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Chapter 1

Introduction and Overview of
Probability

The basis for understanding and analyzing stochastic processes is probability theory and real analy-
sis.This chapter presents an overview of probability and the associated concepts in order to develop
the basis for the theory of stochastic or random processes in subsequent chapters. The results given
in this chapter are the key ideas and results with direct bearing on the tools necessary to develop the
results in the sequel. Although it is not necessary to have had a prior course in probability, graduate
students in engineering usually have had an undergraduate course in probability and statistics. Prior
background will enable readers to go through the early parts faster however the emphasis in this
book is understanding the basic concepts and their use and this is different from an undergraduate
course in which the emphasis is on computation and calculation.

1.1 Definition of a probability space

Let us begin at the beginning. In order to introduce the notion of probabilities and operations on
them we first need to set up the mathematical basis or hypotheses on which we can construct our
edifice. This mathematical basis is the notion of a probability space. The first object we need to
define is the space Ω which is known as the space of all possible outcomes (or observations). This is
the mathematical artifact which is the setting for studying the likelihood of occurrence or outcome
of an experiment based on some assumptions on how we expect the quantities of interest to behave.
By experiment it is meant the setting in which quantities are observed or measured. For example the
experiment may be the measurement of rainfall in a particular area and the method of determining
the amount. The outcome i.e. ω ∈ Ω is the actual value measured (or observed) at a given time.
Another, classical example is the roll of a die. The space Ω is just the possible set of values which
can appear i.e. {1, 2, 3, 4, 5, 6} in one roll. In the case of measurements of rainfall it is the numerical
value typically any real non-negative number between [0,∞). Once Ω is specified the next notion
we need is the notion of an event. Once an experiment is performed the outcome ω is observed and
it is possible to tell whether an event of interest has occurred or not. For example, in a roll of the
die we can say whether the number is even or odd. In the case of rainfall whether it is greater than
5mm but less than 25 mm or not. The set of all events is usually denoted by F . F is just the
collection of subsets of Ω which satisfy the following axioms:

1



i) Ω ∈ F

ii) A ∈ F then Ā ∈ F where Ā denotes the complement of A.

iii) If the sequence {An} with An ∈ F then
⋃∞
n=1An ∈ F .

The above axioms imply that F is a σ-algebra or field. Property i) says that the entire space Ω
is an event. Property ii) states that if A is an event then not A is also an event. Property iii) implies
that the union of a countable number of events is an event and by property ii) it also implies that
the intersection of a countable set of events is also an event.

To complete the mathematical basis we need the notion of a probability measure which is denoted
by IP. This is a function which attaches a numerical value between [0,1] to events A ∈ F with the
following properties:

i) IP : F → [0, 1] i.e. for any A ∈ F IP(A) ∈ [0, 1].

ii) IP(Ω) = 1, IP(φ) = 0

iii) If {An}∞n=1 is a countable collection of disjoint sets with An ∈ F then P (
⋃∞
n=1An) =∑∞

n=1 P (An).

The second property states that the probability of the entire space is a certain event. Property
iii) is called the property of σ-additivity (or countably additive) and plays a crucial role in the
definition of probability measures and the notion of random variables (which we will see soon) but
it is beyond the scope of this text. Note σ-additivity does not follow if we define (iii) in terms of a
finite collection of disjoint sets and state that it holds for every n.

The triple (Ω,F , IP) denotes the probability space. In the sequel it must be remembered that
except when specifically given, all the quantities are defined with respect to a given probability space
i.e. the ‘triple’ always is lurking in the background and all claims are made w.r.t. to that space even
though it is not specified every time—this will be commented upon later.

Definition 1.1.1 The triple (Ω,F , IP) is said to be a complete probability space if F is completed
with all P−null sets.

1.1.1 Some properties of probability measures

¿From the definition of the probability measure as a mapping from F → [0, 1] and axioms ii) and
iii) above we have :

IP(Ā) = 1− IP(A)

and
A ⊂ B ⇒ IP(A) ≤ IP(B)

2



or the probability measure is monotone non-decreasing. We append a proof of the second property
below:

Indeed, B = (B−A) + A where B−A denotes the events in B which are not in A and therefore
(B − A)

⋃
A = B and we use the notation of + for the union of disjoint sets. Now, using the

countably additive axiom we have

IP(B −A) = IP(B)− IP(A)

and by definition IP(B −A) ≥ 0.
Hence for any collection {An} of sets in F it follows that:

IP(
∞⋃
n=1

An) ≤
∞∑
n=1

IP(An)

In general IP(A
⋃
B) = IP(A) + IP(B)− IP(A

⋂
B).

An immediate consequence of the countable additivity of the probability measure is the notion
of sequential continuity of the measure by which it is meant that the limit of the probabilities of
events can be replaced by the probability of the limit of the events. This is clarified below.

Proposition 1.1.1 a) Let {An} be an increasing sequence of events i.e. An ⊂ An+1 then

IP(
∞⋃
n=1

An) = lim
n→∞

IP(An)

b) Let {Bn} be a decreasing sequence of events i.e. Bn+1 ⊂ Bn then

IP(
∞⋂
n=1

Bn) = lim
n→∞

IP(Bn)

Proof:
First note that for any n ≥ 2,

An = A1 +
n−1∑
m=1

(Am+1 −Am)

and ∞⋃
n=1

An = A1 +
∞∑
m=1

(Am+1 −Am)

Now using the countable additivity assumption and noting that {Am+1 −Am} are disjoint we have

IP(
∞⋃
n=1

An) = IP(A1) +
∑∞
m=1 IP(Am+1 −Am)

= IP(A1) + limn→∞
∑n−1
m=1 IP(Am+1 −Am)

= limn→∞ IP(An)
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The proof of part b) follows by using DeMorgan’s law i.e.⋂
Bn =

⋃
Bn

and the result of part a) noting that IP(Bn) = 1− IP(B̄n).

Remark: Note that in the case of a)
⋃∞
n=1An is the limit of an increasing sequence of events and

thus a) is equivalent to P (limn→∞An) = limn→∞ P (An) which is what is meant by the interchange
of limits. Part b) corresponds to the limit of a decreasing sequence of events. Note the limits exist
since the sequences of probabilities are increasing (or decreasing).

An important notion in probability theory which sets it apart from real analysis is the notion of
independence.

Definition 1.1.2 The events {An} are said to be mutually independent if for any subset {k1, k2, · · · , kr}
of {1, 2, · · · , n}

IP

 r⋂
j=1

Akj

 =
r∏

k=1

IP(Akj ) (1.1. 1)

Remarks:

i. Note pairwise independence between events does not imply mutual independence of all the events.
Here is a simple example.

Let Ω = {ω1, ω2, ω3, ω4} i.e. Ω consists of 4 elements such that: IP(ω1) = IP(ω2) = IP(ω3) =
IP(ω4) = 1

4 . Now define the following events: A = {ω1, ω2}, B = {ω2, ω3}, C = {ω1, ω3}.
Then it is easy to see that: IP(A) = IP(B) = IP(C) = 1

2 and IP(A
⋂
B) = IP(ω2) = 1

4 =
IP(A)IP(B) and similarly IP(B

⋂
C) = IP(B)IP(C) and IP(A

⋂
C) = IP(A)IP(C) showing that

the events A,B and C are pairwise independent. However IP(A
⋂
B
⋂
C) = IP{φ} = 0 6=

IP(A)IP(B)IP(C) = 1
8 showing that A,B and C are not independent.

Once can also construct an example where A,B,C are independent but not pairwise indepen-
dent.

ii.The second point which is often a point of confusion is that disjoint events are not indepen-
dent since if two events A and B are dis joint and independent then since 0 = IP(A

⋂
B) =

IP(A)IP(B) then it would imply that at least one of the events has 0 probability. In fact dis-
jointness of events is a strong form of dependence since the occurrence of one precludes the
occurrence of the other.

To conclude our discussion of probabilitity measures we present an important formula which is
very useful to compute probabilities of events with complicated dependence.

Proposition 1.1.2 (Inclusion-Exclusion Principle or Poincaré’s Formula) Let {Ai}ni=1 ∈ F be any
collection of events. Then:

IP(
n⋃
i=1

Ai) =
∑

S⊂{1,2,..,n}
S 6=∅

(−1)|S|−1IP(
⋂
j∈S

Aj) (1.1. 2)
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Proof: The result clearly holds for n = 2 i.e.:

IP(A1

⋃
A2) = IP(A1) + IP(A2)− IP(A1

⋂
A2)

Now define B =
⋃n−1
i=1 Ai. Then from above:

IP(
n⋃
i=1

Ai) = IP(B
⋃
An)

= IP(B) + IP(An)− IP(B
⋂
An)

= IP(
n−1⋃
i=1

Ai) + IP(An)− IP

n−1⋃
i−1

(Ai
⋂
An)


where we used the distributivity property of unions and intersection in the last step.

To prove the result we first note that:∑
S⊂{1,..,n}

(−1)|S|−1IP(
⋂
j∈S

Aj) =
∑

S⊂{1,...,n−1}
(−1)|S|−1IP(

⋂
j∈S

Aj)+IP(An)−
∑

S containing n,|S|≥2

(−1)|S|−1IP(
⋂
j∈S

Aj)

Identifying the terms on the r.h.s. with the events defined upto (n − 1) of the inclusion-exclusion
identity above the rest of the induction argument can be completed.

A particular form of the above result is sometimes useful in applications.

Corollary 1.1.1 (Bonferroni inequalities)
Let r < n be even. Then the following holds:

∑
S 6=∅,S∈{1,2,..,n},|S|≤r

(−1)|S|−1IP

⋂
j∈S

Aj

 ≤ IP(
n⋃
j=1

Aj) (1.1. 3)

If r < n is odd then

IP(
n⋃
i=1

Ai) ≤
∑

S 6=∅,S∈{1,2,..,n},|S|≤r
(−1)|S|−1IP

⋂
j∈S

Aj

 (1.1. 4)

The above corollary states that if we truncate the Poincaré inequality to include terms upto r
then, if r is odd the resulting probability is smaller than the required probability while if r is odd
then the resulting probability will be larger. A very simple consequence is:

IP(
n⋃
i=1

Ai) ≥
∑

IP(Ai)−
∑
i,j,i6=j

IP(Ai
⋂
Aj)
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1.2 Random variables and probability distributions

One of the most important concepts for a useful operational theory is the notion of a random variable
or r.v. for short. In this course we will usually concern ourselves with so-called real valued random
variables or countably valued (or discrete-valued) random variables. In order to define random
variables we first need the notion of what are termed Borel sets. In the case of real spaces then the
Borel sets are just sets formed by intersections and unions of open sets (and their complements) and
hence typical Borel sets are any open intervals of the type (a, b) where a, b ∈ < and by property ii)
it can also include half-open, closed sets of the form (a, b] or [a, b] and by the intersection property
a point can be taken to be a Borel set etc. Borel sets play an important role in the definition of
random variables. Note for discrete valued r.v’s a single value can play the role of a Borel set. In
the sequel we always will restrict ourselves to < or <n unless explicitly specified to the contrary.

