
Chapter 2

Random Sequences and Stochastic
Processes

In this chapter we will begin with a formal definition of what a stochastic process is and how it can
be characterized. We will then study certain properties related to classes of processes which have
simple probabilistic characterizations both in terms of their so-called sample-path properties as well
as their probabilistic behavior. Throughout we will consider several ‘canonical’ examples which will
aid us to better understand the concepts. We will conclude the chapter by seeing some of the most
important results in probability, the so-called limit theorems which are the Laws of Large Numbers
(LLN’s both weak and strong) and the Central Limit Theorem. These results are powerful because
of their generality and allow us to characterize the behavior of sequences and processes in large time.

2.1 Definitions and examples

Let (Ω,F , IP) be a probability space. Let T be an index set. For example T could be an arbitrary
interval in < or T = [a, b] × [c, d] a rectangle in <2 or T could be a discrete set such as the set
of non-negative integers {0, 1, 2, ...}. Then the indexed family of r.v’s {Xt(ω)}t∈T is said to be a
stochastic process. This means that for each fixed t ∈ T , Xt(ω) defines a random variable. If T is
an interval of < then Xt(ω) is said to be a continuous one-parameter stochastic process. Usually we
think of t as time and if T is continuous then the term continuous-time stochastic process is used.
If t is a point inn a rectangle i.e. t = (t, s) ∈ [a, b] × [c, d] then Xt(ω) is a two-parameter stochastic
process which is referred to as a random field. This can be extended to an arbitrary n-dimensional
index set. If T is discrete we usually refer to the process as a discrete-parameter(or time) stochastic
process. Discrete-time processes can be thought of as sequences of r.v’s. In these notes we will
restrict ourselves to the study of one-parameter stochastic processes in discrete as well as continuous
time. Without loss of generality we take X to be < or the process takes real values. The extension to
vector-valued or <n valued processes is direct but it will simplify notation to consider the processes
to be real valued.

As we have seen the mapping Xt(ω) : Ω → X where X denotes the space in which Xt takes
its values is a random variable. On the other hand for every fixed ω ∈ Ω the mapping {Xt(ω)} as
a function of t is called a realization or sample-path of the process. It is a deterministic function
of t. The problem is that we usually do not know ω and only have information on the underlying
probabilities of joint events of the type {Xti ∈ Ai} available. From this we need to get a good
characterization of the process. This is what we discuss below. Also we drop the argument ω as
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before.
Let Tn = (t1, t2, ..., tn) be an arbitrary partition of T i.e. Tn denotes a finite collection of points in

T . Then {Xt1 , ...,Xtn} forms a collection of r.v’s which are characterized by their joint distribution

FTn = Ft1,..,tn(x1, x2, ..., xn)

The family of joint distributions {Ftn} for all finite partitions Tn of T is called the finite dimensional
distributions of {Xt}. The joint distributions FTn are said to be compatible if they satisfy the
property of consistency (given in Chapter 1) and symmetry (i.e. if we take any permutation of
(t1, ..., tn) then the joint distribution remains the same). Now given a family of finite dimensional
distributions there is the important theorem of Kolmogorov which states that these can be associated
with the finite dimensional distributions of a stochastic process i.e. finite dimensional distributions
for every finite partition are sufficient to characterize a stochastic process. This is stated below
without proof.

Theorem 2.1.1 (Kolmogorov extension theorem)
Let {FTn} be a compatible family of finite dimensional distributions for Tn ∈ T . Then there

exists a probability space (Ω,F , IP) and a stochastic process {Xt} defined thereon such that the finite
dimensional distributions of {Xt} coincide with FTn .

Let us study the implications of the theorem by the aid of two canonical examples. It is important
to note is that what the theorem states is the existence of a probability space and thus, given a metric
space with finite-dimensional distributions defined thereon then a probability measure need not be
defined on the space without further restrictions on the distributions.
Example 1: (Continuous time ‘white noise’) Take as the space Ω the space C[0, T ] i.e. the space
of continuous functions. Consider the finite dimensional distributions defined by:

FTn(x1, x2, ..., xn) =
1

(2π)
n
2

n∏
i=1

(∫ xi

−∞
e−

y2
i
2 dyi

)

i.e. the joint distribution of n i.i.d. N(0,1) random variables. Then it is easy to see that FTn forms
a compatible family. Hence by the Kolmogorov extension theorem there exists a probability space
Ω′,F , IP) and a stochastic process {Xt} defined there on with distributions FTn . Let us show that
Ω′ 6= Ω = C[0, T ] i.e. Xt cannot be continuous in t and possess such finite dimensional distributions.
To show this we will show that if Ω is taken as C[0, T ] then the probability measure will fail to be
sequentially continuous (re. Section 1, Chapter 1) and thus cannot be countably additive.

Consider the events An = {ω : Xt > ε,Xt+ 1
n
≤ −ε}. Then:

IP(An) =
1

2π

(∫ ∞
ε

e−
x2

2 dx

)2

Now since by assumption we take Xt ∈ C[0, T ] it implies that the event {Xt 6= Xt+} is null and
hence:

0 = lim
n→∞

IP(An) =
1

2π

(∫ ∞
ε

e−
x2

2 dx

)2

> 0

for all ε > 0 which leads to a contradiction and violates the sequential continuity of IP. Hence
Ω′ 6= C[0, T ].

2



A natural question is what is the appropriate choice of Ω′?. The answer is that Ω′ can be taken
to be the space R[0,T ]. It turns out that this space is too large to yield any ‘nice’ properties for Xt.
But it is beyond the scope of the course.
Example 2: (Gaussian processes) The second example we consider is a discrete-time Gaussian
process. The question is can we define a discrete-time Gaussian process on the space `2 which is
the space of square summable sequences i.e. `2 = {xn :

∑∞
n=1 |xn|

2 < ∞}. Now if Xn is said to
be a discrete-time Gaussian process if the finite-dimensional distributions are Gaussian . Let Cn(h)
denote the characteristic functional. For simplicity we consider the r.v’s to be zero mean. Then:

Cn(h) = E[eı
∑n

i=1
hiXi ] = e

− 1
2

∑n

i=1

∑n

j=1
ri,jhihj

where ri,j = E[XiXj ] and {hj} are arbitrary scalars. Now suppose we consider the limit of Cn(h)
as n → ∞. If it is a characteristic functional it must satisfy the properties outlined in Chapter 1.
For this it is necessary and sufficient that

∑
i

∑
j |ri,j| <∞ since otherwise by suitable choice of {hi}

the sum will be infinite and the limit of the characteristic functionals will be 0 and thus we cannot
define a discrete-time Gaussian process in `2. Thus for example we cannot define a discrete-time
white noise process i.e. with ri,j = δi,j where δ is the Kronecker delta in `2. Discrete-time white
noise is defined on <∞ or the space of real valued sequences and this space is quite well defined and
can be considered as the canonical space on which all sequences of discrete-time stochastic processes
are defined. This basically means that we have no problem of defining the probability space for
discrete-time processes with given finite dimensional distributions unlike the continuous time case.

The aim of the examples has been to show that given a family of finite dimensional distributions
then the construction of the probability space imposes some restrictions on either the sample-paths
if we want to define Ω or if we fix Ω then it implies restrictions on the distributions. Henceforth
we will always assume that the process {Xt} is defined on a probability space (Ω,F , IP) and we will
not usually explicitly specify the space except that such a space and process could be defined by the
extension theorem.

