Assignment 1 Solution

Problem 8

(a) $R_u = \{ a \text{ transmitted bit is received as "undecied"} \}$

$$P(R_u) = P(R_u|T_0)P(T_0) + P(R_u|T_1)P(T_1)$$

= 0.5 × 0.09 + 0.5 × 0.09
= 0.09

(b) Let $E = \{a \text{ bit is received in error } \}$

$$P(E) = P(R_1|T_0)P(T_0) + P(R_0|T_1)P(T_1)$$

= 0.5 × (1 - P(R_0|T_0) - P(R_u|T_0)) + 0.5 × (1 - P(R_1|T_1) - P(R_u|T_1))
= 0.01

(c)

$$P(T_0|R_0) = \frac{P(T_0)P(R_0|T_0)}{P(R_0)}$$

= $\frac{P(T_0)P(R_0|T_0)}{P(T_0)P(R_0|T_0) + P(R_0|T_1)P(T_1)}$
= $\frac{0.5 \times 0.9}{0.5 \times 0.9 + 0.5 \times 0.01}$
= $\frac{90}{91}$

and

$$P(T_1|R_0) = 1 - P(T_0|R_0) = \frac{1}{91}$$

(d) If $P(T_0) = 0.6$, then recalculate part (a) and (b). We conclude that (a) $P(R_u) = 0.09$ and (b) P(E) = 0.01.

Problem 9

(a) Let $E = \{a \text{ transmitted bit is received in error } \}$

$$P(E) = P(R_{11}|T_{00})P(T_{00}) + P(R_{00}|T_{11})P(T_{11})$$
$$= p^{2}$$
$$= 0.01$$

(b) $R_u = \{a \text{ transmitted bit is received as "undecied"} \}$

$$P(R_u) = P(R_u|T_{00})P(T_{00}) + P(R_u|T_{11})P(T_{11})$$

= 2p(1 - p)
= 0.18

(b) $C = \{a \text{ transmitted bit is received correctly}\}\$

$$P(C) = P\{\text{both two bits are decided correctly}\}$$

= $(1-p)^2$
= 0.81