Definition 1.2.1 A mapping X(.) : Ω→ < is said to be a random variable if the inverse image of
any Borel set C in < belongs to F i.e.

{ω : X(ω) ∈ C} ∈ F

or what is equivalent
{X−1(C) ∈ F}

Remark: In words what the above definition says that if we consider all the elementary events
ω which are mapped by X(.) into C then the collection {ω} will define a valid event so that a
probability can be assigned to it. At the level of these notes there will never be any difficulty as
to whether the given mappings will define random variables, in fact we treat r.v’s as “primitives”.
This will be clarified a little later on.

From the viewpoint of computations it is most convenient to work with an “induced measure”
rather than on the original space. This amounts to defining the probability measure induced by or
associated with a r.v. on its range so that rather than treat the points ω and the probability measure
IP we can work with a probability distribution on < (or X) with x ∈ < as the sample values. This
is defined below.

Definition 1.2.2 Let X(ω) be a real valued r.v. defined on (Ω,F , IP) then the function

F (x) = IP({ω : X(ω) ≤ x})

is called the (cumulative) probability distribution function of X.

Remark: Note F (x) is a probability distribution defined on < i.e. it corresponds to the probability
measure corresponding to IP induced by X(.) on <. Usually the short form IP(X(ω) ≤ x) is used
instead of IP({ω : X(ω) ≤ x}). The tail distribution given by IP{X(ω) > x} = 1−F (x) is called the
complementary distribution function.

By definition F (x) is a monotone non-decreasing function since {ω : X(ω) ≤ x1} ⊂ {ω :
X(ω) ≤ x2} whenever x1 ≤ x2. Also because of the definition in terms of the “≤” sign rather than
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< sign F(x) is right continuous i.e., F(x) = F(x+), the value at x is the one obtained by shrinking
to x from the right. This follows from the sequential continuity of the probability measure and
we append a proof below. What right continuity means is that the distribution function can have
discontinuities and the value at the point of discontinuity is taken to be the value of F(x) to the
right of the discontinuity. Some authors define the distribution function in terms of the “<” sign in
which case the function is left continuous.

Finally from now on, unless necessary for clarity, we will use X for X(ω). In general the uppercase
variables will be used to represent random quantities.

Proof of right continuity: Let εn be a monotone decreasing sequence going to zero e.g. { 1
n}.

Define Bn = {X(ω) ≤ x+ εn}. Then
⋂
nBn = {X ≤ x}. By sequential continuity

F (x) = limn→∞F (x+ εn) = F (x+)

Other properties of the distribution function:

i) limx→−∞ F (x) = 0

ii) limx→∞ F (x) = 1 since limx→∞ F (x) = IP(X ≤ ∞) = IP(Ω) = 1 since X(.) being real valued
takes values in (−∞,∞).

Given a r.v. and the definition of the distribution function one can considerX(ω) as a ‘coordinate’
or sample point on the probability space defined by {X,B, F (dx)} where B is the Borel σ-field on
X. Since typically in applications we have a given r.v. and other r.v’s constructed by operations on
the r.v. this is a concrete way of constructing a probability space.

If the distribution function F (x) is differentiable with respect to x then :

p(x) =
dF (x)
dx

(1.2. 5)

is called the probability density function (abbreviated as p.d.f) of X and

F (x) =
∫ x

−∞
p(y)dy

1.2.1 Expectations, moments and characteristic functions

Given a r.v. X we define the (mathematical) expectation or mean as

E[X] =
∫

Ω
X(ω)dP (ω) =

∫
<
xdF (x) (1.2. 6)

provided the integrals exist. If a density exists then:∫
<
xdF (x) =

∫
<
xp(x)dx

Similarly, the kth. moment, if it exists, is defined as :

E[Xk(ω)] =
∫

Ω
Xk(ω)dIP(ω) =

∫
<
xkdF (x) (1.2. 7)
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Of particular interest in applications is the second centralized moment called the variance denoted
by σ2 = V ar(X) which is given by

V ar(X) = E
[
(X(ω)−E[X])2

]
(1.2. 8)

The quantity σ =
√
V ar(X) is referred to as the standard deviation.

¿From the definition of expectations it can be seen that it is a linear operation i.e.

E
[ n∑

1

aiXi(ω)
]

=
n∑
1

aiE[Xi(ω)]

for arbitrary scalars {ai} provided the individual expectations exist.
Also the expectation obeys the order preservation property i.e. if X(ω) ≥ Y (ω) then

E[X(ω)] ≥ E[Y (ω)]

So far we have assumed that the r.v’s are continuous. If on the other hand the r.v’s take discrete
values say {an} then the distribution of the discrete r.v. is specified by the probabilities :

pn = IP(X(ω) = an);
∑
n

pn = 1 (1.2. 9)

and
F (x) =

∑
n:an≤x

pn

and by definition F (x) is right continuous. Indeed in the discrete context the σ-field F is be generated
by disjoint events {an}.

In light of the definition of the distribution function it can be readily seen that for non-negative
r.v’s the following holds:

E[X(ω)] =
∫ ∞

0
(1− F (x))dx (1.2. 10)

Finally, a third quantity of interest associated with a r.v. is the characteristic function defined
by

C(h) = E[eıhX(ω)] =
∫
<
eihxdF (x) (1.2. 11)

where ı =
√
−1. In engineering literature rather than working with the Fourier transform of the

p.d.f. (which is what the characteristic function represents when a density exists) we often work
with the Laplace transform which is called the moment generating function but it need not be always
defined.

M(h) = E[ehX(ω)] =
∫
<
ehxdF (x) (1.2. 12)

The term moment generating function is used since knowledge of M(h) or for that matter C(h)
completely specifies the moments since:

E[X(ω)k] =
dk

dhk
M(h)|h=0
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i.e. the kth derivative w.r.t. h evaluated at h = 0. In the case of the characteristic function we must
add a multiplication factor of ık.

In the case of discrete r.v’s the above definition can be replaced by taking z−transforms. In the
following we usually will not differentiate (unless explicitly stated) between discrete or continuous
r.v’s and we will use the generic integral

∫
g(x)dF (x) to denote expectations with respect to the

probability measure F (x). In particular such an integral is just the so-called Stieltjes integral and
in the case that X is discrete ∫

g(x)dF (x) =
∑
n

g(an)pn

As moment generating functions are not always defined, we will work with characteristic functions
since |eihx| = 1 and therefore |C(h)| ≤

∫
dF (x) = 1 showing that they are always defined. Below we

list some important properties associated with characteristic functions:

i) C(0) = 1

ii) C(-h)= C∗(h) where C∗ denotes the complex conjugate of C.

iii) The characteristic function of a probability distribution is a non-negative definite function (of
h).

By non-negative definite function it is meant that given any complex numbers {λk}Nk=1 then
denoting the complex conjugate of a complex number λ by λ∗,

N∑
k=1

N∑
l=1

λkλ
∗
lC(hk − hl) ≥ 0

for all N. Let us prove this result. Define Y =
∑N
k=1 λke

ihkX . Then

|Y |2 = Y Y ∗ =
N∑
k=1

N∑
l=1

λkλ
∗
l e
ı(hk−hl)X

Hence taking expectations and noting the the expectation of a non-negative r.v. is non-negative we
obtain:

E[|Y |2] =
N∑
k=1

N∑
l=1

λkλ
∗
lC(hk − hl) ≥ 0

It is an important fact (which is beyond the scope of the course) that characteristic functions
completely determine the underlying probability distribution. What this means is that if two r.v’s
have the same characteristic function then they have the same distribution or are probabilistically
equivalent. Note this does not imply that they are identical. Also an important converse to the
result holds which is due to Paul Lévy, any function which satisfies the above properties corresponds
to the characteristic function of a probability distribution.

1.2.2 Functions of random variables

It is evident that given a r.v., any (measurable) mapping of the r.v. will define a random variable. By
measurability it is meant that the inverse images of Borel sets in the range of the function belong to

9



the σ-field of X; more precisely, given any mapping f() : X → Y , then f(.) is said to be measurable
if given any Borel set C ∈ BY the Borel σ-field in Y then

f−1(C) ∈ BX

where BX denotes the Borel σ-field in X. This property assures us that the mapping f(X(ω)) will
define a r.v. since we can associate probabilities associated with events.

Hence, the expectation can be defined (if it exists) by the following:

E[f(X(ω))] =
∫

Ω
f(X(ω))dIP(ω) =

∫
X
f(x)dFX(x) =

∫
Y
ydFY (y)

where the subscripts denote the induced distributions on X and Y respectively.

It is of interest when we can compute the distribution induced by f(.) on Y in terms of the
distribution on X. This is not obvious as will be illustrated by the following example.

Example : Let X(ω) be defined on < with distribution FX(x). Let Y (ω) = X2(ω). Then Y (ω)
takes values in [0,∞). Hence the distribution of Y denoted by FY (.) has the following property :
FY (x) = 0 for x < 0. Let us now obtain FY (x) for non-negative values of x. By definition:

FY (x) = IP(Y (ω) ≤ x) = IP(X2(ω) ≤ x)

This implies that the event {Y (ω) ≤ x) = {X(ω) ≤
√
x}
⋂
{X(ω) ≥ −

√
x} where

√
x is the positive

square root. Now by definition of FX(x) and noting that it is right-continuous we obtain

FY (x) = FX(
√
x)− FX(−

√
x) + P (X = −

√
x)

and if the distribution is continuous then the third term is 0.
The above example shows the difficulty in general of obtaining the distribution of a r.v. corre-

sponding to a transformation of another r.v. in terms of the distribution of the transformed r.v. This
is related to the fact that inverses of the mappings need not exist. However, when the mappings are
monotone (increasing or decreasing) then there is a very simple relation between the distributions.

