
ECE 316-Solutions of Problem Set 4

February 7, 2011

Solution 1

a) Let us denote by Ei, i = 1, 2, ......, n the event that the ith name matches with the corresponding
address. We need to find out P (

⋃n
i=1Ei) and by the inclusion-exclusion principle, it can be written

as

P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P (Ei)−
∑
i1<i2

P (Ei1Ei2) + · · ·+ (−1)r+1
∑

i1<i2<···<in

P (Ei1Ei2 · · ·Eir)

+ · · ·+ (−1)n+1P (E1E2 · · ·En)

Now there are n! possible ways of matching the names with the address. Furthermore, Ei1Ei2...Eir,
the event that each of the r names i1, i2, ...ir matches with the address, can occur in any of (n −
r)(n− r− 1) · · · 3.2.1 = (n− r)! possible ways; for of the remaining n− r names, the first name can
match with any of the n− r addresses, the second can match with any of the remaining n− r − 1
addresses and so on. Hence,

P (Ei1Ei2 · · ·Eir) =
(n− r)!
n!

Also there are
(
n
r

)
terms in

∑
i1<i2···<ir

P (Ei1Ei2 · · ·Eir), we see that

∑
i1<i2···<ir

P (Ei1Ei2 · · ·Eir) =
n!(n− r)!

(n− r)!r!n!
=

1
r!

Therefore

P

(
n⋃
i=1

)
= 1− 1

2!
+

1
3!
− · · ·+ (−1)n+1 1

n!

which for n− >∞ converges to 1− e−1 since

ex = 1 +
x

1!
+
x2

2!
+ · · ·

b) Let N denote the number of bits transmitted. Given that the number of bits transmitted within
a given time interval is Poisson with parameter λ. Therefore, within that time interval,

P (N = k) = e−λ
λk

k!
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Let N1 and N0 denote the number of 1’s and 0’s transmitted.

P (N1 = m,N0 = n) =
∞∑
k=0

P (N1 = m,N0 = n|N = k)P (N = k)

= P (N1 = m,N0 = n|N = m+ n)P (N = m+ n)

=
(m+ n)!
m!n!

pm(1− p)ne−λ λm+n

(m+ n)!

= e−λp
(λp)m

m!
e−λ(1−p) (λ(1− p))n

n!
Therefore

P (N1 = m) =
∞∑
n=0

e−λp
(λp)m

m!
e−λ(1−p) (λ(1− p))n

n!

= e−λp
(λp)m

m!
and

P (N0 = n) =
∞∑
m=0

e−λp
(λp)m

m!
e−λ(1−p) (λ(1− p))n

n!

= e−λ(1−p) (λ(1− p))n

n!
Therefore, the number of 1’s transmitted is Poisson with parameter pλ and the number of 0’s
transmitted is Poisson with parameter (1− p)λ
c) The solution to this problem just follows from the definition of conditional probabilities.

Indeed

pX,Y,Z(x, y, z) = pZ|X,Y (z|x, y)pX,Y (x, y)
= pZ|X,Y (z|x, y)pY |X(y|x)PX(x) (by substituting for pX,Y (x, y))

Solution 2

X is uniformly distributed on [c,d]. Therefore

pX(x) =
1

d− c
, x ∈ [c, d]

= 0 otherwise

a)

Y = aX + b

FY (y) = P (Y ≤ y)
= P (aX + b ≤ y)

= P (X ≤ y − b
a

)
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Therefore

FY (y) =


0 y < ac+ b∫ y−b

a
c

1
d−cdx = 1

d−c

(
y−b
a − c

)
ac+ b ≤ y ≤ ad+ b

1 y > ad+ b

fY (y) =


0, y < ac+ b

1
a(d−c) , ac+ b ≤ y ≤ ad+ b

0, y > ad+ b

For the other three parts, assume c, d > 0

b)

Y =
1
X

FY (y) = P (Y ≤ y)

= P (
1
X
≤ y)

= P (X ≥ 1
y

)

Therefore

FY (y) =


1, y > 1/c∫ d
1/y

1
d−cdx = d−1/y

d−c , 1/d ≤ y ≤ 1/c
0, y < 1/d

So

fY (y) =


0, y > 1/c

1
y2(d−c) 1/d ≤ y ≤ 1/c
0, y < 1/d

c)

Y = X2

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)
= P (−√y ≤ X ≤ √y)

Therefore

FY (y) =


0, y < c2∫ √y
c

1
d−cdx =

√
y−c
d−c , c2 ≤ y ≤ d2

1, y > d2
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fY (y) =


0 y < c2

1
2
√
y(d−c) , c2 ≤ y ≤ d2

0 y > d2

d)

Y =
√
X

FY (y) = P (Y ≤ y)

= P (
√
X ≤ y)

= P (X ≤ y2)

Therefore

FY (y) =


0, y <

√
c∫ y2

c
1
d−cdx = y2−c

d−c ,
√
c ≤ y ≤

√
d

1, y >
√
d

and

fY (y) =


0, y <

√
c

2y
d−c ,

√
c ≤ y ≤

√
d

0, y >
√
d

Solution 3

X ∼ N(m,σ2), Y = eX .