2.2 Continuity of Stochastic Processes

Let {Xt}t∈T be a continuous time stochastic process. Unlike the case of deterministic functions of
t there are different types of continuity w.r.t t that can be defined. This is due to the fact that
in the probabilistic context a property holding almost surely is different in general than a property
holding in the mean etc. This is also the case with continuity. We need these concepts in order to
differentiate between processes that might be continuous at a given point vs that which is continuous
over the entire interval and the fact that jump processes (i.e. processes which have discontinuities at
certain points in time) satisfy weaker forms of continuity but are actually very different in behavior
from those which which have no discontinuities.

Definition 2.2.1 (Continuity in probability) A stochastic process {Xt} is said to be continuous in
probability at t if :

IP(|Xt+h −Xt| ≥ ε)
h→0
→ 0 ∀ε > 0 (2.2. 1)

Definition 2.2.2 (Continuity in p-th mean) A stochastic process {Xt} is said to be continuous inn
the p-th mean at t if

E[|Xt+h −Xt|
p]
h→0
→ 0 (2.2. 2)
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Remark: In light of Markov’s inequality if a process is continuous in the p-th mean it is continuous
in probability. From Lyapunov’s inequality we obtain that if a process is continuous in the p-th
mean then it is continuous in the r-th mean for all r < p.

Definition 2.2.3 (Almost sure continuity) A stochastic process {Xt} is said to be almost surely
continuous at t if:

IP(ω : lim
h→0
|Xt+h −Xt| = 0) = 1 (2.2. 3)

In each of the above definitions if the property holds for all t ∈ T then we simply state that the
respective continuity holds.

A final form of continuity which is the strongest is the notion of almost sure sample continuity.
In order to define this we first need to define the notion of separability of a stochastic process.

Definition 2.2.4 (Separability) A stochastic process {Xt} is said to be separable if there exists a
countable set S ∈ T such that for every interval I ∈ T and every closed set K ∈ < the events :

A = {ω : Xt ∈ K, t ∈ I
⋂
T}

and
B = {ω : Xt ∈ K, t ∈ S

⋂
I}

differ by a set Λ such that IP(Λ) = 0.

We state without proof that on a complete probability space we can always take {Xt} to be sep-
arable. The importance of separability is the following: suppose we want to compute the probability
of {ω : suptXt ∈ A} =

⋂
t∈T {ω : Xt ∈ A} then such an set may not be measurable i.e. the resulting

set may not be an event since the intersection is over an uncountable intersection but if the process
is separable then the intersection is taken over a countable set S and hence the resulting set is an
event due to the σ-algebra property of F and hence a probability can be defined.

Definition 2.2.5 (Almost sure sample continuity) A stochastic process {Xt} which is separable is
said to be almost surely sample continuous if :

IP(ω :
⋃
t∈T

lim
h→0
|Xt+h −Xt| 6= 0) = 0 (2.2. 4)

Note almost sure continuity for every t does not imply almost sure sample continuity since if
it holds for every t then

⋃
t∈T being an uncountable union need not be an event of probability 0

even if each is. It is difficult to characterize the event related to almost sure sample continuity in
terms of finite dimensional distributions of a process. However a sufficient condition for almost sure
continuity was given by Kolmogorov which we state without proof.

Proposition 2.2.1 (Kolmogorov criterion) Let {Xt}t∈T be a separable process and T be finite. Then
a sufficient condition for {Xt} to be almost surely sample continuous is that there exist positive
constants C,α, β such that :

E[|Xt+h −Xt|
α] ≤ Ch1+β (2.2. 5)
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Almost sure sample continuity implies almost sure continuity for every t. As mentioned we would
like to differentiate between processes which possess almost sure sample continuity from processes
which are continuous everywhere except on a set of points t which are are finite but have o measure
with respect to the entire interval T i.e. Lebesgue measure 0. Such discontinuous processes are said
to possess discontinuities of the first kind if for every t the limits Xt+h and Xt−h exist as h→ 0 but
are not equal. An example is right continuous processes for which Xt− 6= Xt. A sufficient condition
for this is due to Cramer which we also give without proof.

Proposition 2.2.2 Let {Xt} be a separable process. Then with probability 1 every sample path of
{Xt} has only discontinuities of the first kind if there exist positive constants C,α, β such that :

sup
t≤s≤t+h

E[|Xt+h −Xs|
α|Xs −Xt|

α] ≤ Ch1+β (2.2. 6)

Remark: The Cramer’s condition is weaker than Kolmogorov’s criterion since by the Cauchy-
Schwarz inequality we have that if Kolmogorov’s condition is satisfied with C,α, β then Cramer’s
condition is satisfied with C, α2 , β.

Let us now consider some examples.
Example 1: Let {Xt}t∈[0,T ] be A Gaussian process with mean 0 and :

E[|Xt+h −Xt|
2] = h

Then it is easy to see that it is continuous in probability, in the quadratic mean (mean of order 2).
Let us show that it is also almost surely sample continuous. For this note that since Xt+h −Xt

is Gaussian we have that
E[|Xt+h −Xt|

4] = 3h2

Therefor the process satisfies Kolmogorov’s criterion with C = 1, α = 4 and β = 1 and hence is
almost surely sample continuous. We shall study this process further later on. It is called a Wiener
process.

Example 2: Let {Nt}t∈[0,∞) be a point process i.e. N0 = 0 and Nt takes values in the set of non-
negative integers {0, 1, 2, ...} with the following property : there exist a sequence of random times
{tn} with t1 < t2 < t3 < ... such that at times tn Ntn = n and the process remains constant on
the interval [ti, ti+1) and for any s < t < u the random variables {Nu − Nt} and {Nt − Ns} are

independent with IP(Nt+h − Nt = k] = (λh)k

k! e−λh. Then it can be seen that {Nt} is continuous
in probability and the mean. The process is not almost surely sample continuous since for any
finite interval IP(Nt+T − Nt > 0) = e−λT > 0 and thus there exist points of discontinuity where
Nt− 6= Nt. It however satisfies the Cramer’s criterion with α = 1 and β = 1 and C = 1 and thus has
discontinuities of the first kind almost surely on any finite interval. The process we have defined is
called a Poisson process which we shall study later on.

2.3 Classification of Stochastic Processes

In this section we will study some special classes of stochastic processes some of which we will study
in detail. The idea is to study processes about which we can give general properties for members
of the class for their distributions and moments. Unless explicitly stated we will usually consider
continuous-time processes i.e. when the index set T is a subset of or equal to <.
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One of the most commonly encountered stochastic processes is the so-called Gaussian process
already briefly introduced in Section 2.1.

Definition 2.3.1 (Gaussian processes) A stochastic process {Xt} is said to be a Gaussian process
if its finite dimensional distributions are Gaussian i.e. given any finite partition Tn{t1, t2, .., tn} of
T then the random variables {Xt1 ,Xt2 , ...,Xtn} are jointly Gaussian with characteristic functional:

C(h) = E[eı[h,X]] = eı[h,m]− 1
2

[Rh,h] (2.3. 7)

where m is the vector of means i.e. m = col(m1, ...,mn) with mi = E[Xti ] and R the covariance
matrix with entries Ri,j = cov(Xti ,Xtj ).