First suppose that f(.) is monotone increasing then its derivative is positive. Then the event:

{Y (ω) ≤ y} ≡ {X(ω) ≤ f−1(y)}

and hence
FY (y) = FX(f−1(y))

since the inverse exists (since monotonicity implies that the function is 1:1).
Similarly if f(.) is monotone decreasing then its derivative is negative and the event:

{Y (ω) ≤ y} ≡ {X(ω) ≥ f−1(y)}

Hence, assuming that the distribution is continuous then:

FY (y) = 1− FX(f−1(y))
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Hence, in both cases if a FX(.) possesses a density then:

pY (y) =
pX(f−1(y))
|f ′(f−1(y))|

(1.2. 13)

by the usual chain rule for differentiation where f ′(.) denotes the derivative of f.
When the mapping is non-monotone there is no general expression for obtaining FY (.). But we

can still obtain the distribution by the following way. Let φ(y) denote the set of all points x such
that f(x) ≤ y i.e.

φ(y) = {x : f(x) ≤ y}

Then:
FY (y) =

∫
φ(y)

dFX(x)

In the next section we will obtain a generalization of these results for the case of vector valued r.v’s..
We will then present several examples.

In the sequel we will generally omit the argument ω for r.v’s and capital letters will usually
denote random variables while lowercase letters will denote values.

1.3 Joint distributions and Conditional Probabilities

So far we have worked with one r.v. on a probability space. In order to develop a useful theory
we must develop tools to analyze collection of r.v’s and in particular interactions between them. Of
course they must be defined on a common probability space. Let {Xi(ω)}ni=1 be a collection of r.v’s
defined on a common probability space (Ω,F , IP). Specifying their individual distributions Fi(x)
does not account for their possible interactions. In fact, to say that they are defined on a common
probability space is equivalent to specifying a probability measure IP which can assign probabilities
to events such as {ω : X1(ω) ∈ A1, X2(ω) ∈ A2, ..., Xn(ω) ∈ An}. In the particular case where the
r.v’s are real valued this amounts to specifying a joint probability distribution function defined as
follows:

F (x1, x2, .., xn) = IP{X1(ω) ≤ x1, X2(ω) ≤ x2, ..., Xn(ω) ≤ xn} (1.3. 14)

for arbitrary real numbers {xi}. Since n is finite the collection of r.v’s can be seen as a vector valued
r.v. taking values in <n.

The joint distribution being a probability must sum to 1 i.e.∫
<

∫
<
...

∫
<
dF (x1, x2, ..., xn) = 1

and in addition if we ‘integrate out’ any m out of the n variables over <m then what remains is a
joint distribution function of the remaining (n-m) r.v’s i.e.

F (x1, x2, ..., xn−m) = F (x1, x2, ..., xn−m,∞,∞, ..,∞)

Another way of stating this is that if the joint density exists i.e. ∃ p(x1, , xn) such that

F (x1, x2, ..., xn) =
∫ x1

−∞
..

∫ xn

−∞
p(y1, y2, .., yn)dy1dy2...dyn
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Then,

F (x1, x2, , xn−m) =
∫ x1

−∞
..

∫ xn−m

−∞

∫
<
....

∫
<
p(y1, y2, .., yn−m.yn−m+1, .., yn)dy1dy2...dyn

The above property is known as the consistency of the distribution. In particular if we integrate
out any (n-1) r.v’s then what remains is the probability distribution of the remaining r.v. which has
not been integrated out.

We now come to an important notion of independence of r.v’s in light of the definition of inde-
pendent events.

Let {Xi}ni=1 be a finite collection of r.v’s. This amounts to also considering the vector valued
r.v. whose components are Xi. Then we have the following definition:

Definition 1.3.1 The r.v’s {Xi}ni=1 defined on (Ω,F , IP) are said to be mutually independent if for
any Borel sets Ai in the range of X the following holds:

IP
(
Xi1(ω) ∈ Ai1 , Xi2(ω) ∈ Ai2 , ..., Xir(ω) ∈ Air

)
=

r∏
j=1

IP(Xij (ω) ∈ Aij ) (1.3. 15)

for all {i1, i2, · · · , ir} of r-tuples of {1, 2, · · · , n} and 1 ≤ r ≤ n.

Remark: The above just follows from the definition of independence of the corresponding events
X−1
i (Ai) in F by virtue of the definition of random variables.

In light of the above definition, if the Xi’s take real values then the following statements are
equivalent.

Proposition 1.3.1 The real valued r.v’s Xi are mutually independent if any of the following equiv-
alent properties holds:

a)F (x1, x2, ..., xn) =
∏n
i=1 FXi(xi)

b)E[g1(X1)g2(X2)...gn(Xn)] =
∏n
i=1 E[gi(Xi)]

for all bounded measurable functions gi(.).

c) E[eı
∑n

j=1
hjXj ] =

∏n
j=1Cj(hj) where Ck(hk) corresponds to the characteristic function of Xk.

It is immediate from a) that if the joint probability density exists (then marginal densities exist)
then:

p(x1, x2, ..., xn) =
n∏
i=1

pXi(xi)

Note it is not enough to show that CX+Y (h) = CX(h)CY (h) for the random variables to be
independent. You need to show that CX+Y (h1, h2) = E[ei(h1X+h2Y )] = CX(h1)CY (h2) for all H −
1, h2.
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Remark 1.3.1 An immediate consequence of independence is that it is a property preserved via
transformations i.e. if {Xi}Ni=1 are independent then {fi(Xi)}Ni=1, where the fi(.)′s are measurable
mappings (i.e. they define r.v’s), form an independent collection of random variables.

Related to the concept of independence but actually much weaker is the notion of uncorrelated-
ness.

Definition 1.3.2 Let X1 and X2 be two r.v’s with means m1 = E[X1] and m2 = E[X2] respectively.
Then the covariance between X1 and X2 denoted by cov(X1, X2) is defined as follows:

cov(X1, X2) = E[(X1 −m1)(X2 −m2)] (1.3. 16)

Definition 1.3.3 A r.v. X1 is said to be uncorrelated with X2 if cov(X1, X2) = 0.

Remark: If two r.v’s are independent then they are uncorrelated but not vice versa. The reverse
implication holds only if they are jointly Gaussian or normal (which we will see later on).

In statistical literature the normalized covariance (or correlation) between two r.v’s is referred
to as the correlation coefficient or coefficient of variation.

Definition 1.3.4 Given two r.v’s X and Y with variances σ2
X and σ2

Y respectively. Then the coef-
ficient of variation denoted by ρ(X,Y ) is defined as

ρ(X,Y ) =
cov(X,Y )
σXσY

(1.3. 17)

We conclude this section with the result on how the distribution of a vector valued (or a finite
collection of r.v’s) which is a transformation of another vector valued r.v. can be obtained.

Let X be a <n valued r.v. and let Y = f(X) be a <n valued r.v. and f(.) be a 1:1 mapping.
Then just as in the case of scalar valued r.v’s the joint distribution of Yi can be obtained from
the joint distribution of the X ′is by the extension of the techniques for scalar valued r.v’s. These
transformations are called the Jacobian transformations.

First note that since f(.) is 1:1, we can write X = f−1(Y). Let xk = [f−1(y)]k i.e. the kth.
component of f−1.

Define the so called Jacobian matrix:

JY (y) =


∂x1
∂y1

∂x2
∂y1

... ∂xn
∂y1

∂x1
∂y2

∂x2
∂y2

... ∂xn
∂y2

... ... ... ...
∂x1
∂yn

∂x2
∂yn

... ∂xn
∂yn


Then the fact that f is 1:1 implies that |JY | 6= 0 where |J | = detJ . Then as in the scalar case it can
be shown that :

PY (y) = PX(f−1(y))|JY (y)| (1.3. 18)

or equivalently ∫
f(x)pX(x)dx =

∫
D
ypX(f−1(y))|JY (y)|dy

where D is the range of f.
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When the mapping f(.) : <n → <m with m < n, then the above formula cannot be directly
applied. However in this case the way to overcome this is to define a 1:1 transformation f̃ = col (f, f1)
with f1(.) mapping <n to <n−m. Then use the formula above and integrate out the (n-m) variables
to obtain the distribution on <m.

Let us now see some typical examples of the application of the above result.
Example 1: Let X and Y be two jointly distributed real valued r.v’s with probability density
functions pX,Y (x, y) . Define Z = X + Y and R = X

Y .
Find the probability density functions of Z and R respectively. Let pZ() denote the density

function of Z. Since both Z and R are one dinensional mappings in the range we need to use the
method given at the end.

To this end, define the function f(., .) : (x, y) → (v, w) with V = X and W = X + Y . Then
f(.) defines a 1:1 mapping from R2 → R2. In this case the inverse mapping f−1(v, w) = (v, w − v.
Therefore the Jacobian is given by:

Jacobian =

[
1 0
−1 1

]
hence

pZ(z) =
∫
v
pX,Y (v, z − v)dv

In particular if X and Y are independent then:

pZ(z) =
∫
v
pY (z − v)PX(v)dv =

∫
v
pX(z − v)pY (v)dv = (pX ∗ pY )(z)

where f ∗g denotes the convolution operator. This result can also be easily derived as a consequence
of conditioning which is discussed in the next section.

In particular if Y =
∑N
i=1Xi where {Xi} are i.i.d. then :

pY (y) = p∗NX (y)

where p∗N denotes the N -fold convolution of pX(.) evaluated at y.
In a similar way to find the density of R, define f(., .) = (x, y)→ (v, w) with v = x and w = x

y .
Then noting that f−1(v, w) = (v, vw ) giving detJ = | v

w2 | we obtain:

pR(r) =
∫
v
pX,Y (v,

v

r
)| v
r2
|dv

Once again if X and Y are independent, then:

pR(r) =
∫
v
pX(v)pY (

v

r
)| v
r2
|dv

Example 2: Suppose Y = AX where X = col(X1, . . . , XN ) is a column vector of N jointly
distributed r.v.’s whose joint density is pX(x1, . . . , xN ) = pX(x). Suppose A−1 exists.

Then:
pY (y) =

1
|det(A)|

pX(A−1y)
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1.3.1 Conditional probabilities and distributions

Definition 1.3.5 Let A and B be two events with IP(B) > 0. Then the conditional probability of
the event A occurring given that the event B has occurred denoted by IP(A/B) is defined as:

IP(A|B) =
IP(A

⋂
B)

IP(B)
(1.3. 19)

Remark 1.3.2 A conditional probability defines a bona fide probability measure on (Ω,F , i.e. if
we denote IPA(.) = IP(.|A) then it defines a probability measure on Ω.

To show this we need to show:

1.
0 ≤ IPA(.) ≤ 1

with IPA(φ) = 0 and IPA(Ω) = 1.

2. The σ-additivity property IPA(
⋃
Bi) =

∑
i IPA(Bi) where {Bi} is any countable collection of

mutually disjoint events of F .