FY (y) = P (Y ≤ y)

= P (eX ≤ y)
= P (X ≤ ln(y))
= FX(ln(y))

Therefore

fY (y) =
d

dy
FY (y)

=
d

dy
(FX(ln(y)))

= fX(ln(y))
1
y

=
1

y
√

2πσ2
exp

(
−(ln(y)−m)2

2σ2

)
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Second Procedure

Using the approach Y = g(X))

Let X be a continuous random variable having probability density function fX . Suppose that
g(x) is a monotone (increasing or decreasing), differentiable (and thus continuous) function of x.
Then the random variable Y defined by Y = g(X) has a probability density function given by

fY (y) =

{
fX [g−1(y)]

∣∣∣ ddyg−1(y)
∣∣∣ , if y = g(x) for some x

0, if y 6= g(x) for all x

where g−1(y) is defined to equal that value of x such that g(x) = y
Now, g(x) = ex is a monotone increasing function and g−1(y) = ln(y). Therefore

fY (y) = fX (ln(y))
∣∣∣∣ ddy ln(y)

∣∣∣∣
=

1

y
√

2πσ2
exp

(
−(ln(y)−m)2

2σ2

)

Solution 4

P (X + Y > z) = P (X + Y > z|X > z)P (X > z) + P (X + Y > z|X ≤ z)P (X ≤ z)
= 1.P (X > z) + P ((X + Y > z) ∩ (X ≤ z))
= P (X > z) + P (X + Y > z ≥ X)

Second Part

E(X) =
∫ ∞

0
xd(F (x))

= −
∫ ∞

0
xd(1− F (x))

= −x(1− F (x))|∞0 +
∫ ∞

0
(1− F (x))dx integrating by parts

=
∫ ∞

0
(1− F (x))dx

=
∫ ∞

0
P (X > x)dx

Therefore ∫ ∞
0

P (X + Y > z ≥ X)dz =
∫ ∞

0
(P (X + Y > z)− P (X > z))dz

= E(X + Y )− E(X)
= E(Y )
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Solution 5

First note that:
X2 ≤ CX

since X ∈ [0, C].

Now define a = E[X]
C and noting that var(X) = E[X2]− (E[X])2 we obtain:

var(X) ≤ C2a(1− a)

and the r.h.s is maximized when a = 1
2 to give the result.

Solution 6

Since R = X
Y is a mapping from R2 → R, we need to introduce another one dimensional mapping

to ensure that the Jacobian matrix is a square matrix. Otherwise Determinant J will not exist.
Define mapping g : (x, y) → (v, r) with v = x and r = x

y . If we solve x and y in terms of v and r,
we obtain x = v and y = v

r . Thus g−1(v, r) = (v, vr ), and the Jacobian matrix is given by

J(x, y) =
[

1 0
1
y
−x
y2

]

and |det J | =
∣∣∣ xy2 ∣∣∣ =

∣∣∣ r2v ∣∣∣. The density of R is given by

fR(r) =
∫
v
fX,Y (f−1(v, r))

∣∣∣ v
r2

∣∣∣ dv
=
∫
v
fX,Y (v,

v

r
)
∣∣∣ v
r2

∣∣∣ dv
If X and Y are independent, then we have

fR(r) =
∫
v
fX(v)fY (

v

r
)
∣∣∣ v
r2

∣∣∣ dv
Solution 7

First we obtain the conditional density of X given Y = y as:

fX|Y (x|y) =
fX,Y (x, y)
fY (y)/y

=
e
−x

y e−y

e−y
∫∞
0

1
ye
−x

y dx

=
1
y
e
−x

y
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Hence:

P{X > 1|Y + y} =
∫ ∞

1

1
y
e
−x

y dx

= −e−
x
y |∞1

= e
− 1

y

Solution 8

a) Here we take N = 20 and first note that the mean of
∑N

k=1Xk -s Nm and var(
∑N

k=1Xk) = Nσ2.
Therefore in the first part we need to calculate:

P (| 1
20

20∑
i=1

Xi −m| < 0.1) = 1− P (| 1
20

20∑
i=1

Xi −m| > 0.1)

Using Chebychev’s inequality with ε = 0.1 we have:

P (| 1
20

20∑
i=1

Xi −m| > 0.1) = P (|
20∑
i=1

Xi − 20m| > 2) ≤ 20× 5
4

= 25

which is meaningless. So Chebychev’s inequality is not useful and thus we cannot estimate proba-
bility of estimating the mean to within 0.1 using 20 samples via Chebychev’s inequality.

b)
In this part we want to find N so that the probability of estimating the mean to an accuracy

of 0.1 need to find the smallest N such that:

P (| 1
N

N∑
k=1

Xk −m| ≤ 0.1) ≥ 0.99

Thus we need to calculate:

P (| 1
N

N∑
k=1

Xk −m| > 0.1) ≤ 0.01

. Using Chebychev’s inequality we estimate the probability to be ≤ 5
N0.01 ≤ 0.01 or N ≥ 5

0.0001 =
50000.
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