Remark: It is of course of interest to know on what space such processes are defined. Let T = [0, T ]
and now consider a partition Tn of [0,T] with n going to infinity, t1 = 0, tn = T and supj |tj−tj−1| →
0 then it can readily be seen that the above vectorial inner-products converge to integrals and the
limit of the characteristic functional is just:

C(h) = eı
∫ T

0
hsmsds− 1

2

∫ T
0

∫ T
0
R(t,s)hshtdtds

where mt = E[Xt] and R(t, s) = cov(Xt,Xs). It can be shown but it is beyond the scope of the course
that if we require the above characteristic functional to correspond to a characteristic functional of
countably additive probability measure whose finite dimensional distributions are as above then we
must have

∫ T
0

∫ T
0 |R(t, s)|dtds <∞ (as in the example in Section 2.1). Thus with this condition we

have that the Gaussian process is defined on Ω = L2[0, T ] or the space of square-integrable functions
on [0, T ]. If T = [0,∞) then the space is L2[0,∞) which is a little less interesting since on such
a space all functions must go to 0 as t → ∞ for the integrals to exist. We will usually consider
Gaussian processes on a finite time interval.

The next important class of stochastic processes is the class of stationary processes.

2.3.1 Stationary processes

Definition 2.3.2 A stochastic process {Xt} is said to be (strict-sense) stationary if for any finite
partition {t1, t2, ..., tn} of T the joint distributions Ft1,t2,..,tn(x1, x2, .., xn) are the same as the joint
distributions Ft1+τ,t2+τ,..,tn+τ (x1, x2, ..., xn) for any τ .

What the above definition states is that the joint distributions of the process or its shifted version
are the same. In light of the definition since the shift τ is arbitrary the index set T is taken to be
(−∞,∞). We usually use the term stationary for strict-sense stationary. For stationary processes
the following properties hold:

Proposition 2.3.1 Let {Xt} be a stationary process. Then:

1. E[Xt] = m i.e. its mean is a constant not depending on t.

2. Let R(t, s) = cov(Xt, xs) then R(t, s) is of the form R(t, s) = R(|t− s|) i.e. it only depends on
the difference between t and s.
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Proof:
1)Let Ft(x) denote the one-dimensional distribution of Xt. Then,

mt = E[Xt] =

∫
xdFt(x) =

∫
xdFt+τ (x)

= mt+τ

and since by stationarity it holds for all τ it implies that mt cannot depend on t ot it is a constant.

2) Let us for convenience take m=0. Then:

R(t, s) = E[XtXs] =

∫
xydFt,s(x, y)

=

∫
xydFt−s,0(x, y) = R(t− s, 0)

=

∫
xydF0,s−t(x, y) = R(0, s− t)

Hence we obtain that
R(t, s) = R(t− s, 0) = R(0, s− t)

or R(t, s) must be a function of the magnitude of the difference between t and s.

The above requirement of strict sense stationarity is usually too strong for applications. In the
context of signal processing a weaker form of stationarity just based on the mean and covariance is
very useful. This is the notion of wide sense stationarity abbreviated as w.s.s.

Definition 2.3.3 A stochastic process {Xt} with E[|Xt|2] < ∞ is said to be wide sense stationary
or w.s.s. if the properties 1. and 2. above hold i.e.

1. E[Xt] = m

2. R(t, s) = R(|t− s|)

In a later chapter we will study further properties of w.s.s. processes. It is important to note
that w.s.s. does not imply strict sense stationarity. However, if Xt is a Gaussian process, since
the finite dimensional distributions are completely specified by the mean and covariance, then the
reverse implication holds.

We now introduce another class of stochastic processes of importance in applications.

2.3.2 Markov processes

Definition 2.3.4 A stochastic process {Xt} is said to be a Markov process (or simply Markov) if
for any partition {t1, t2, ..., tn} of T with t1 < t2 < . . . < tn the conditional distribution satisfies:

IP
(
Xtn ≤ xn/Xtn−1 = xn−1,Xtn−2 = xn−2, ...,Xt1 = x1

)
= IP

(
Xtn ≤ xn/Xtn−1 = xn−1

)
(2.3. 8)

For simplicity we will assume that conditional densities are defined and we will denote the con-
ditional densities by p(xn, tn/xn−1, tn−1). An immediate consequence of the definition of a Markov
process is the property of the conditional independence of the ‘future’ and ‘past’ given the present.
This can often be taken as the definition of Markov processes and is readily generalizable to random
fields or multi-parameter processes where there is no-natural definition of a causal or increasing flow
of ‘time’.
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Proposition 2.3.2 Let {Xt} be a Markov process. Then for any t0 < t1 < t2 we have:

p(x2, t2;x0, t0/x1, t1) = p(x0, t0/x1, t1)p(x2, t2/x1, t1)

Proof: First note that the joint density of Xt0 ,Xt1 and Xt2 can be written as:

pt0,t1,t2(x0, x1, x2) = p(x2, t2/x0, t0;x1, t1)p(x0, t0/x1, t1)pt1(x1)

Using the Markov property and the definition of the conditional density we have:

pt0,t1,t2(x0, x1, x2)

pt1(x1)
= p(x0, t0;x2, t2/x1, t1) = p(x2, t2/x1, t1)p(x0, t0/x1, t1)

which establishes the conditional independence property of the ‘future’ and ‘past’ given the ‘present’.

From the definition of the Markov property by repeated application it is easy to see that the
joint density of {Xt0 , ...,Xtn} can be written as:

p(x0, t0;x1, t1; ...;xn, tn) = p(x0, t0)
n∏
k=1

p(xk, tk/xk−1, tk−1)

and hence the joint distribution of a Markov process is completely specified by the initial dis-
tribution and the conditional distributions (1 step) which are obtainable from knowledge of the
two-dimensional distributions of the process.

The above written in terms of the conditional distributions F (xn, tn/xn−1, tn−1) = IP(Xtn ≤
xn/Xtn−1 = xn−1) can be written as:

F (x0, t0;x1, t1; ...;xn, tn) =

∫ x0

−∞

∫ x1

−∞
..

∫ xn−1

−∞
F (xn, tn/yn−1, tn−1)dF (yn−1, tn−1/yn−2, tn−2)

....dF (y1, t1/y0, t0)dF (y0, t0)

From the above observation that a Markov process is completely specified by its two-dimensional
distributions we can pose the following question: given the two-dimensional distributions of a process
what conditions must they satisfy in order that the process be Markov? The answer is that they
must satisfy the following consistency properties.

1. F (x, t) =
∫∞
−∞ F (x, t/y, s)dF (y, s)

2. For t0 < s < t

F (x, t/x0, t0) =

∫ ∞
−∞

F (x, t/y, s)dF (y, s/x0, t0)

Property 1) will be satisfied by any two-dimensional distribution by the definition of conditional
distributions. Property 2 is the more important one which specifies the Markov property and is
known as the Chapman-Kolmogorov equation.

Let us study the constraints imposed by the two properties through a commonly used example.
Suppose we want to define a Markov process {Xt} which can take only two values {−1, 1} with

the following properties:

1. IP(Xt = 1) = IP(Xt = −1) = 1
2 for all t.
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2. For t ≥ s

IP(Xt = Xs) = p(t− s)

IP(Xt = −Xs) = 1− p(t− s)

with p(t) continuous and p(0) = 1.