The proof of (i) is direct because IP(
⋃
iBi

⋂
A) ≤ IP(A) as (

⋃
iBi)

⋂
A ⊂ A. The second property

is also is direct by noting that (
⋃
iBi)

⋃
A =

⋃
i(Bi

⋃
A) and the events Bi

⋃
A are mutually disjoint.

Associated with the notion of conditional probabilities is the notion of conditional independence
of two events given a third event. This property plays an important role in the context of Markov
processes.

Definition 1.3.6 Two events A and B are said to be conditionally independent given the event C
if:

IP(A
⋂
B|C) = IP(A|C)IP(B|C) (1.3. 20)

Denote the conditional probability of A given B by IPB(A). Then from the definition it can be
easily seen that IPB(A|C) = IP(A|B

⋂
C) provided IP(B

⋂
C) > 0.

¿From the definition of conditional probability the joint probability of a finite collection of events
{Ai}ni=1 such that IP(

⋂n
k=1Ak) > 0 can be sequentially computed as follows:

IP(
n⋂
k=1

Ak) = IP(A1)IP(A2|A1)IP(A3|A1,A2)....IP(An|A1,A2, ...,An−1)

Remark: Of particular importance is the case when the events are Markovian i.e. when IP(Ak|A1,A2, ...Ak−1) =
IP(Ak|Ak−1) for all k. Then the above sequential computation reduces to:

IP(
n⋂
k=1

Ak) = IP(A1)
n∏
k=2

IP(Ak|Ak−1)

or in other words the joint probability can be deduced from the probability of the first event and the
conditional probabilities of subsequent pairs of events. It is easy to see that such a property implies
that the event Ak is conditionally independent of the events Al; l ≤ k − 2 given the event Ak−1.
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The definition of conditional probabilities and the sequential computation of the joint proba-
bilities above leads to a very useful formula of importance in estimation theory called the Bayes’
Rule

Proposition 1.3.2 Let {Bk}∞k=1 be a countable collection of disjoint events i.e. Bi
⋂
Bj = φ; i 6= j;

such that
⋃∞
n=1Bn = Ω. Then for any event A :

IP(A) =
∞∑
k=1

IP(A|Bk)IP(Bk) (1.3. 21)

and
IP(Bj |A) =

IP(A|Bj)IP(Bj)∑∞
i=1 IP(A|Bi)IP(Bi)

(1.3. 22)

The first relation is known as the law of total probability which allows us to compute the prob-
ability of an event by computing the conditional probability on ‘simpler’ events which are disjoint
and exhaust the space Ω. The second relation is usually referred to as Bayes’ rule. The importance
arises in applications where we cannot observe a particular event but instead observe another event
whose probability can be inferred by the knowledge of the event conditioned on simpler events.
Then Bayes’ rule just states that the conditional probability can be computed from the knowledge
of how the observed event interacts with other ‘simpler’ events. The result also holds for a finite
decomposition with the convention that if P (Bk) = 0 then the corresponding conditional probability
is set to 0.

Once we have the definition of conditional probabilities we can readily obtain conditional distri-
butions. Let us begin by the problem of computing the conditional distribution of a real valued r.v.
X given that X ∈ A where IP(X ∈ A) > 0. In particular let us take A = (a, b]. We denote the
conditional distribution by F(a,b](x).

Now by definition of conditional probabilities:

F(a,b](x) =
IP(X ∈ (−∞, x]

⋂
(a, b])

IP(X ∈ (a, b])

Now, for x ≤ a the intersection of the events is null. Hence, it follows that :

F(a,b](x) = 0 x ≤ a

=
F (x)− F (a)
F (b)− F (a)

x ∈ (a, b]

= 1 x ≥ b

More generally we would like to compute the conditional distribution of a random variable X
given the distribution of another r.v. Y . This is straight forward in light of the definition of
conditional probabilities.

FX|Y (x; y) =
F (x, y)
FY (y)

where FX|Y (x; y) = P (X ≤ x|Y ≤ y).
¿From the point of view of applications a more interesting conditional distribution is the con-

ditional distribution of X given that Y = y. This corresponds to the situation when we ‘observe’
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a particular occurrence of Y given by y. In the case when Y is continuous this presents a problem
since the event that {Y = y} has zero probability. However, when a joint density exists and hence
individual densities will exist, then the conditional density p(x|Y = y) can be defined by:

pX|Y (x|y) =
p(x, y)
pY (y)

(1.3. 23)

Note this is not a consequence of the definition since densities are not probabilities (except in the
discrete case) and so we append a proof:

The way to derive this is by noting that by the definition of the conditional probability

IP(X ∈ (x, x+ ∆x];Y ∈ (y, y + ∆y]) =
IP(X ∈ (x, x+ ∆x], Y ∈ (y, y + ∆y])

IP(Y ∈ (y, y + ∆y])

Now, for small ∆x,∆y we obtain by the definition of densities:

IP(X ∈ (x, x+ ∆x];Y ∈ (y, y + ∆y]) =
p(x, y)∆x∆y
pY (y)∆y

hence taking limits as ∆x → 0 and denoting lim∆x→0
IP(X∈(x,x+∆x;Y ∈(y,y+∆y])

∆x = IPX|Y (x|y) (it
exists) we obtain the required result.

Note from the definition of the conditional density we have:∫
pX|Y (x|y)dx = 1

and ∫
pX|Y (x|y)pY (y)dy = pX(x)

Remark: Although we assumed that X and Y are real valued r.v’s the above definitions can be
directly used in the case when X and Y are vector valued r.v’s where the densities are replaced by the
joint densities of the component r.v’s of the vectors. We assumed the existence of densities to define
the conditional distribution (through the definition of the conditional density) given a particular
value of the r.v. Y . This is strictly not necessary but to give a proof will take us beyond the scope
of the course.

Once we have the conditional distribution we can calculate conditional moments. From the point
of view of applications the conditional mean is of great significance which we discuss in the next
subsection.

1.3.2 Conditional Expectation

¿From the definition of the conditional distribution one can define the conditional expectation of a
r.v. given the other. This can be done as follows:

E[X|Y = y] =
∫
X
xpX|Y (x|y)dx

note what remains is a function of y. Let us call it g(y). Now if we substitute the random variable
Y instead of y, then g(Y ) will be a random variable. We identify this as the result of conditioning
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Xgiven the r.v. Y . In general it can be shown using measure theory that indeed one can define the
conditional expectation :

E[X|Y ] = g(Y )

where g(.) is a measurable function (as defined above).
The conditional expectation has the following properties:

Proposition 1.3.3 Let X and Y be jointly distributed r.v’s. Let f(.) be a measurable function with
E[f(X)] <∞ i.e. f(X) is integrable. Then:

a) If X and Y are independent, E[f(X)|Y ] = E[f(X)].

b) If X is a function of Y say X = h(Y ), then E[f(X)|Y ] = f(X) = f(h(Y )).

c) E[f(X)] = E[E[f(X)|Y ]].

d) E[h(Y )f(X)|Y ] = h(Y )E[f(X)|Y ] for all functions h(.) such that E[h(Y )f(X)] is defined.

Proof: The proof of a) follows from the fact that the conditional distribution of X given Y is just the
marginal distribution of X since X and Y are independent. The proof of b) can be shown as follows:
let a < h(y) then IP(X ≤ a, Y ∈ (y, y + δ]) = IP(h(Y ) ≤ a, Y ∈ (y, y + δ]) which is 0 for sufficiently
small δ (assuming h(.) is continuous). If a ≥ h(y) then the above distribution is 1. This amounts
to the fact that F (x/y) = 0 if x < h(y) and F (x/y) = 1 for all x ≥ h(y) and thus the distribution
function has mass 1 at h(y). Hence E[f(X)|Y = y] = f(h(y)) from which the result follows. The
proof of c) follows (in the case of densities) by noting that : E[f(X)] =

∫
Y

∫
X xpX|Y (x/y)pY (y)dxdy

and
∫
Y pX|Y (x|y)PY (y)dy = pX(dx). Part d) follows from b) and the definition.

Properties c) and d) give rise to a useful characterization of the conditional expectations. This is
called the orthogonality principle. This states that the difference between a r.v. and its conditional
expectation is uncorrelated with any function of the r.v. on which it is conditioned i.e,

E[(X −E[X|Y ])h(Y )] = 0 (1.3. 24)

In the context of mean squared estimation theory the above is just a statement of the orthogonality
principle with E[XY ] playing the role of the inner-product on the Hilbert space of square integrable
r.v’s i.e. r.v’s such that E[X]2 < ∞. Thus the conditional expectation can be seen as a projection
onto the subspace spanned by Y with the inner-product as defined. This will be discussed in Chapters
3 and 4.

The next property of conditional expectations is a very important one. This is at the heart of
estimation theory. Suppose X and Y are jointly distributed r.v’s. Suppose we want to approximate
X by a function of Y i.e. X̂ = g(Y ). Then, the following result shows that amongst all measurable
functions of Y, g(.) that can be chosen, choosing g(Y ) = E[X|Y ] minimizes the mean squared error.

Proposition 1.3.4 Let X and Y be jointly distributed. Let g(Y ) be a measurable function of Y
such that both X and g(Y ) have finite second moments. Then the mean squared error E[X − g(Y )]2

is minimized over all choices of the functions g(.) by choosing g(Y ) = E[X|Y ].
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Proof: This just follows by the completion of squares argument. Indeed,

E[X − g(Y )]2 = E[X −E[X|Y ] + E[X|Y ]− g(Y )]2

= E[X −E[X|Y ]]2 + 2E[(X −E[X|Y ])(E[X|Y ]− g(Y ))]
+E[E[X|Y ]− g(Y )]2

= E[X −E[X|Y ]]2 + E[E[X|Y ]− g(Y )]2

where we have used properties b and c to note that E[(E[X|Y ] − g(Y ))(X − E[X|Y ])] = 0. Hence
since the right hand side is the sum of two squares and we are free to choose g(Y), the right hand
side is minimized by choosing g(Y ) = E[X|Y ].

Remark 1.3.3 Following the same proof it is easy to show that the constant C which minimizes
E[(X − C)2] is C = E[X] provided E[X2] <∞.

Finally we conclude our discussion of conditional expectations by showing another important
property associated with conditional expectations. This is related to the fact that if we have a 1:1
transformation of a r.v. then conditioning w.r.t to the r.v. or its transformed version gives the same
result.

