ECE316- Probability and Random Processes Winter 2011
 Problem Set \# 5

R. Mazumdar

Last week

The following problems are related to the material from Chapters 6 and 7 of the text.

1. Let X and Y be two jointly distributed, real valued r.v's with $E\left[X^{2}\right]<\infty$ and $E\left[Y^{2}\right]<\infty$. Suppose we want to approximate X in the mean squared sense by a linear function $\mathrm{f} Y$ i.e. by $a Y+b$. Show that the optimal choice for a and b are:

$$
\begin{aligned}
a & =\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)} \\
b & =m_{X}-a . m_{Y}
\end{aligned}
$$

where $E[X]=m_{X}, E[Y]=m_{Y}$ and $\operatorname{cov}(X, Y)=E\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right]$ and $\operatorname{var}(Y)=$ $\operatorname{cov}(Y, Y)=E\left[\left(Y-m_{Y}\right)^{2}\right]$.
2. Let X be $N(0,1)$ and for fixed x define:

$$
\begin{aligned}
Z & =X \text { if } X>x \\
& =0 \text { otherwise }
\end{aligned}
$$

In otherwords: $Z=X \mathbf{1}_{[X>x]}$.
Show that:

$$
\mathbf{E}[Z]=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

3. Show that jointly distributed continuous distributed random variables are independent if and only if their joint density can be expressed as:

$$
f_{X, Y}(x, y)=h(x) g(y), \quad-\infty<x<\infty ; \quad-\infty<y<\infty
$$

Show that for example, two random variables X and Y with joint density, :

$$
f_{X, Y}(x, y)=C x y, \quad 0<x<1 ; 0<y<1,0<x+y<1
$$

cannot be independent.
4. Let Z, Y and Z be independent, identically distributed random variables having uniform distributions over $[0,1]$.
(a) Find $\mathbf{E}[\max (X, Y, Z))]$
(b) Find $\mathbf{E}[\min (X, Y, Z)]$
5. The joint density of X and Y is given by:

$$
f_{X, Y}(x, y)=\frac{1}{y} e^{-\left(y+\frac{x}{y}\right)}, \quad x, y>0
$$

Find $\mathbf{E}[X], \mathbf{E}[Y]$ and show that $\operatorname{cov}(X, Y)=1$.
6. If $X_{1}, X_{2}, X_{3}, X_{4}$ are pariwise uncorrelated random variables each having mean 0 and variance 1 , compute the correlations of:
(a) $X_{1}+X_{2}$ and $X_{2}+X_{3}$;
(b) $X_{1}+X_{2}$ and $X_{3}+X_{4}$.
7. The joint density of X and Y is given by:

$$
f_{X, Y}(x, y)=\frac{1}{y} e^{-\frac{x}{y}} e^{-y}, \quad x, y>0
$$

Compute $\mathbf{E}\left[X^{2} \mid Y=y\right]$.
8. Show that $\mathbf{E}\left[(X-a)^{2}\right]$ is minimized when $a=\mathbf{E}[X]$.

Now suppose X has a density $f_{X}(x)$. Then show that $\mathbf{E}(|X-a|)$ is minimized when a is equal to the median of $f_{X}($.$) . Note the median is defined at the point where half the$ probability is below that point (the 50th. percentile).

This shows that one needs to take care of the function being minimized.
9. Show that if X and Y are identically distributed but not necessarily independent then:

$$
\operatorname{cov}(X+Y, X-Y)=0
$$

10. Prove the Cauchy-Schwarz inequality.

$$
(\mathbf{E}[X Y])^{2} \leq \mathbf{E}\left[X^{2}\right] \mathbf{E}\left[Y^{2}\right]
$$

11. Show that if $Y=a+b X$ then:

$$
\begin{aligned}
\rho(X, Y) & =+1 \quad \text { if } \quad b>0 \\
& =-1 \quad \text { if } \quad b<0
\end{aligned}
$$

where

$$
\rho(X, Y)=\frac{\operatorname{cov}(X Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}}
$$

is known as the correlation coefficient..