Let us study the constraints it imposes on p(.).
It is easy to see that Property 1 is always satisfied for all p(t) since :

IP(Xt = 1) =
1

2
= IP(Xt = 1/Xs = 1)IP(Xs = 1) + IP(Xt = 1/Xs = −1)IP(Xs = −1)

=
1

2
p(t− s) +

1

2
(1− p(t− s)) =

1

2

Property 2 or the Chapman-Kolmogorov equation specifies that p(.) must satisfy:

p(t− t0) = p(t− s)p(s− t0) + (1− p(t− s))(1− p(s− t0))

for all t0 < s < t. Changing variables by setting t0 = 0 and t − s = τ we obtain that p(.) must
satisfy:

p(s+ τ) = p(τ)p(s) + (1− p(τ))(1− p(s))

or
p(s+ τ) = 2p(τ)p(s)− (p(τ) + p(s))

Substituting p(t) = 1+f(t)
2 we obtain that f(t) must satisfy:

f(s+ τ) = f(s)f(τ)

and the only non-trivial solution is that f(t) = e−λt for λ > 0 and hence we obtain

p(t) =
1 + e−λt

2

showing the constraints imposed by the Markov assumption.

An important sub-class of Markovian processes is the so-called processes with independent in-
crements or simply independent increment processes.

Definition 2.3.5 A stochastic process {Xt}t∈[t0,∞) is said to be an independent increment process if
for any arbitrary collection of non-overlapping intervals (si, ti]; i = 1, 2, ..., n of [t0,∞) the increments
{Xti −Xsi}

n
i=1 and Xt0 form a collection of independent random variables.

Proposition 2.3.3 Let {Xt}t∈[0,∞) be an independent increment process. Then {Xt} is a Markov
process.
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Proof: Let {ti} be a partition of [0,∞) with t1 < t2 . . . < tn. Then to show that Xt is Markov it is
sufficient to show that IP(Xtn ≤ x/Xt1 = x1, ...Xtn−1 = xn−1) = IP(Xtn ≤ x/Xtn−1 = xn−1). First
note that:

Xtn = Xtn −Xtn−1 +Xtn−1 = Xtn−1 + Vn

and by the independent increment property Vn is independent of Xti ; i = 1, 2, ..., n − 1. Therefore:

F (tn, xn/t1, x1; t2, x2, ..., tn−1, xn−1) = F (Vn ≤ xn − xn−1/t1, x1; t2, x2; .., tn−1, xn−1)

= FVn(x2 − x1)

by the independence of Vn and {Xti}
n−1
i=1 . Hence since the distribution of Xtn is completely deter-

mined from the distribution of Vn and the knowledge of Xtn−1 = xn−1 it follows that the process is
Markov.

A particular class of independent increment processes those with stationary independent incre-
ments forms an important class of processes which occur frequently in applications.

Definition 2.3.6 A stochastic process {Xt}t∈[0,∞) is said to be a process with stationary independent
increments if the increments are independent and the distribution of {Xt−Xs} for t > s only depends
on the difference t− s.

The means and variances of stationary independent increment processes have a particularly
simple form i.e. they are affine functions of t. We prove this result below.

Proposition 2.3.4 Let {Xt}t∈[0,∞) be a stationary independent increment process. Then :

1. E[Xt] = m0 +m1t where m0 = E[X0] and m1 = E[X1]−m0.

2. var(Xt) = σ2
0 + σ2

1t where σ2
0 = var(X0) and σ2

1 = var(X1)− σ2
0.

Proof: We will show 2) since the stationary independent increment property is used. The proof of
1) follows in a similar way except that only the stationary increment property is needed. To simplify
the proof without loss of generality we take the mean to be 0. Note by the independent increment
property E[XtXs] = E[X2

s ] since

E[XtXs] = E[(Xt −Xs +Xs)Xs]

= E[(Xt −Xs)Xs] + E[X2
s ]

= E[Xt −Xs]E[Xs] + E[X2
s ]

= E[X2
s ]

since the process is assumed to be zero mean. If the means are non-zero then it can be readily seen
cov(XtXs) = var(Xs).

Define: g(t) = var(Xt+u−Xu) which does not depend on u by the stationary increment property.
Then:

g(t+ s) = var(Xt+s −X0) = var(Xt+s −Xs +Xs −X0)

= var(Xt+s −Xs) + var(Xs −X0)

= g(t) + g(s)

10



Noting that
∂g(t+ s)

∂s
= g′(s) =

∂g(t + s)

∂t
= g′(t)

we obtain that g′(t) = g′(s) for all s and t or g′(t) = K for some constant K. Hence :

g(t) = Kt+K1

is the general solution. Noting that from the relation above taking t = s = 0 we obtain g(0) = 2g(0)
it implies that K1 = 0. Also since g(1) = K we obtain that K = var(X1 −X0). Finally noting that

var(Xt) = var(Xt −X0 +X0) = g(t) + var(X0)

where we have used the independent increment property once again. The proof is then completed
by noting that var(X1−X0) = E[X2

1 ]− 2E[X1X0] + E[X2
0 ] = E[X2

1 ]−E[X2
0 ] = var(X1)− var(X0).

Remark: From the above it is evident that independent increment processes are defined on [0,∞)
since if T = (−∞,∞) then it is easy to see that such a process for any finite t is infinite and not
well defined.

In signal processing (especially linear estimation theory) it is enough to require that the incre-
ments are uncorrelated and form a w.s.s. process. We give the definitions below:

Definition 2.3.7 1. A stochastic process {Xt} is said to be an uncorrelated increment process if
the increments are uncorrelated i.e. for any t1 < t2 < t3

E[(Xt3 −Xt2)(Xt2 −Xt1)] = E[(Xt3 −Xt2)]E[(Xt2 −Xt1 ]

2. A stochastic process {Xt} is said to be an orthogonal increment process if E[(Xt3 −Xt2)(Xt2 −
Xt1)] = 0.

Remark: If {Xt} is zero mean and uncorrelated increment then it is an orthogonal increment
process. If the increments in addition to being orthogonal are w.s.s. then we have a w.s.s orthogonal
increment process. Such processes occur in the study of spectral theory and will be discussed
in Chapter 4. Note if the process is Gaussian then the process will have stationary independent
increments.

Let us now discuss some concrete examples of Markov and independent increment processes.
Example 1: Consider the following discrete-time process {Xn} defined by:

Xn+1 = fn(Xn,Wn)

where {Wn} is an independent sequence of r.v’s and fn(., .) is a deterministic function. Then {Xn}
is a Markov process. The proof is trivial.

Example 2: Let {Yn} be a sequence of independent identically distributed r.v’s. Then:

Xn =
n∑
k=1

Yk

is a stationary independent increment process. If the {Yn} are only an independent sequence but
not identically distributed then {Xn} will be an independent increment process. When the Yn’s are

11



i.i.d r.v’s which take integer values in the set {−1, 1}, Xn is called a random walk. This model is a
very important model in applications.

The next two examples we will discuss in detail since such processes are very basic processes in
the study of stochastic processes.

Definition 2.3.8 (Brownian motion or Wiener process)
A continuous-time stochastic process {Wt; t ≥ 0} is said to be a Brownian motion or Wiener

process with parameter σ2 if:

1. W0 = 0

2. {Wt} is a Gaussian process with mean 0 and E[WtWs] = σ2 min(t, s).

If σ2 = 1 then the process is said to be standard Brownian motion.

From the definition of Brownian motion the following properties can easily be shown.

Proposition 2.3.5 Let {Wt}t∈T be a Brownian motion process. Then:

1. Every sample path of {Wt} is almost surely sample continuous in t.

2. {Wt} is a stationary independent increment process.

Proof: For convenience we will take {Wt} as a standard Brownian motion.
The proof of 1) follows from the fact that since the process is Gaussian Xt+h −Xt is Gaussian

and hence :
E[|Xt+h −Xt|

4] = 3h2

and hence Kolmogorov’s criterion for almost sure sample continuity is satisfied with α = 4 ,β = 1
and c = 3.