Proposition 1.3.5 Let X and Y be two jointly distributed r.v’s. Let φ(.) be a 1:1 mapping. Then:

E[X|Y ] = E[X|φ(Y )]

Proof: Note by property c) of conditional expectations for any bounded measurable function h(Y )
we have:

E[h(Y )X] = E[h(Y )E[X|Y ]] (A)

Denote g(Y ) = E[X|Y ] and Ỹ = φ(Y ).
Once again by property c) we have for all bounded measurable functions j(.) :

E[j(Ỹ )X] = E[j(Ỹ )E[X/Ỹ ]]

Now since φ(.) is 1:1 it implies that φ−1 exists and moreover the above just states that

E[j ◦ φ(Y )X] = E[j ◦ φ(Y )g̃ ◦ φ(Y )]

where we denote E[X/Ỹ ] = g̃(Ỹ ) = g̃ ◦ φ(Y ) by definition of φ. Now since φ−1 exists then we can
take j(.) = h ◦ φ−1 for all bounded measurable functions h(.). Therefore we have

E[h(Y )X] = E[h(Y )g̃ ◦ φ(Y )] (B)

Comparing (A) and (B) we see that E[X|Y ] = E[X/φ(Y )] with g̃(.) = g ◦ φ−1(.).

Let us see a non-trivial example of conditional expectations where we use the abstract property
to obtain the result.

Example : Let X be a real valued r.v. with probability density pX(.). Let h(.) be a measurable
function such that E|h(X))| <∞. Show that the conditional expectation

E[h(X)|X2] = h(
√
X2)

pX(
√
X2)

pX(
√
X2) + pX(−

√
X2)

+ h(−
√
X2)

pX(−
√
X2)

pX(
√
X2) + pX(−

√
X2)

(1.3. 25)
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Note this is not trivial since X2 : < → < is not 1:1 (since knowing X2 does not tell us whether X
is positive or negative. Moreover calculating the conditional densities involves generalized functions
(delta functions)(see below) . The way to show this is by using the property that for any measurable
and integrable function g(.) we have:

E[h(X)g(X2)] = E[E[h(X)|X2]g(X2)]

Indeed, we can actually show that the first term in the conditional expectation just corresponds to
E[h(X)1I[X>0]|X2]. Let is show it by using the property of conditional expectations.

Let us consider the first term on the r.h.s of (1.3. 25).:

E[h(
√
X2)

pX(
√
X2)

pX(
√
X2) + pX(−

√
X2)

g(X2)] =
∫ ∞
−∞

h(
√
x2)

pX(
√
x2)

pX(
√
x2) + pX(−

√
x2)

g(x2)pX(x)dx

=
∫ ∞

0
h(
√
x2)

pX(x)
pX(x) + pX(−x)

g(x2)pX(x)dx+∫ 0

−∞
h(
√
x2)

pX(x)
pX(x) + pX(−x)

g(x2)pX(x)dx

=
∫ ∞

0
h(
√
x2)

pX(x)
pX(x) + pX(−x)

g(x2)pX(x)dx+∫ ∞
0

h(
√
x2)

pX(x)
pX(x) + pX(−x)

g(x2)pX(−x)dx

=
∫ ∞

0
h(x)g(x2)pX(x)dx = E[h(X)g(X2)1I[X>0]]

where in the 3rd. step we substitute −x for x in the second integral.
Similarly for the second term. Indeed one way of looking at the result is

E[h(X)|X2] = h(
√
X2)IP(X > 0|X2) + h(−

√
X2)IP(X < 0|X2)

It is instructive to check that going via the route of explicitly calculating the conditional density
gives the conditional density pX|X2(x|y) as:

pX|X2(x|y) =
1

pX(
√
y) + pX(−√y)

(pX(
√
y)δ(x−√y) + pX(−√y)δ(x+

√
y))

where δ(.) denotes the Dirac delta function. Hence E[X|X2 = y] =
∫∞
−∞ h(x)pX|X2(x|y)dx which

can be easily seen to be the relation above and also

IP(X > 0|X2 = y) =
∫ ∞

0
pX|X2(x|y)dx =

pX(
√
y)

pX(
√
y) + pX(−√y)

1.4 Gaussian or Normal random variables

We now discuss properties of Gaussian or Normal r.v’s. since they play an important role in the
modeling of signals and the fact that they also possess special properties which are crucial in the
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development of estimation theory. Throughout we will work with vector valued r.v’s. Note in
probability we usually refer to Gaussian distributions while statisticians refer to them as Normal
distributions. In these notes we prefer the terminology Gaussian.

We first introduce some notation: For any two vectors x, y ∈ <n, the inner-product is denoted
by [x, y] =

∑n
i=1 xiyi. x∗ denotes the transpose (row vector) of the (column) vector x and thus

[x, y] = x∗y. For any n × n matrix A, A∗ denotes the transpose or adjoint matrix. [Ax, x] is the
quadratic form given by [Ax, x] = x∗A∗x. If the vectors or matrices are complex then the ∗ operation
denotes the complex conjugate transpose.

We first develop some general results regarding random vectors in <n.
Given a vector valued r.v X ∈ <n (i.e. n r.v’s which are jointly distributed) the mean is just

the column vector with elements mi = E[Xi] and the covariance is a matrix of elements Ri,j =
E[(Xi − mi)(Xj − mj)] and hence Ri,j = Rj,i or the matrix R is self-adjoint (symmetric). In
vectorial terms this can be written as R = E[(X −m)(X −m)∗].

Definition 1.4.1 Let X be a <n valued r.v. then the characteristic functional of X denoted by
CX(h) is

E[eı[h,X]] =
∫
<n
eı[h,x]dF (x) (1.4. 26)

where h ∈ <n and F (x) denotes the joint distribution of {Xi}ni=1.

It can be easily seen that the characteristic functional possesses the properties given in 1.2.1.
Let X ∈ <n and define the r.v.

Y = AX + b (A)

where A is a m× n matrix and b ∈ <m is a fixed vector.
The following proposition establishes the relations between the mean, covariance, characteristic

functions and distributions of Y in terms of the corresponding quantities of X.

Proposition 1.4.1 a) For Y given above; E[Y ] = AE[X] + b and cov(Y ) = Acov(X)A∗

b) If A is a n× n (square matrix) then denoting m = E[X]

E[AX,X] = [Am,m] + Trace[Acov(X)]

c) Let Y ∈ <n be any r.v. with finite variance. Then there exists a <n valued r.v. X with mean
zero and variance = I (the identity n× n matrix) such that (A) holds.

d) CY (h) = eı[h,b]CX(A∗h) with h ∈ <m.

e) If X possesses a density pX(x) then if A is a non-singular n× n matrix then

pY (y) =
1

|det(A)|
pX(A−1(y − b))

Proof: a) The mean is direct.

cov(Y ) = E[(Y −E[Y ])(Y −E[Y ])∗]
= E[A(X −E[X])(X −E[X])∗A∗

= Acov(X)A∗
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b) Define X̃ = X −E[X] then X̃ is a zero mean r.v. with cov(X̃) = cov(X). Hence,

E[AX,X] = E[A(X̃ +m), (X̃ +m)]
= E[AX̃, X̃] + E[AX̃,m] + E[Am, X̃] + [Am,m]
= E[AX̃, X̃] + [Am,m]

=
n∑

i,j=1

Ai,jcov(X)i,j + [Am,m]

= Trace(Acov(X)) + [Am,m]

c) The proof of part c follows from the fact that since the covariance of Y is E[(Y −E[Y ])(Y −E[Y ])∗]
it is non-negative definite and (symmetric). Hence, from the factorization of symmetric non-negative
definite matrices Q = ΛΛ∗ we can take A = Λ and b = E[Y ]
d) This follows from the fact that :

CY (h) = E[eı[h,AX+b]] = eı[h,b]E[eı[A
∗h,X]] = eı[h,b]CX(A∗h)

e) This follows from the Jacobian formula by noting that f−1(x) = A−1(x− b) where f(x) = Ax+ b
and detA−1 = 1

detA .
Let us now consider Gaussian r.v’s.
A r.v. X ∈ < is Gaussian with mean m and var σ2, denoted N(m,σ2), if its probability density

function is given by:

p(x) =
1√
2π
e−

(x−m)2

2σ2 (1.4. 27)

The corresponding characteristic function of a Gaussian r.v. X ∼ N(m,σ2) is:

C(h) = eımh−
1
2
σ2h2

(1.4. 28)

The extension of these to vector <n valued r.v’s (or a finite collection of r.v’s) is done through
the definition of the characteristic functional.

Definition 1.4.2 A <n valued r.v. X (or alternatively a collection of < valued r.v’s {Xi}ni=1) is
(are) said to be Gaussian if and only if the characteristic functional can be written as :

CX(h) = eı[h,m]− 1
2

[Rh,h] (1.4. 29)

where m = E[X] and R denotes the covariance matrix with entries Ri,j = cov(XiXj).

Remark: The reason that jointly Gaussian r.v’s are defined through the characteristic functional
rather than the density is that R−1 need not exist. Note it is not enough to have each r.v. to have
a marginal Gaussian distribution for the collection to be Gaussian. An example of this is given in
the exercises.

We now study the properties of jointly Gaussian r.v’s.

Proposition 1.4.2 a) Linear combinations of jointly Gaussian r.v’s are Gaussian.

b) Let {Xi}ni=1 be jointly Gaussian. If the r.v’s are uncorrelated then they form a collection of
independent r.v’s
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Proof: a) Let {Xi} be jointly Gaussian. Define:

Y =
n∑
i=1

aiXi = AX

where A is a 1× n matrix.
Then applying part d) of the proposition 1.4.1 we obtain:

CY (h) = CX(A∗h) = eı[A
∗h,m]− 1

2
[ARA∗h,h]

implying that the r.v. Y is Gaussian with mean Am and variance (ARA∗).
Note we could also have taken Y to be a <m valued r.v. formed by linear combinations of the

vector X = col(X1, X2, ..., Xn).
b) Since the r.v’s are uncorrelated, cov(XiXj) = 0 for i 6= j. Hence, R is a diagonal matrix

with diagonal elements σ2
i = var(Xi). From the definition of jointly Gaussian r.v’s in this case the

characteristic functional can be written as:

C(h) = e
ı
∑n

j=1
hjmj− 1

2

∑n

j=1
σ2
jh

2
j

=
n∏
j=1

eıhjmj−
1
2
σ2
jh

2
j

=
n∏
j=1

CNj (hj)

where CNj (hj) corresponds to the characteristic function of a N(mj , σ
2
j ) r.v. Hence since the char-

acteristic functional is the product of individual characteristic functions the r.v’s are independent.
With the aid of the above two properties one can directly calculate the joint density of a finite

collection of Gaussian r.v’s provided that the covariance matrix is non-singular. This is often used
to define jointly Gaussian r.v’s but is less general than the definition via characteristic functionals
since the inverse of the covariance matrix must exist.

