ECE316- Probability and Random Processes Winter 2011
 Problem Set \# 3

R. Mazumdar

Week 4

The following are problems on independence, distributions and random variables. The corresponding material can be found in Chapters 3 and 4 of your text.

1. Two events A and B are conditionally independent given an event C if

$$
P(A B \mid C)=P(A \mid C) P(B \mid C)
$$

Let $A_{1}, A_{2}, \cdots, A_{n}$ be a collection of events such that $P\left(A_{k} \mid A_{1} A_{2} \cdots A_{l}\right)=P\left(A_{k} \mid A_{l}\right)$ where $l<k$. Show that the multiplication law can be written as:

$$
P\left(A_{1} A_{2} \cdots A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2}\right) \cdots P\left(A_{i+1} \mid A_{i}\right) \cdots P\left(A_{n} \mid A_{n-1}\right)
$$

Furthermore show that $P\left(A_{k} A_{l} \mid A_{j}\right)=P\left(A_{k} \mid A_{j}\right) P\left(A_{l} \mid A_{j}\right)$ where $k<j<l$ or A_{k} and A_{l} are conditionally independent given A_{j}.

Such events are said to be Markov dependent.
2. Let A and B be independent events. Show at A and B^{c} are independent. Show that if $P(A \mid B)=P\left(A \mid B^{c}\right)$ then A and B are independent.
3. A random variable $X(\omega)$ takes non-negative values and has the probability distribution function given by:

$$
\begin{aligned}
F(x)=\operatorname{Pr}\{X(\omega) \leq x\} & =1-e^{-2 x} ; x \geq 0 \\
& =0 \text { otherwise }
\end{aligned}
$$

a) Calculate the following: $\operatorname{Pr} .\{X(\omega) \leq 1\}, \operatorname{Pr}\{X(\omega)>2\}$ and $\operatorname{Pr}\{X(\omega)=3\}$.
b) Find the probability density function $p_{X}(x)$ of $X(\omega)$.
c) Let $Y(\omega)$ be a r.v. obtained from $X(\omega)$ as follows:

$$
\begin{aligned}
Y(\omega) & =0 \text { if } X(\omega) \leq 2 \\
& =1 \text { if } X(\omega)>2
\end{aligned}
$$

Find the probability $\operatorname{Pr} .(Y(\omega)=0)$.
4. Let $T(\omega)$ be a geometrically distributed r.v.: i.e,

$$
\operatorname{Pr}(T=k)=p q^{k-1}, p=1-q
$$

Show that the geometric distribution has no memory, i.e.:

$$
\operatorname{Pr}\left(T>n_{0}+k \mid T>n_{0}\right)=\operatorname{Pr}(T>k), \quad k \geq 1
$$

5. Let $X(\omega)$ be a Poisson r.v. with parameter λ.

Show that $E\left[X^{2}(\omega)\right]=\lambda+\lambda^{2}$. Hence find $\operatorname{var}(X)$.
6. Let $X(\omega)$ be a non-negative integer-valued r.v.. Show that:

$$
E\left[X^{2}\right]=2 \sum_{k=1}^{\infty} k P(X \geq k)-E[X]
$$

7. Let $X(\omega)$ be a real valued r.v. with distribution function $F(x)$.

In class we showed that If $X(\omega) \geq 0$, we could write:

$$
\mathbf{E}[X(\omega)]=\int_{0}^{\infty}(1-F(x)) d x
$$

Now, if $-\infty<X(\omega)<\infty$ and the distribution is continuous:

$$
\mathbf{E}[X(\omega)]=\int_{0}^{\infty}(1-F(x)) d x-\int_{-\infty}^{0} F(x) d x
$$

8. Let X be a continuous r.v. with density function $p_{X}(x)=C\left(x-x^{2}\right) \quad x \in[a, b]$.
(a) What are the possible values of a and b ?
(b) What is C ?
9. Let $X \geq 0$ be a real-valued non-negative random variable with $0<\mathbf{E}\left[X^{2}\right]<\infty$. Show that

$$
\sum_{k=1}^{\infty} \mathbf{P}(X \geq k) \leq \mathbf{E}[X] \leq 1+\sum_{k=1}^{\infty} \mathbf{P}(X \geq k)
$$

Note here $X(\omega)$ is continuous while if X is discrete then

$$
E[X]=\sum_{k=1}^{\infty} P(X \geq k)
$$

10. Let $X(\omega)$ be a geometric r.v. with parameter p.

Show that

$$
E\left[\frac{1}{X(\omega)}\right]=-\frac{p \log p}{1-p}
$$

Hint: $\int_{p}^{1} \frac{1}{x} d x=-\log p$
11. Let $X(\omega)$ be a Bernoulli r.v. with $P(X=1)=p=1-P(X=0)$.
a) Find $\operatorname{var}(X)$.
b) Let $\mathrm{Y}=(\mathrm{a}-\mathrm{b}) \mathrm{X}+\mathrm{b}$. Find the distribution of Y and the mean and variance of Y.