To prove the stationary independent increment property it is sufficient to that the process has
orthogonal increments and then since the process is Gaussian it implies that the increments are
independent. Stationary increment property follows from the fact that E[(Wt−Ws)

2] = (t−s). The
proof of the orthogonal increment property follows by noting that for t > s:

E[(Wt −Ws)(Ws)] = E[WtWs]−E[W 2
s ]

= s− s = 0

showing that the increments are orthogonal.

The reason that the Wiener process or Brownian motion is so special is that one can show (which
we will do later) that any Gauss-Markov process can be considered as a ‘time-changed’ Brownian
motion. Gauss-Markov processes arise in the modeling of linear stochastic systems with noise and will
be discussed in the next section. Actually there is an important result due to Paul Levy which states
that if a process is Gaussian with stationary independent increments then it must be a Brownian
motion process.

The analog of the Brownian motion process for processes with discontinuous trajectories is the
Poisson process. This process plays a fundamental role in the study of processes with discontinuous
trajectories the so-called jump processes. We define this below.

12



Definition 2.3.9 (Poisson Process) A stochastic process {Nt}t∈[0,∞) is said to be a Poisson process
with intensity λ if Nt takes values in {0, 1, 2, . . .} and

1. N0 = 0

2. For all s, t ∈ [0,∞) with t > s then Nt −Ns is a Poisson r.v. with mean λ(t− s) i.e.

IP(Nt −Ns = k) =
(λ(t− s))k

k!
e−λ(t−s)

3. {Nt} is an independent increment process.

In light of property 2 above it implies that {Nt} is a stationary, independent increment process
with purely discontinuous sample-paths. Let us study some properties associated with Poisson
processes.

First, note by virtue of the definition E[Nt] = λt and cov(Nt,Ns) = λ(min(t, s)). Let {Ti}∞i=1

denote the jump times of Nt with T0 = 0 i.e.

Nt = n t ∈ [Tn, Tn+1)

Then by definition of {Tn} we can define Nt as:

Nt =
∞∑
n=1

1(Tn≤t)

in other words we can define the Poisson process through its jump times. Such a process is referred
to as a point process since the occurrence of the ‘points’ {Tn} at which the process jumps by 1 allow
us to completely specify the process. Let us now study some properties associated with the jump
times.

First note that by definition {Tn ≤ t} ≡ {Nt ≥ n}. Let FTn(t) denote the distribution of Tn.
Then for n ≥ 1:

FTn(t) = 1−
n−1∑
k=0

e−λt
(λt)k

k!

and the density

pTn(t) = λe−λt
(λt)n−1

(n− 1)!
; n ≥ 1, t ≥ 0

= 0 otherwise

In particular for n = 1 we obtain that pT1(t) = λe−λt; t ≥ 0 or T1 is exponentially distributed. From
the stationary independent increment property it implies that {Tn+1−Tn} have the same distribution
as T1 and thus the interarrival times Sn = Tn − Tn−1 of a Poisson process form a sequence of i.i.d.
exponential mean 1

λ r.v’s.
It can be readily seen that {Nt} is not almost surely sample continuous although it can be shown

that it is continuous in the mean square and almost surely for every t. To see this note that for any
finite interval T we have:

IP(Nt+T 6= Nt) = IP(Nt+T −Nt > 0) = e−λT > 0

which shows that there are finite number of discontinuities in any finite interval of time with non-
zero probability showing that the process is not almost-surely sample continuous. It can readily be
verified that {Nt} satisfies Cramer’s criterion.

Analogous to the result of Levy for Wiener processes there is the result of Watanabe which states
that if a point process has stationary independent increments then it must be Poisson.
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2.4 Gauss-Markov Processes

As we have seen that by definition a Wiener process is both Gaussian and Markov. However the
stationary independent increment property is special to the Wiener process. Gauss-Markov processes
are very basic processes which arise in the modeling of noisy linear stochastic systems. Consider for
example the following process defined by:

Xk+1 = AkXk + Fkwk (2.4. 9)

where {wk} is a i.i.d. N(0, Im) sequence (i.e. discrete-time <m-valued Gaussian white noise) and
X0 ∼ N(m0,Σ0) and Ak is a n× n matrix and Fk is a n×m matrix. It is easily seen that {Xk} is
a Gauss-Markov sequence. Such models arise in signal processing and control applications.

It turns out that the covariance of Gauss-Markov processes has a very particular structure which
is both necessary and sufficient for a Gaussian process to be Markov. Let us study this issue in some
detail.

Let {Xt} be a Gauss-Markov process. Without loss of generality we take the process to be 0
mean. Let R(t, s) = cov(Xt,Xs). Then we can state the following result.

Proposition 2.4.1 Let {Xt} be a Gaussian process with R(t, t) > 0 for all t. Then for {Xt} to be
Markov it is necessary that for all t > s > t0

R(t, t0) =
R(t, s)R(s, t0)

R(s, s)
(2.4. 10)

Proof: First note that by the Gaussian property we have:

E[Xt/Xs] =
R(t, s)

R(s, s)
Xs

Using the Markov property we have:

E[Xt/Xt0 = X0] =
R(t, t0)

R(t0, t0
X0 =

∫ ∞
−∞

xdF (t, x/t0,X0)

=

∫ ∞
−∞

R(t, s)

R(s, s)
ydF (s, y/t0,X0)

=
R(t, s)

R(s, s)

R(s, t0)

R(t0, t0)
X0

where we have used the Chapman-Kolmogorov equation in the third step and the definition of the
conditional mean of a Gaussian process. Hence comparing the l.h.s. and the r.h.s., since it is true
for all X0 we obtain:

R(t, t0) =
R(t, s)R(s, t0)

R(s, s)

It can be shown that for the covariance to satisfy the above property the covariance R(t, s)
must be of the form f(max(t, s))g(min(t, s)). It turns out that this condition is also sufficient for a
Gaussian process to be Markov. We show this below.
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Proposition 2.4.2 Let {Xt} be a Gaussian process with R(t, t) > 0 for all t and R(t, s) is contin-
uous for (s, t) ∈ T × T . Then for {Xt} to be Markov it is necessary and sufficient that

R(t, s) = f(max(t, s))g(min(t, s)) (2.4. 11)

If in addition the process is stationary then

R(t) = R(0)e−λ|t−s|; λ ≥ 0 (2.4. 12)

and in particular λ = −log(R(1)
R(0) ).