Proposition 1.4.3 Let {Xi}ni=1 be jointly Gaussian with mean m = col(m1,m2, ...,mn) and covari-
ance matrix R with ri,j = E[(Xi −mi)(Xj −mj)] = cov(XiXj). If R is non-singular then the joint
probability density is given by

p(x1, x2, x3, ..., xn) =
1

(2π)
n
2 (detR)

1
2

e−
1
2

[R−1(x−m),(x−m)] (1.4. 30)

Proof: The proof of this follows by using parts c) and e) of proposition 1.4.1 and part a above.
Suppose that first {Zi} are independent N(0, 1) r.v’s then by independence the joint density can be
written as :

p(x1, x2, ..., xn) =
n∏
i=1

1√
2π
e−

x2
i
2 =

1
(2π)

n
2

e−
||x||2

2

Now use the fact that if R is non-singular then R = LL∗ with L non-singular and X = LZ + m
where m denotes the column vector of means of X i.e. mi = E[Xi]. Now use part e) of proposition
1.4.1 with A = L and then noting that det(L) =

√
detR and substituting above we obtain:

p(x1, x2, ..., xn) =
1

(2π)
n
2 (detR)

1
2

e−
1
2
||L−1(x−m)||2
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and then ||L−1(x−m)||2 = [R−1(x−m), (x−m)].

We now give a very important property associated with the conditional distributions of Gaussian
r.v’s. Let X and Y be jointly distributed Gaussian r.v’s taking values in <n and <m respectively with
means mX and mY and covariances ΣX and ΣY . Assume that the covariance of Y is non-singular.
Denote cov(X,Y ) = ΣXY and cov(Y,X) = ΣY X . Note by definition ΣXY = Σ∗Y X .

Then we have the following proposition.

Proposition 1.4.4 If X and Y are two jointly distributed Gaussian vector valued r.v’s. Then the
conditional distribution of X given Y is Gaussian with mean:

E[X|Y ] = mX/Y = mX + ΣXY Σ−1
Y (Y −mY ) (1.4. 31)

and covariance
cov(X/Y ) = ΣX/Y = ΣX − ΣXY Σ−1

Y Σ∗XY (1.4. 32)

Proof: The idea of the proof is to transform the joint vector (X,Y ) into an equivalent vector r.v.
whose first component is independent of the second and then identifying the mean and covariance
of the resultant first component.

Define the <n+m vector valued r.v. Z = col(X,Y ). Let M be the matrix defined by

M =

[
In −A
0 Im

]

Define Z ′ = col(X ′, Y ) by
Z ′ = MZ

Then Z ′ is a Gaussian <n+m valued r.v. with mean E[Z ′] = ME[Z] and covariance cov(Z ′) =
Mcov(Z)M∗. In particular, due to the structure of M we have:

Z ′ ∼ N
( (

mX −AmY

mY

)
;

[
ΣX −AΣ∗XY − ΣXYA

∗ +AΣYA
∗ ΣXY −AΣY

Σ∗XY − ΣYA
∗ ΣY

] )

Now suppose we choose A such that the cross terms in the covariance of Z ′ are zero, this will imply
that X ′ and Y are independent. This implies that

ΣXY −AΣY = 0

or
A = ΣXY Σ−1

Y

Substituting for A we obtain:
E[X ′] = mX − ΣXY Σ−1

Y mY

and
cov(X ′) = ΣX − ΣXY Σ−1

Y Σ∗XY

It remains to compute the conditional distribution of X given Y and show that it is Gaussian with
the mean and covariance as stated in the statement.
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Note by the construction of Z ′ = MZ , it is easy to see that M is invertible with :

M−1 =

[
In A
0 Im

]

Now the conditional density of X given Y is just:

pX/Y (x/y) =
p(x, y)
pY (y)

=
pZ(x, y)
pY (y)

Now since Z = M−1Z ′ we can compute pZ from pZ′ since Z and Z ′ are related by a 1:1 transformation
and note that the two components of Z ′ are independent. Hence, noting that Y = y and X = x
implies that X ′ = x−Ay we obtain:

pX/Y (x/y) =
1

|detM |
pZ′(x−Ay, y)

pY (y)

Noting that pZ′(x, y) = pX′(x)pY (y) and detM = 1, by independence of X ′ and Y we obtain that

pX/Y (x/y) = pX′(x−Ay)

But by constructionX ′ is Gaussian and hence the above result states that the conditional distribution
of X given Y = y is just a Gaussian distribution with mean:

mX/Y = mX′ + ΣXY Σ−1
Y y

and
cov(X/Y ) = Cov(X ′) = ΣX − ΣXY Σ−1

Y Σ∗XY

and the proof is done.

Remark: The above proposition shows that not only is the conditional distribution of jointly
Gaussian r.v’s Gaussian but also the conditional mean is an affine function of the second r.v. and
the conditional covariance does not depend on the second r.v. i.e. the conditional covariance is a
constant and not a function of the r.v. on which the conditioning takes place. This result only holds
for Gaussian distributions and thus the problem of finding the best mean squared estimate can be
restricted to the class of linear maps.

1.5 Probabilistic Inequalities and Bounds

In this section we give some important inequalities for probabilities and bounds associated with
random variables. These results will play an important role in the study of the convergence issues.

Proposition 1.5.1 (Markov Inequality)
Let X be a r.v. and f(.) : < → <+ such that E[f(X)] <∞. Then

IP (f(X) ≥ a) ≤ E[f(X)]
a

; a > 0 (1.5. 33)
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Proof: This just follows from the fact that :

a1(f(X)≥a) ≤ f(X)

Hence taking expectations gives:

aIP (f(X) ≥ a) ≤ E[f(X)]

A special case of the Markov inequality is the so-called Chebychev inequality which states that
for a r.v. X with mean m and variance σ2

IP (|X −m| ≥ ε) ≤ σ2

ε2

This amounts to choosing the function f(X) = (X −m)2 in the Markov inequality.
An immediate consequence of Chebychev’s inequality is the fact that if a r.v. X has variance

equal to 0 then such a random variable is almost surely a constant.

Definition 1.5.1 An event is said to be P -almost sure(usually abbreviated as IP-a.s.) if the proba-
bility of that event is 1 i.e.

IP{ω : ω ∈ A} = 1

Now if X is any r.v. with variance 0 note that :

{ω : |X(ω)−m| > 0} =
∞⋃
n=1

{ω : |X(ω)−m| ≥ 1
n
}

Hence,

IP (|X(ω)−m| > 0) ≤
∞∑
n=1

IP
(
|X(ω)−m| ≥ 1

n

)
Using Chebychev’s inequality and noting σ2 = 0 we obtain that the probability of the event that
|X −m| > 0 is 0 or IP (X(ω) = m) = 1.

The next set of inequalities concerns moments or expectations of r.v’s. Perhaps one of the most
often used ones is the Cauchy-Schwarz inequality. We state it in terms of vectors.

Proposition 1.5.2 ( Cauchy-Schwarz Inequality)
Let X ad Y be two r.v’s such that E[||X||2] <∞ and E[||Y ||2] <∞ . Then E(|[X,Y ]|) <∞ and

(E([X,Y ]))2 ≤ E[||X||2]E[||Y ||2] (1.5. 34)

Proof: We assume that E[||Y ||2] > 0 since if E[||Y ||2 = 0 then in light of the result above we have
Y = 0 a.s. and hence the inequality is trivially satisfied (it is an equality).

Hence for E[||Y ||2] > 0 we have:

0 ≤ E[||Y ||2]E
[
(X − E([X,Y ])

E[||Y ||2]
Y )(X − E([X,Y ])

E[||Y ||2]
Y ))∗

]
≤ E[||Y ||2]

(
E[||X||2 − (E([X,Y ]))2

E[||Y ||2]

)
≤ E[||X||2]E[||Y ||2]− (E([X,Y ]))2
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which is the required result.

Using the Cauchy-Schwarz inequality we can prove a one-sided version of Chebychev’s inequality
that is often useful. This is sometimes referred to as Cantelli’s inequality.

Proposition 1.5.3 (Cantelli’s inequality)
Let X be a random variable with mean E[X] = m and finite variance. Then:

IP (X(ω)−m ≥ ε) ≤ var(X)
var(X) + ε2

Moreover, we can obtain the following version of Chebychev’s inequality:

IP (|X −m| ≥ ε) ≤ 2var(X)
var(X) + ε2

Proof: Without loss of generality we assume m = 0. Then,

ε−X ≤ (ε−X)1I[ε>X]

Taking expectations on both sides we obtain:

ε ≤ E[(ε−X)1I[ε>X]

Hence squaring both sides and using the Cauchy=Schward inequality we obtain:

ε2 ≤ (E(ε−X)1I[ε>X])
2

≤ E(ε−X)2IP(ε > X)

Now expanding the r.h.s. we obtain:

IP(X < ε) ≥ ε2

ε2 + var(X)

and noting that IP(X ≥ ε) = 1− IP(ε < X) the result follows.
In a similar way by considering Y = −X and noting var(Y ) = var(X), using the previous result

above we obtain:
IP(Y ≥ ε) = IP(−ε ≤ X) ≤ var(X)

var(X) + ε2

and therefore combining the two results we have:

IP(|Y | ≥ ε) ≤ 2var(X)
var(X) + ε2

Another important inequality known as Jensen’s inequality allows us to relate the mean of a
function of a r.v. and the function of the mean of the r.v.. Of course we need some assumptions
on the functions. These are called convex functions. Recall, a function f(.) : < → < is said to be
convex downward (or convex) if for any a, b ≥ 0 such that a+ b = 1 :

f(ax+ by) ≤ af(x) + bf(y)

if the inequality is reverse then the function is said to be convex upward (or concave).
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Proposition 1.5.4 (Jensen’s Inequality)
Let f(.) be convex downward (or convex) and E|X| <∞. Then:

f(E[X]) ≤ E[f(X)] (1.5. 35)

Conversely if f(.) is concave (or convex upward) then

E[f(X)] ≤ f(E[X]) (1.5. 36)

Proof: We prove the first part. The second result follows similarly by noting that if f(.) is convex
then -f is concave.

Now if f(.) is convex downward then it can be shown that there exists a real number c(y) such
that

f(x) ≥ f(y) + (x− y)c(y)

for any x, y ∈ <. (This can be readily seen if f is twice differentiable since the convex property
implies that the second derivative is non-negative)

Hence choose x = X and y = E[X]. Then we have:

f(X) ≥ f(E[X]) + (X −E[X])c(E[X])

Now taking expectations on both sides we obtain the required result by noting that the expectation
of the second term is 0.

