it satisfies the axioms of probability.
i) $0 \leq P_{C}(A) \leq 1$

$$
P(A \cap C) \text { and } P(C) \text {, both are } \geq 0 \text {. Hence } P_{C}(A)=\frac{P(A \cap C)}{P(C)} \geq 0
$$

$$
\text { Also since } P(A \cap C) \leq P(C) \Longrightarrow P(A \mid C)=\frac{P(A \cap C)}{P(C)} \leq 1
$$

ii) $P_{C}(S)=1$

$$
P_{C}(S)=P(S \mid C)=\frac{P(S \cap C)}{P(C)}=\frac{P(C)}{P(C)}=1
$$

iii) If $E_{i}, i=1,2, \ldots$ are mutually exclusive events, then

$$
P\left(\left(\bigcup_{i} E_{i}\right) \mid C\right)=\sum P\left(E_{i} \mid C\right)
$$

Proof:

$$
\begin{aligned}
P\left(\cup E_{i} \mid C\right) & =\frac{P\left(\left(\cup E_{i}\right) \cap C\right)}{P(C)} \\
& =\frac{P\left(\cup\left(E_{i} \cap C\right)\right)}{P(C)} \\
& =\sum \frac{P\left(E_{i} C\right)}{P(C)} \quad\left(\text { If } E_{i} E_{j}=\phi, \text { then } E_{i} C E_{j} C=\phi\right) \\
& =\sum P\left(E_{i} \mid C\right)
\end{aligned}
$$

c) $P_{C}(A \mid D)=P(A \mid C \cap D)$

$$
P_{C}(A \mid D)=\frac{P_{C}(A \cap D)}{P_{C}(D)}=\frac{\frac{P(A \cap D \cap C)}{P(C)}}{\frac{P(D \cap C)}{P(C)}}=P(A \mid D \cap C)
$$

Problem 3
P (Luggage is not missing in Tokyo) $=\mathrm{P}$ (Luggage is not misplaced in Toronto \cap Luggage is not misplaced in Chicago \cap Luggage is not misplaced in LA $)=(1-p)^{3}$, because of independence.

Therefore $\mathrm{P}($ Luggage is missing in Tokyo $)=1-(1-p)^{3}$
$\mathrm{P}($ Luggage was misplaced in Toronto|Luggage is missing in Tokyo $)=\frac{p}{1-(1-p)^{3}}$
$\mathrm{P}\left(\right.$ Luggage was misplaced in Chicago|Luggage is missing in Tokyo) $=\frac{(1-p) p}{1-(1-p)^{3}}$
$\mathrm{P}($ Luggage was misplaced in LA|Luggage is missing in Tokyo $)=\frac{(1-p)^{2} p}{1-(1-p)^{3}}$

Problem 4

Let W_{1} be the event that the first watch is OK and W_{2} be the event that the second watch is OK. We need to find out $P\left(W_{2} \mid W_{1}\right)$

$$
\begin{aligned}
P\left(W_{2} \mid W_{1}\right) & =\frac{P\left(W_{2} \cap W_{1}\right)}{P\left(W_{1}\right)} \\
P\left(W_{2} \cap W_{1}\right) & =P\left(W_{2} \cap W_{1} \mid A\right) P(A)+P\left(W_{2} \cap W_{1} \mid B\right) P(B) \\
& =\left(\frac{99}{100}\right)^{2} \cdot \frac{1}{2}+\left(\frac{199}{100}\right)^{2} \cdot \frac{1}{2} \\
\operatorname{and} P\left(W_{1}\right) & =P\left(W_{1} \mid A\right) P(A)+P\left(W_{1} \mid B\right) P(B)=\left(\frac{99}{100}\right) \cdot \frac{1}{2}+\left(\frac{199}{100}\right) \cdot \frac{1}{2} \\
P\left(W_{2} \mid W_{1}\right) & =\frac{\left(\frac{99}{100}\right)^{2}+\left(\frac{199}{100}\right)^{2}}{\left(\frac{99}{100}\right)+\left(\frac{199}{100}\right)}
\end{aligned}
$$

Problem 5
Let E be the event that the exposed face is red and H be the event that the hidden face is red. Then

$$
\begin{aligned}
P(H \mid E) & =\frac{P(H \cap E)}{P(E)} \\
& =\frac{P(\text { Both sides are red })}{P(\text { At least one side is red })}=\frac{\frac{1}{3}}{\frac{3}{6}}=\frac{2}{3}
\end{aligned}
$$