Proof:
Define

ρ(t, s) =
R(t, s)√

R(t, t)
√
R(s, s)

Then ρ(t, s) satisfies:
ρ(t, t0) = ρ(t, s)ρ(s, t0)

for all t ≥ s ≥ t0. Now by the continuity of ρ(t, s) and the assumption that R(t, t) > 0 for all t ∈ T
we see that ρ(t, t) = 1 and these two facts imply that ρ(t, s) 6= 0 for all t, s ∈ int T . Then since

ρ(t, s) = ρ(t,t0)
ρ(s,t0) for all t > s > t0 we have that :

ρ(t, s) =
α(t)

α(s)

for some α(t). If on the other hand t < s then we have

ρ(t, s) =
α(s)

α(t)

Hence,

ρ(t, s) =
α(max(t, s))

α(min(t, s))

Hence it implies that for t > s we have: f(t) = α(t)
√
R(t, t) and g(s) = 1

α(s)

√
R(s, s) and this

completes the proof of the necessity.
The proof of the sufficiency is based on the time-change property of Brownian motion. Consider

the case t > s. Define the following time

τ(t) =
g(t)

f(t)

where for t > s we have R(t, s) = f(t)g(s). Then by the Cauchy-Schwarz inequality we obtain that :

R(t, s) ≤
√
R(t, t)

√
R(s, s)

Hence,

f(t)g(s) ≤
√
f(t)g(t)f(s)g(s)

or
τ(s) ≤ τ(t)
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implying that τ(t) is monotone non-decreasing in t. Define the process:

Yt = f(t)Wτ(t)

then Yt is a Gauss-Markov process since W. is Gauss-Markov and τ(t) is an increasing function of t.
Hence for t > s

E[YtYs] = f(t)f(s)τ(s) = f(t)g(s)

implying {Yt} is a Gauss-Markov process with the given covariance function.
Finally if the process {Xt} is stationary then R(t, s) = R(t− s) and hence:

ρ(t+ s) = ρ(t)ρ(s)

for ρ(.) defined above. The only non-trivial solution to this equation is that :

ρ(t) = ceλt

Now noting that ρ(0) = 1 implying c = 1 and ρ(1) = R(1)
R(0) = eλ we obtain that λ = log(R(1)

R(0) ). Once

again by Cauchy-Schwarz inequality noting that R(τ) ≤ R(0) for all τ we note R(1)
R(0) ≤ 1 implying

λ ≤ 0. This completes the proof by noting that R(t) = R(0)ρ(t).

Similar results can be shown in the discrete-time case. We just state the results without proof.

Proposition 2.4.3 Let {Xn} be a stationary Gaussian sequence. Then in order that {Xn} be
Markov it is necessary and sufficient that the covariance satisfy:

Rn = R0ρ
|n|; 0 < ρ < 1 (2.4. 13)

where ρ = e
−log(

R1
R0

)
.

2.5 Convergence of random variables

In applications we are often interested in the large-time behavior of a stochastic process. The study
of these issues is fundamentally related to convergence of sequences of r.v’s (in discrete-time) or
convergence of the process (in continuous-time). As in the case of continuity there are various forms
of convergence, some stronger than others, associated with processes. In this section we discuss the
convergence concepts associated with sequences of r.v’s and illustrate by example that they are not
equivalent. For continuous-time processes similar definitions hold and we work with partitions and
then show a ‘uniformity’ result in going to the limit as the partitions decrease to 0. First note that
for each ω ∈ Ω {Xn(ω)} defines a deterministic sequence. Hence, we could study the convergence of
the sequence for each ω as in the case of real sequences. This is called the point-wise convergence
property. This is however too strong and thus in the case of random sequences we would like to
study the convergence taking account of the fact that we have a probability measure defined on Ω.
This leads to the following notions:

Definition 2.5.1 (Convergence in probability) A sequence of r.v’s {Xn} is said to converge to a
r.v. X in probability if :

lim
n→∞

IP(|Xn −X| ≥ ε) = 0

for any ε > 0.
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As in the case of real sequences we do not often know a priori the limit X and so the convergence
can be studied by the Cauchy criterion or mutual convergence in probability i.e.

Proposition 2.5.1 A sequence {Xn} converges in probability if and only if it converges mutually
in probability or the sequence is Cauchy in probability i.e.

lim
m→∞

sup
n≥m

IP(|Xn −Xm| ≥ ε)→ 0

for ε > 0.

Note mutual convergence can be equivalently stated as:

lim
n→∞

sup
m

IP(|Xn+m −Xn| ≥ ε)→ 0

Definition 2.5.2 (Convergence in th p.th. mean) A sequence of r.v’s {Xn} is said to converge in
the p-th mean (also referred to as LP convergence) to X if :

lim
n→∞

E[|Xn −X|
p] = 0

Of particular importance in applications is the convergence in the mean of order 2 called mean
square convergence or convergence in the quadratic mean (q.m)

An immediate consequence of the Markov and Lyapunov inequalities is the following result.

Proposition 2.5.2 Let {Xn} be a sequence of r.v’s.

a) A necessary and sufficient condition for {Xn} to converge in the p-th mean is that it be Cauchy
in the p-th mean.

b) If {Xn} converges in the p-th. mean then {Xn} converges in the r-th mean for 1 ≤ r ≤ p.

Definition 2.5.3 (Almost sure convergence)
A sequence {Xn} is said to converge to X almost surely if

IP(ω : lim
n→∞

|Xn −X| 6= 0) = 0

Once again if we do not know the limit a priori a necessary and sufficient condition for a.s.
convergence is that the sequence be Cauchy a.s.

A final and weak form of convergence is the notion of convergence in distribution.

Definition 2.5.4 (Convergence in distribution) A sequence {Xn} converges to X in distribution if
for every bounded continuous function f(.) the following holds:

E[f(Xn)] → E[f(X)] as n→∞

Convergence in distribution is equivalent to the convergence of the characteristic function. In par-
ticular the above condition implies that the distribution Fn(x) of Xn converges to the distribution
F (x) of X for each x which is a point of continuity of F (.).

In most applications we either require q.m. convergence or a.s. convergence. Before giving some
examples we first state the following result which establishes the relationships between the different
forms of convergence. We will use the notation Xn

a.s
→ to denote convergence a.s. and so on.
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Proposition 2.5.3 Let {Xn} be a sequence of r.v’s. Then the following relationships hold:

1. Xn
a.s
→ X ⇒ Xn

P
→ X

2. Xn
LP
→ X ⇒ Xn

P
→ X

3. Xn
P
→ X ⇒ Xn

d
→ X

4. Xn
d
→ C(a constant)⇒ Xn

P
→ C

5. Xn
P
→ X ⇒ ∃ a subsequenceXnk

a.s
→ X

Proof: The implication 1 follows directly from the definitions while 2 follows from Lyapunov’s
inequality. We will prove 3 and 4 only. The proof of 5 is technical and we will omit it.

Proof of 3. Let f(.) be bounded and continuous, let |f(x)| ≤ c and let ε > 0 and N be such that
Pr(|X| > N) ≤ ε

4c . Choose δ such that |f(x)− f(y) ≤ ε
2c for X| < N and |x− y| < δ. Then:

E[|f(Xn)− f(X)|] = E[|f(Xn)− f(X)|1[|Xn−X|<δ,|X|≤N ]]

+E[|f(Xn)− f(X)|1[|Xn−X|<δ,|X|>N ]]

+E[|f(Xn)− f(X)|1|Xn−X|≥δ]]

≤
ε

2
+
ε

2
+ 2cIP(|Xn −X| ≥ δ)

and the third term on the r.h.s. above goes to 0 as n→∞ by convergence in probability, hence for n
sufficiently large we can make the r.h.s. smaller that 2ε establishing the convergence in distribution.

The proof of 4 follows from the fact that for n sufficiently large the probability distribution is
concentrated around a ball of radius ε around C. Therefore for n sufficiently large :

IP(|Xn −C| ≤ ε) ≥ 1− δ

or:
IP(|Xn −X| ≥ ε) ≤ δ

establishing the convergence in probability.

We now consider some examples to show that the various forms of convergence are not equivalent.
In the next section we will study applications of convergence in terms of the so-called weak and strong
laws of large numbers and ergodic theorems.
Example 1: (Lp convergence does not imply a.s. convergence) Let {Xn} be a sequence of indepen-
dent {0, 1} valued r.v’s with IP(Xn = 1) = 1

n and IP(Xn = 0) = 1− 1
n .