Remark 1.5.1 Noting that conditional distributions are bona-fide distributions, it follows that Jensen’s
inequality also holds for conditional expectations. i.e. if f(.) is convex then:

f(E[X|Y ]) ≤ E[f(X)|Y ]

One immediate consequence of Jensen’s inequality is that we can obtain relations between dif-
ferent moments of r.v’s.. These inequalities are called Lyapunov’s inequalities.

Proposition 1.5.5 (Lyapunov’s Inequality) Let 0 < m < n then:

(E[|X|m])
1
m ≤ (E[|X|n]

1
n (1.5. 37)

Proof: This follows by applying Jensen’s inequality to the convex downward function : g(x) = |x|r
where r = n

m > 1.
A very simple consequence is of Lyapunov’s inequality is the following relationship between the

moments of r.v’s (provided they are defined).

E[|X|] ≤ (E[|X|2])
1
2 ≤ .... ≤ (E[|X|n])

1
n

Another consequence of Jensen’s inequality is a generalization of the Cauchy-Schwarz inequality
called Hölder’s inequality which we state without proof.
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Proposition 1.5.6 (Hölder’s Inequality)
Let 1 < p < ∞ and 1 < q < ∞ such that 1

p + 1
q = 1. If E[|X|p] < ∞ and E[|Y |q] < ∞. Then

E|XY | <∞ and
E[|XY |] ≤ (E[|X|p])

1
p (E[|Y |q])

1
q (1.5. 38)

Note a special case of Hölder’s inequality with p = q = 2 corresponds to the Cauchy-Schwarz in-
equality. Another important inequality which can be shown using Hölder’s inequality is Minkowski’s
inequality which relates the moments of sums of r.v’s to sums of the moments of r.v’s. Once again
we state the result without proof.

Proposition 1.5.7 (Minkowski’s inequality)
Let 1 ≤ p <∞. If E[|X|p] and E[|Y |p] are finite then E[|X + Y |p] <∞ and

(E[|X + Y |p])
1
p ≤ (E[|X|p])

1
p + (E[|Y |p])

1
p (1.5. 39)

Finally we conclude with a very useful inequality called the Association Inequality whose gener-
alization to <n valued r.v.’s is called the FKG inequality.

Proposition 1.5.8 (Association Inequality)
Let f(.) and g(.) be non-decreasing (or on-increasing) functions from < → <. The for any real

valued r.v. X
E[f(X)g(X)] ≥ E[f(X)]E[g(X)] (1.5. 40)

and if f(.) is non-increasing and g(.) is non-decreasing then:

E[f(X)g(X)] ≤ E[f(X)]E[g(X)] (1.5. 41)

Proof: Since the proof involves a trick, here are the details. Let X and Y be independent and
identically distributed: then if f(.) and g(.) are non-decreasing:

(f(x)− f(y)) (g(x)− g(y)) ≥ 0 ∀ x, y ∈ <

Hence substitute X and Y and take expectations and the result follows.
The second result follows in a similar way.

Remark: The FKG inequality states that if f(.) and g(.) are non-decreasing functions from <n → <
then the above result holds for <n valued r.v’s X. Note here a function is non-decreasing if it is true
for each coordinate.

We conclude this section with a brief discussion of the so-called Cramer’s theorem (also called
the Chernoff bound) which allows us to obtain finer bounds on probabilities than those provided
by Chebychev’s inequality particularly when the tails of the distributions are rapidly decreasing.
This can be done if the moment generating function of a r.v. is defined and thus imposes stronger
assumptions on the existence of moments. This result is the basis of the so-called large deviations
theory which plays an important role in calculating tail distributions when the probabilities are small
and important in information theory and in simulation.

Let X be a real valued r.v. such that the moment generating function M(h) is defined for h <∞.
i.e.

M(h) = E[ehX ] =
∫
ehxdF (x) <∞
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Define φF (h) = log(M(h)). Then by the definition of φF (h) we observe φF (0) = 0 and φ′F (0) = m =
E[X]. Define the following function:

I(a) = sup
h

(ha− φF (h)) (1.5. 42)

Then I(m) = 0 and I(a) > 0 for all a 6= m. Let us show this: by definition of I(a) we see that
the max of ha − φF (h) is achieved at a − φ′F (h) = 0 and thus if a = m then h = 0 from above
and hence I(m) = −φF (0) = 0. On the other hand : note φ′F (h) = M ′(h)

M(h) . Let ha the point where
maxh(ah− φF (h) is achieved.

Then ha satisfies M ′(ha)
M(ha) = a and I(a) = aha − φF (ha). By the definition of I(a) as the envelope

of affine transformations of a it implies that I(a) is convex downward and note that I ′(a) = ah′a +
ha − M ′(ha)

M(ha) h
′a and by definition of ha we have that I ′(a) = ha. Hence I ′(m) = 0 implying that the

function I(a) achieves its minimum at a = m which we have shown to be 0. Hence, I(a) > 0 for
a 6= m. Also note that if a > m = E[X] then ha > 0 or

I(a) = sup
h≥0
{ha− φF (h)}

Proposition 1.5.9 Let X be a r.v. whose moment generating function , M(h), is defined for h <∞.
Then :

i) If a > m, IP(X ≥ a) ≤ e−I(a)

ii If a < m, IP(X ≤ a) ≤ e−I(a)

The function I(a) is called the rate function associated with the distribution F (.).

Proof: We show only part i) the proof of the second result follows analogously.
First note that :

1{X≥a} ≤ eu(X−a) ; ∀ u ≥ 0

Hence,
IP(X ≥ a) = E[1[X≥a] ≤ E[eu(X−a) = e−(ua−φF (u))

Since the inequality on the rhs is true for all u ≥ 0 we choose u ≥ 0 to minimize the rhs which
amounts to choosing u ≥ 0 to maximize the exponent (ua− φF (u)) which by definition is I(a) since
the maximum is achieved in the region u ≥ 0.

Now if {Xi}ni=1 is a collection of independent, identically distributed (i.i.d) r.v’s with common
mean m then the above result reads as :

Corollary 1.5.1 If {Xi}ni=1 are i.i.d. with common mean m and let M(h) be the moment generating
function of X1 which is defined for all h <∞. Then:

i) If a > m, then IP( 1
n

∑n
k=1Xk ≥ a) ≤ e−nI(a)

ii) If a < m, then IP( 1
n

∑n
k=1Xk ≤ a) ≤ e−nI(a)

where I(a) corresponds to the rate function of F (.) the distribution of X1.
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Proof: The proof follows from above by noting that by the i.i.d. assumption

Mn(h) = E[eh
∑n

k=1
Xk ] = (M(h))n

Remark: The result also has important implications in terms of the so-called quick simulation
techniques or importance sampling. Below we discuss the idea. Suppose we define a new probability
distribution

dFa(x) =
ehax

M(ha)
dF (x)

i.e. we ‘modulate’ the distribution of X with the term ehax

M(ha) then Fa(x) defines a probability
distribution (it is easy to check that

∫
dFa(x) = 1) such that the mean of the r.v. X under Fa i.e.∫

xdFa(x) = a and vara(X) = M ′′(ha)
M(ha) − a

2. Now the implication in terms of ‘quick simulations’ is
the following. Suppose a is large (or very small) such that IP(X ≥ a) is very small (or IP(X ≤ a) is
very small). Then the occurrence of such events will be ‘rare’ and inspite of many trials we might
not ‘observe’ them. However if we perform the experiment under the change of coordinates as the
modulation suggests then since a is the mean such events will likely occur frequently and thus we
are more likely to observe them.

We can also use Fa to give a proof that I(a) is convex downward. To see this note that I ′′(a) = h′a.

Now since ha satisfies M ′(ha)
M(ha) = a differentiating gives h′a(

M ′′(ha)
M(ha) −

(
M ′(ha)
M(ha)

)2

) = 1 and noting that

the term in the brackets is just vara(X) of the r.v. X with distribution Fa(x) which must be positive
it implies that h′a > 0 or I(a) is convex downward and hence attains its minimum at a = m which
has the value 0.

1.6 Borel-Cantelli Lemmas

We conclude our overview of probability by discussing the so-called Borel-Cantelli Lemmas. These
results are crucial in establishing the almost sure properties of events and in particular in studying
the almost sure behavior of limits of events. The utility of these results will be seen in the context
of convergence of sequences of r.v’s and in establishing limiting behavior of Markov chains.

Before we state and prove the results we need to study the notions of limits of sequences of
events. We have already seen this before in the context of sequential continuity where the limit of
an increasing sequence of events is just the countable union while the limit of a decreasing sequence
of sets is just the countable intersection of the events. That the events form a σ-algebra implies
that the limit is a valid event to which a probability can be defined. Now if {An}∞n=1 is an arbitrary
collection of events then clearly a limit need not be defined. However, just as in the case of real
sequences the lim sup or limit superior and the lim inf or limit inferior can always be defined.

Definition 1.6.1 Let {An}∞n=1 be a countable collection of events. Then lim supnAn is the event :
{ω : ω ∈ infinitely many An} and is given by:

lim sup
n
An =

∞⋂
n=1

∞⋃
k=n

Ak (1.6. 43)

The event lim supnAn is often referred to as the event {An i.o.} where i.o. denotes infinitely
often.
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Definition 1.6.2 Let {An}∞n=1 be a countable collection of events. Then lim infnAn is the event :
{ω : ω ∈ all but a finite number of An} and given by:

lim inf
n
An =

∞⋃
n=1

∞⋂
k=n

An (1.6. 44)

Proposition 1.6.1 (Borel-Cantelli Lemma) Let {An} be a countable collection of events. Then
:

a) If
∑∞
n=1 IP(An) <∞ then IP(An i.o.) = 0.

b) If
∑∞
n=1 IP(An) =∞ and A1,A2, ... are independent then IP(An i.o.) = 1.

Proof:
a) First note by definition of {An i.o.} = limn→∞Bn where Bn =

⋃∞
k=nAk and Bn is a monotone

decreasing sequence. Hence by the sequential continuity property:

IP(An i.o.) = lim
n→∞

IP(Bn)

= lim
n→∞

IP(
∞⋃
k=n

Ak) ≤ lim
n→∞

∞∑
k=n

IP(Ak) = 0

b) Note the independence of {An} it implies that {Ān} are also independent. Hence we have:

IP(
∞⋂
k=n

Āk) =
∞∏
k=n

IP(Āk)

Now using the property that log(1− x) ≤ −x for x ∈ [0, 1) we have:

log(
∞∏
k=n

IP(Āk) = −
∞∑
k=n

log(1− IP(Ak)) = −
∞∑
k=n

IP(Ak) = −∞

Hence it implies that IP(
⋂∞
k=n Āk) = 0 or IP(An i.o) = 1.

