Assignment 1 Solution

Problem 8

(a) $R_{u}=\{$ a transmitted bit is received as "undecied" $\}$

$$
\begin{aligned}
P\left(R_{u}\right) & =P\left(R_{u} \mid T_{0}\right) P\left(T_{0}\right)+P\left(R_{u} \mid T_{1}\right) P\left(T_{1}\right) \\
& =0.5 \times 0.09+0.5 \times 0.09 \\
& =0.09
\end{aligned}
$$

(b) Let $E=\{$ a bit is received in error $\}$

$$
\begin{aligned}
P(E) & =P\left(R_{1} \mid T_{0}\right) P\left(T_{0}\right)+P\left(R_{0} \mid T_{1}\right) P\left(T_{1}\right) \\
& =0.5 \times\left(1-P\left(R_{0} \mid T_{0}\right)-P\left(R_{u} \mid T_{0}\right)\right)+0.5 \times\left(1-P\left(R_{1} \mid T_{1}\right)-P\left(R_{u} \mid T_{1}\right)\right) \\
& =0.01
\end{aligned}
$$

(c)

$$
\begin{aligned}
P\left(T_{0} \mid R_{0}\right) & =\frac{P\left(T_{0}\right) P\left(R_{0} \mid T_{0}\right)}{P\left(R_{0}\right)} \\
& =\frac{P\left(T_{0}\right) P\left(R_{0} \mid T_{0}\right)}{P\left(T_{0}\right) P\left(R_{0} \mid T_{0}\right)+P\left(R_{0} \mid T_{1}\right) P\left(T_{1}\right)} \\
& =\frac{0.5 \times 0.9}{0.5 \times 0.9+0.5 \times 0.01} \\
& =\frac{90}{91}
\end{aligned}
$$

and

$$
P\left(T_{1} \mid R_{0}\right)=1-P\left(T_{0} \mid R_{0}\right)=\frac{1}{91}
$$

(d) If $P\left(T_{0}\right)=0.6$, then recalculate part (a) and (b). We conclude that (a) $P\left(R_{u}\right)=0.09$ and (b) $P(E)=0.01$.

Problem 9

(a) Let $E=\{$ a transmitted bit is received in error $\}$

$$
\begin{aligned}
P(E) & =P\left(R_{11} \mid T_{00}\right) P\left(T_{00}\right)+P\left(R_{00} \mid T_{11}\right) P\left(T_{11}\right) \\
& =p^{2} \\
& =0.01
\end{aligned}
$$

(b) $R_{u}=\{$ a transmitted bit is received as "undecied" $\}$

$$
\begin{aligned}
P\left(R_{u}\right) & =P\left(R_{u} \mid T_{00}\right) P\left(T_{00}\right)+P\left(R_{u} \mid T_{11}\right) P\left(T_{11}\right) \\
& =2 p(1-p) \\
& =0.18
\end{aligned}
$$

(b) $C=\{$ a transmitted bit is received correctly $\}$

$$
\begin{aligned}
P(C) & =P\{\text { both two bits are decided correctly }\} \\
& =(1-p)^{2} \\
& =0.81
\end{aligned}
$$