Then {Xn} converges to 0 in Lp for all p > 0 since : E[|Xn|p] = 1
n . However, it does not converge

a.s since taking the events An = {Xn = 1} gives:

∞∑
n=1

IP(An) =
∞∑
n=1

pn =∞

(by Borel-Cantelli lemma).
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Example 2: (a.s. convergence does not imply L2 convergence). Let X be a r.v. uniformly
distributed in [0,1]. Define:

Yn = n if 0 ≤ Y ≤
1

n
= 0 otherwise

Then clearly as n→∞ Yn → 0 a.s. but : E[Y 2
n ] = n which goes to ∞.

Let us conclude with a result concerning a.s. convergence of sequences. This result is the key to
establishing important ergodic theorems discussed in the next section.

Proposition 2.5.4 Let {Xn} be a sequence of r.v’s with E[|Xn|2] <∞. If
∑∞
n=1 E[|Xn|2] <∞ then

Xn → 0 almost surely as n→∞.

Proof: Define the event :
An = {ω : |Xn| ≥ ε}

Then, by the Chebychev inequality:

IP(An) ≤
E[|Xn|2

ε2

Therefore,
∞∑
n=1

IP(An) ≤
1

ε2

∞∑
n=1

E[|Xn|
2] <∞

Hence, by the Borel-Cantelli lemma, the probability that {An i.o.} is 0 or |Xn| ≥ ε only for a finite
number of n. Since ε > 0 is arbitrary it implies that Xn → 0 a.s.

2.6 Laws of large numbers and the Central Limit Theorem

Strong and weak laws and their generalization, the so called ergodic theorem for stationary random
processes are concerned with the problem of when we can infer the statistics of a process (or an
appropriate function of it) by observing a single realization of the process. Typically the quantities
we wish to estimate are means and variances. This is the basis for practical algorithms where we only
observe a single realization or sample-path and we do not have the opportunity to observe numerous
independent realizations (i.e. the basis of Monte-Carlo methods) to then calculate ensemble averages.
The difference between weak and strong laws is that for the former the conclusion is in terms of
a result holding in probability while the latter is an almost sure property. An intermediate result
corresponds to the property holding in the mean squared sense.

Before we prove the results we first point out some facts about characteristic functions which
will be used in some of the proofs.

Note by definition, the characteristic function of a r.v. is the Fourier transform of the density
function if it exists. Hence, a natural question is can we know when a density exists if are given
the characteristic function? The answer is, yes. It really is just a consequence of the Fourier
inversion theorem and we state the result along with other results about characteristic functions in
the following proposition.
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Proposition 2.6.1 (More about characteristic functions)
Let φ(h) denote the characteristic function associated with a probability distribution F (·) defined

on < i.e.

φ(h) =

∫
<
eıhxdF (x)

Then the following results hold:

a) For any points a, b ∈ < with a < b at which F (x) is continuous:

F (b)− F (a) = lim
c→∞

1

2π

∫ c

−c

e−ıta − e−ıtb

ıt
φ(t)dt

b) If
∫∞
−∞ |φ(t)|dt <∞, the distribution function F (x) possesses a density

F (x) =

∫ x

−∞
p(y)dy

and

p(x) =
1

2π

∫ ∞
−∞

e−ıtxφ(t)dt

c) If φ(k)(0) exists then:

E|X|k <∞ if k is even

E|X|k−1 <∞ if k is odd

d) If X ∼ F (.) and E[|X|k] <∞ then

φ(h) =
k∑
j=0

E[Xj ]

j!
= o(tk)

The proofs of these results follow from standard Fourier theory and the use of the Taylor expan-
sion.

Proposition 2.6.2 (Weak law of large numbers (WLLN)) Let {Xn} be a sequence of i.i.d r.v.’s
with E[|X1|] <∞ and E[X1] = m. Then

1

n

n∑
k=1

Xk
P
→ m

Proof: Let C(h) = E[eıhX1 ] denote the characteristic function of Xi. Then denoting Sn =
∑n

1 Xk:

Cn(
h

n
) = E[eıh

Sn
n ] =

[
C(
h

n
)

]n
But for each h:

C(h) = 1 + ıhm+ o(h) h→ 0

Hence:

Cn(
h

n
) =

(
1 + ı

h

n
m+ o(

1

n
)

)n
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Hence as n→∞ we have :

lim
n→∞

Cn(
h

n
)→ eıhm

which corresponds to the characteristic function of a probability distribution concentrated at m or
Sn
n converges in distribution to a constant m which in light of the previous section implies that Sn

n

converges to m in probability.

In the above result we assumed that the sequence was i.i.d. We can remove the i.i.d. restriction
provided that we impose further conditions such as the existence of the second moments. In this
case we do not even need stationarity of the sequence. We give the form of the WLLN below.

Proposition 2.6.3 (WLLN for dependent 2nd. order sequences)
Let {Xn} be a sequence of r.v’s with E[|Xn|2] < ∞ for all n. Let mk = E[Xk] and r(j, k) =

cov(Xj ,Xk). Suppose that |r(j, k)| ≤ Cg(|j − k|) with g(k)→ 0 as k →∞ then :

1

n

n∑
k=1

(Xk −mk)
P
→ 0

Proof: Define Sn =
∑n
k=1(Xk −mk). Then using the Chebychev inequality:

IP(|
Sn
n
| ≥ ε) ≤

∑n
j=1

∑n
k=1 |r(j, k)|

n2ε2

≤ C

∑
|k|≤n−1 g(k)(1− |k|n )

nε2

≤ 2C

∑
|k|≤n−1 g(k)

nε2

Now since g(k) → 0 as k → ∞ for all n ≥ N(δε2C−1) we have g(n) ≤ δε2C−1 and hence for all
n ≥ N(δε2):

IP(|
Sn
n
| ≥ ε) ≤ 2C

∑N(δε2)
k=1 g(k)

nε2
+ 2δ

The first term on the r.h.s. can be made as small as possible since it is a finite sum divided by
n→∞ hence for n ≥ N(δε2C−1) large we can make:

IP(|
Sn
n
| ≥ ε) ≤ 2δ

and δ can be chosen arbitrarily small and so we have established convergence in probability.

Let us note some implications of the WLLN. Consider a collection of i.i.d. r.v’s {Xi}ni=1 with
E[xi] = m and var(Xi) = σ2. Let us define: Mn = Sn

n . Then by the WLLN Mn → m and
var(Mn) → 0. However we obtain very little information about the behavior of Sn. For example,
the weak law states that Sn is about nm where m is the mean when n is large. How good is this
estimate on how large Sn is? We need much more precision. It turns out that we can say quite a lot
about the limiting distribution of Sn − nm for large n under the rather weak assumption that the
Xn’s have finite variance. This is the essence of the powerful Central Limit Theorem (CLT) which
we state and prove below.
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Proposition 2.6.4 (Central Limit Theorem) Let {Xi}ni=1 be a sequence of i.i.d. r.v’s with E[x2
i ] <

∞. Define Sn =
∑n
i=1Xi. Then as n→∞:

IP

(
Sn − nm

σ
√
n
≤ x

)
→ Φ(x)

where E[X1] = m and var(X1) = σ2 and Φ(x) denotes the standard normal distribution given
by:

Φ(x) =
1
√

2π

∫ x

−∞
e−

y2

2 dy

Proof: Let φ(t) = E[eit(X1−m)]
Then:

φn(t) = E[e
it(

Sn−nm)

σ
√
n

)
]

=

[
φ(

t

σ
√
n

)

]n
But from the expansion for φ(t) we have:

φ(t) = 1−
σ2t2

2
+ o(t) as t→ 0

Hence:

φn(t) = [1−
σ2t2

2σ2n
+ o(

1

n
)]n → e−

t2

2

as n→∞ for fixed t.
But the rhs is just the characteristic function of a N(0, 1) r.v. Hence the result is established

since the above result implies convergence in distribution.