Concluding remarks

In this chapter we have had a very quick overview of probability and random variables. These
results will form the basis on which we will build to advance our study of stochastic processes in
the subsequent chapters. The results presented in this chapter are just vignettes of the deep and
important theory of probability. A list of reference texts is provided in the bibliography which the
reader may consult for a more comprehensive presentation of the results in this chapter.
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Exercises

1. Let X be a continuous r.v. Use the sequential continuity of probability to show that IP(X =
x) = 0. Show the reverse i.e. if the probability that X = x is zero then the r.v. is continuous.

2. Let A∆B be the symmetric difference between two sets. i.e. A∆B = A
⋂
B̄
⋃

(B
⋂
Ā. Define

d1(A,B) = IP(A∆B) and d2(A,B) = IP(A∆B)

IP(A
⋃
B)

if IP(A
⋃
B) 6= 0 and 0 otherwise. Show that

d1(., .) and d2(., .) define ‘metrics’ i.e. they are non-negative, equal to 0 if the events are equal
(modulo null events) and satisfy the triangle inequality.

3. a) If X(ω) ≥ 0, show that:

E[X(ω)] =
∫ ∞

0
(1− F (x))dx

b) If −∞ < X(ω) <∞ then:

E[X(ω)] =
∫ ∞

0
(1− F (x))dx−

∫ 0

−∞
F (x)dx

c) More generally, if X is a non-negative random variable show that

E[Xr] =
∞∑
0

rxr−1P (X > x)dx

4. Let X be a continuous r.v. with density function pX(x) = C(x− x2) x ∈ [a, b].

(a) What are the possible values of a and b ?

(b) What is C?

5. Suppose the X is a non-negative, real valued r.v.. Show that:

∞∑
m=1

P (X ≥ m) ≤ E[X] ≤ 1 +
∞∑
m=1

P (X ≥ m)

6. Let X and Y be two jointly distributed r.v’s with joint density:

pXY (x, y) =
1
x
, 0 ≤ y ≤ x ≤ 1

Find

(a) pX(x) the marginal density of X

(b) Show that , given {X = x}, the r.v. Y is uniformly distributed on [0, x] i.e.the conditional
density:

pY/X(y/x) =
1
x

y ∈ [0, x]

(c) Find E[Y |X = x]

33



(d) Calculate P(X2 + Y 2 < 1|X = x) and hence show that P(X2 + Y 2 ≤ 1) = ln(1 +
√

2)

7. Find the density function of Z = X + Y ehen X and Y have the joint density:

pX,Y (x, y) =
(x+ y)

2
e−(x+y) , x, y ≥ 0

8. Let X and Y be independent, exponentially distriibuted r.v’s with parameters λ and µ respec-
tively. Let U = min{X,Y } and V = max{X,Y } and W = V − U .

(a) Find P (U = X) = P (X ≤ Y )

(b) Show that U and W are independent.

(c) Show that P (X = Y ) = 0

(d) Suppose that λ = µ. Show that the conditional distribution of Y given that X + Y = u
is uniform in [0, u]. Hence, find E[X|X + Y ] and E[Y |X + Y ].

9. Let X and Y be independent and identically distributed r.v.’s with E[X] < ∞. Then show
that

E[X/X + Y ] = E[Y/X + Y ] =
X + Y

2
Now if {Xi} is a sequence if i.i.d. r.v’s. using the first part establish that :

E[X1/Sn] =
Sn
n

where Sn =
∑n
i=1Xi

10. Let X1, X2, . . . , Xn be independent, identically distributed (i.i.d) random variables for which
E[X−1

1 ] exists. Let Sn =
∑n
i=1Xi. Show that for m < n

E[
Sm
Sn

] =
m

n

Find E[Sm|Sn] and E[Sn|Sm] assuming that E[Xi] = 1.

11. Let X and Y be independent r.v’s with the following distributions:

i) X is N(0, σ2).

ii) Y takes the value 1 with prob. p and -1 with prob q=1-p

Define Z = X + Y and W = XY . Then:

i) Find the probability density of Z and its characteristic function.

ii) Find the conditional density of Z given Y .

iii) Show that W is Gaussian. Define U = W +X. Show that U is not Gaussian. Find E[W ]
and var(W ). Are W and X correlated ? Independent ?

This problem shows the importance of the condition of ‘jointly Gaussian’ in connection with
linear combinations of Gaussian r.v’s.
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12. Let X ∼ N(0, 1) and let a > 0. Show that the r.v. Y defined by:

Y = X if |X| < a

= −X if |X ≥ a

has a N(0, 1) distribution. Find an expression for ρ(a) = cov(X,Y ) in terms of the normal
density function. Are the pair (X,Y ) jointly Gaussian?

13. Let X and θ be independent r.v’s with the following distributions:

pX(x) = 0 x < 0

= xe−
x2

2 x ≥ 0

θ is uniformly distributed in [0, 2π].

Define
Zt = X cos(2πt+ θ)

Then show that for each t, Zt is Gaussian.

14. Let X and Y be two r.v’s with joint density given by:

p(x, y) =
1

2π
e−

x2+y2

2

Let Z =
√
X2 + Y 2.

Find E[X|Z].

15. Show that a sequence of Markovian events have the Markov property in the reverse direction
i.e. IP(An/An+1, An+2, ..) = IP(An/An+1) and hence or otherwise establish the conditional
independence property IP(An+1

⋂
An−1/An) = IP(An+1/An)IP(An−1/An).

16. Let X be a Poisson r.v. i.e. X takes integer values 0, 1, 2, ... with IP(X = k) = λk

k! e
−λ ; λ > 0.

Compute the mean and variance of X. Find the characteristic function of X. Let {Xi} be
independent Poisson r.v’s. with parameters {λi}. Then show that Y =

∑n
i=1Xi is a Poisson

r.v.

17. Let {Xi} be i.i.d. r.v’s. Find the distribution of Yn = max{X1, X2, ..., Xn} and Zn =
min{X1, X2, ..., Xn} in terms of the distribution function F (x) of X1.

Now define ψn = Yn − Zn. The r.v. ψn is called the range of {Xi}ni=1. Show that the
distribution Fψ(z) = IP(ψn ≤ z) is given by:

Fψ(z) = n

∫ ∞
−∞

(F (x+ z)− F (x))n−1 dF (x)

18. Let X and Y be independent r.v’s such that Z = X + Y is Gaussian. Show that X and Y are
Gaussian r.v’s. You may assume that they are identically distributed.

This is a part converse to the statement that sums of jointly Gaussian r.v’s are Gaussian. This
shows that if a r.v. is Gaussian then we can always find two (or even n) independent Gaussian
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r.v’s such that the given r.v. is the sum of the two r.v’s. (or n r.v’s). Similarly for the case
of the Poisson r.v’s . This is related to an important notion of infinitely divisible properties of
such distributions. In fact it can be shown that if a distribution is infinitely divisible then its
characteristic function is a product of a Gaussian characteristic function and a characteristic
function of the Poisson type.

19. Let X(ω) and Y (ω) be jointly distributed, non-negative random variables. Show that:

P(X + Y > z) = P(X > z) + P(X + Y > z ≥ X)

and ∫ ∞
0

P(X + Y > z ≥ X)dz = E[Y ]

20. Let X and Y be two jointly distributed r.v’s with joint density:

pXY (x, y) =
1
x
, 0 ≤ y ≤ x ≤ 1

Find

(a) pX(x) the marginal density of X

(b) Show that , given {X = x}, the r.v. Y is uniformly distributed on [0, x] i.e.the conditional
density:

pY |X(y|x) =
1
x

y ∈ [0, x]

(c) Find E[Y |X = x]

(d) Calculate P(X2 + Y 2 < 1|X = x) and hence show that P(X2 + Y 2 ≤ 1) = ln(1 +
√

2)

21. Suppose that X and Y are jointly Gaussian r.v’s with E[X] = E[Y ] = m and E[(X −m)2] =
E[(Y − m)2] = σ2. Suppose the correlation coefficient is ρ. Show that W = X − Y is
independent of V = X + Y .

Define M = X+Y
2 and Σ2 = (X −M)2 + (Y −M)2. Show that M and Σ2 are independent.

M and Σ2 are the sample mean and variance.

Note: (X −M)2 and (Y −M)2 are not Gaussian.

This result can be extended to the sample mean and variance of any collection {Xi}Ni=1 of
Gaussian r.v’s with common mean and variance where the sample mean MN = 1

N

∑N
k=1Xk

and σ2
N = 1

N−1

∑N
k=1(Xk −MN )2.

22. Let X and Y be jointly distributed 0 mean random variables with finite variance. Show that:

var(Y ) = E[var(Y |X)] + var(E[Y |X])
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23. Let X be an integrable r.v.. Let X+ = max{X, 0} and X− = max{−X, 0}. Show that:

E[X|X+] = X+ − E[X−]
IP(X+ = 0)

1I[X+=0]

and

E[X|X−] = −X− +
E[X+]

IP(X− = 0)
1I[X−=0]

24. a) Show that a random variable is standard normal if and only if

E[f ′(X)−Xf(X)] = 0

for all continuous and piecewise differentiable functions f(.) : < → < with E[f ′(Z)] <∞
for Z ∼ N(0, 1).

b) Let h : < → < be a piecewise continuous function. Show that there exists a function f
which satisfies the so-called Stein equation:

h(x)− Φh = f ′(x)− xf(x)

where Φh = EN [h] where EN [.] denotes the expectation w.r.t. the standard normal
distribution.

This problem is related to defining a metric in the space of probability distributions. It allows
us to ”measure” how ”different” a given distribution is from a normal distribution by choosing
h(x) = 1[X≤x].

25. Show that Jensen’s inequality holds for conditional expectations.

26. Let X be N(m,σ2). Show that the rate function associated with X is given by:

I(a) =
(a−m)2

2σ2

Using this result compute the tail distributions IP(|X − m| ≥ kσ) for k = 1, 2, 3, 5, 10 and
compare the results with the corresponding results using Chebychev’s inequality and the exact
result.

Let Sn = 1
n

∑n
i=1Xi where {Xi} are i.i.d. N(0, 1) r.v’s. Find IP(|Sn| > ε)) and find the

smallest n (in terms of ε) such that the required probability is less than 10−3.
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