Problem 6
A- Al is innocent
B - Rob testifies that Al is innocent
C- Tom testifies that Al is innocent
X- Witnesses give conflicting testimony
Y- Rob commits perjury (gives false testimony)
Z- Tom commits perjury (gives false testimony)
R- Rob tells the truth
T- Tom tells the truth
a)

$$
\begin{aligned}
P(X) & =P(X \mid A) P(A)+P\left(X \mid A^{c}\right) P\left(A^{c}\right) \\
P(X \mid A) & =P\left(R T^{c} \mid A\right)+P\left(R^{c} T \mid A\right)=1 * 0.3+0 * 0.7=0.3 \\
P\left(X \mid A^{c}\right) & =P\left(R T^{c} \mid A^{c}\right)+P\left(R^{c} T \mid A^{c}\right)=0.8 * 0+0.2 * 1=0.2 \\
P(X) & =0.3 * 0.2+0.2 * 0.8=0.22
\end{aligned}
$$

b)

$$
\begin{aligned}
P(\text { Rob commits perjury }) & =P(Y) \\
& =P(Y \mid A) P(A)+P\left(Y \mid A^{c}\right) P\left(A^{c}\right) \\
& =0 * 0.2+0.2 * 0.8=0.16 \\
P(\text { Tom commits perjury }) & =P(Z) \\
& =P(Z \mid A) P(A)+P\left(Z \mid A^{c}\right) P\left(A^{c}\right) \\
& =0.3 * 0.2+0 * 0.8=0.06
\end{aligned}
$$

Rob is more likely to commit perjury
c)

$$
\begin{aligned}
P(A \mid X) & =\frac{P(A \cap X)}{P(X)} \\
& =\frac{P(X \mid A) P(A)}{P(X)} \\
& =0.3 * 0.2 / 0.22=3 / 11
\end{aligned}
$$

d)

$$
\begin{aligned}
P(Y Z) & =P(Y Z \mid A) P(A)+P\left(Y Z \mid A^{c}\right) P\left(A^{c}\right) \\
& =P(Y \mid A) P(Z \mid A) P(A)+P\left(Y \mid A^{c}\right) P\left(Z \mid A^{c}\right) P\left(A^{c}\right)=0+0=0
\end{aligned}
$$

Therefore $P(Y Z) \neq P(Y) P(Z)$

Problem 7

Let M denote the event that the patient is ill, + denote the event that the test is positive, - denote the event that the test is negative. We need to find the probability that a person who tests negative has the disease $=\mathrm{P}(\mathrm{M} \mid-)$ (Note that the question says that "you need to compute $\mathrm{P}(-\mid \mathrm{M})$ " which is wrong)

$$
\begin{aligned}
P(M \mid-) & =\frac{P(M \cap-)}{P(-)} \\
& =\frac{P(-\mid M) P(M)}{P(M) P(-\mid M)+P\left(M^{c}\right) P\left(-\mid M^{c}\right)} \\
P(M) & =1 / 1000=0.001 \\
P\left(M^{c}\right) & =0.999 \\
P(-\mid M) & =1 / 100=0.01 \\
P\left(-\mid M^{c}\right) & =0.98
\end{aligned}
$$

$$
\text { Therefore } P(M \mid-)=1.0214 * 10^{-} 5
$$

Problem 8
Let $\mathrm{L}=\operatorname{MAX}(\mathrm{X} ; \mathrm{Y})$ and $\mathrm{S}=\operatorname{MIN}(\mathrm{X} ; \mathrm{Y})$

We need to compute $P(L \geq 3 / 4 \mid S \leq 1 / 3)$
Let us find the distribution of S first:

$$
\begin{aligned}
P(S \leq s) & =P(X \leq s \cup Y \leq s) \\
& =P(X \leq s)+P(Y \leq s)-P(X \leq s \cap Y \leq s)
\end{aligned}
$$

Therefore $\quad P(S \leq 1 / 3)=1 / 3+1 / 3-(1 / 3)^{2}=5 / 9$

$$
\begin{aligned}
P(L \geq 3 / 4 \cap S \leq 1 / 3) & =P(X \geq 3 / 4 \cap Y \leq 1 / 3)+P(Y \geq 3 / 4 \cap X \leq 1 / 3) \\
& =1 / 4 * 1 / 3+1 / 4 * 1 / 3=1 / 6
\end{aligned}
$$

So $\quad P(L \geq 3 / 4 \mid S \leq 1 / 3)=\frac{1 / 6}{5 / 9}=3 / 10$