Remarks: The above version of the CLT assumes that the r.v’s are i.i.d. There are much more
general versions of the CLT which can be shown in the absence of the i.i.d. hypothesis. However,
there are important observations to be made even in the i.i.d. case. First note that no matter what
the distribution is or whether the r.v’s are continuous or discrete, the limiting distribution of Sn−nm

σ
√
n

is Gaussian. The CLT thus provides the justification in stating that the scaled (by the factor
√
n)

convolution of copies of a probability distribution (measure) can be approximated by a Gaussian
distribution. However, is this approximation valid at the level of densities? It is well known that
just because two functions are ”close” their derivatives need not be and since the density is the
derivative of the distribution function it should not necessarily follow that density of the scaled (by√
N) sum should also be close to a Gaussian density.

We can indeed state such a result if we impose some more conditions on the random variables.
This result is often referred to as a Local Limit Theorem which have been developed by Gnadenko,
Korolyuk, Petrov, etc. We omit the proof. It relies more on Fourier analysis rather than probability.

Proposition 2.6.5 (Local limit theorem)
Let {Xi}ni=1 be a collection of i.i.d. mean 0 and variance 1 random variables. Suppose that their

common characteristic function φ(.) satisfies:∫ ∞
−∞
|φ(t)|rdt <∞
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for some integer r ≥ 3. Then a density pn(x) exists for the normalized sum Sn√
n

for n ≥ r and

furthermore:

pn(x) =
1
√

2π
e−

x2

2

(
1 +O(

1

n
r−1

2

)

)
Remark: Actually the error term can be made more precise given that moments of order r ≥ 2
exist under the assumption on the characteristic function.

The next ergodic theorem concerns the ergodic property holding in the mean squared sense. We
first state the result for w.s.s. processes.

Proposition 2.6.6 a) Let {Xn} be a w.s.s. sequence of r.v’s with mean E[Xn] = m and covariance
R(k) = cov(Xn+k,Xn). Then

lim
n→∞

1

n

n−1∑
k=0

R(k) = 0⇔

∑n−1
k=0 Xk

n

L2

→ m

b) If {Xt} is q.m. continuous w.s.s. process with E[Xt] = m and covariance R(t) = cov(Xs+t,Xs).
Then

lim
T→∞

1

T

∫ T

0
R(t)dt = 0⇔

1

T

∫ T

0
Xsds

L2

→ m

Proof: We prove a). The proof of b) is analogous. Proof of sufficiency: Define Sn =
∑n−1
k=0(Xk−m).

Then:

E[|
Sn
n
|2] =

1

n2

n−1∑
k=0

n−1∑
m=0

R(k −m)

=
1

n

∑
|k|≤n−1

R(k)(1−
|k|

n
)

Now from the non-negative definiteness of R(k) (see Chapter 3) it implies that
∑n−1
i=0

∑n−1
j=0 R(i−j) =∑

|k|≤n−1R(k)(n− |k|) ≥ 0 implying that
∑
|k|≤n−1 nR(k) ≥

∑
|k|≤n−1 |k|R(k) we obtain

1

n

∑
|k|≤n−1

R(k)(1−
|k|

n
)
n→∞
→ 0

from which the sufficiency follows.
The proof of the necessity follows from the fact that by the w.s.s. property:

|
1

n

n−1∑
k=0

R(k)| = |E[
1

n

n−1∑
k=0

(Xk −m)(X0 −m)]|

≤

√√√√E[(
1

n

n∑
k=0

(Xk −m))2]
√

E[(X0 −m)2]

n→∞
→ 0

Remark: If we remove the hypothesis that the process is w.s.s. but only retain the fact

that it is a second order process then a sufficient condition for 1
n

∑n−1
k=0(Xk − mk)

L2

→ 0 is that
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1
n2

∑n−1
i=0

∑n−1
j=0 R(i, j) → 0 as n → ∞. For the analogous result in for q.m. continuous processes is

that 1
T 2

∫ T
0

∫ T
0 R(t, s)dtds→ 0 as T →∞.

We now discuss the SLLN (Strong Law of Large Numbers) and its generalization the individual
ergodic theorem for strictly stationary processes due to Birkhoff. We will omit the proofs since they
are technical but just indicate the fact that the SLLN follows from the Borel-Cantelli lemma. As
above we state the SLLN for the case of non-stationary second-order processes and sequences due
to Cramer.

Proposition 2.6.7 (Strong Law of Large Numbers (SLLN))

a. Let {Xn} be a second order sequence with mean E[Xk] = mk and covariance R(j, k). Suppose
R(j, k) satisfies for |j − k| large:

|R(j, k)| ≤ Cg(|j − k|)

such that
1

n

∑
|k|≤n−1

g(k)(1 −
|k|

n
) ≤

C

nα
;α > 0

Then,

1

n

n−1∑
k=0

(Xk −mk)
a.s
→ 0

b. Let {Xt} be a q.m. continuous process with E[Xt] = mt and covariance R(t, s). If for large
|t− s|

|R(t, s)| ≤ Cg(|t− s|)

with
1

T

∫ T

0
g(t)(1 −

|t|

T
)dt ≤

c

T γ
; γ > 0

Then:
1

T

∫ T

0
(Xs −ms)ds

a.s.
→ 0

Proof: We will prove this result under a more restrictive assumption, namely that {Xn} is a w.s.s.
sequence with

∑∞
k=0 |R(k)| <∞. This satisfies hypothesis a) with α = 1 and also the hypothesis of

the Proposition 2.6.6. Hence it follows that Sn
n → m in q.m. where E[Xn] = m and Sn =

∑n
k=1Xk.

Since it converges in L2 it follows from Proposition 2.5.3 that ∃ a subsequence Sni such that
Sni
ni
→ m

a.s.
Indeed let us choose ni = i2, then:

Pr{|
Si2

i2
−m| > ε} ≤

∑i2

1

∑i2

1 R(|j − k|)

i4ε2

≤
2

i2ε2

i2−1∑
k=0

|R(k)| ≤
2

i2ε2

∞∑
k=1

|R(k)|

Therefore:
∞∑
i=1

Pr{|
Si2

i2
−m| > ε} ≤

2
∑∞
k=0 |R(k)|

ε2

∞∑
i=1

1

i2
<∞
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Hence, by the Borel-Cantelli lemma,
Si2
i2
→ m a.s.

Now, let us assume that {Xk} is a non-negative sequence. This means that Sn increases with n.
Hence, for i2 < n < (i+ 1)2 we have:

Si2

(i+ 1)2
≤
Sn
n
≤
S(i+1)2

i2

and noting that (i+1)2

i2
→ 1 as i→∞ and the observation about

Si2
i2

above we have

m ≤ lim
n→∞

Sn
n
≤ m

and hence Sn
n → m a.s. as n→∞.

We extend the result to general Xn by noting that:

Xn = X+
n −X

−
n

where X=
n = max(Xn, 0) and X−n = −min(Xn, 0) and so both X=

n and X−n are non-negative with
E[Xn] = E[X+

n ] − E[X−n ]. By definition of X+
n and X−n we have X+

n ≤ |Xn| and hence E|X+
n |

2 ≤
E|Xn|2. Similarly for X−n . Therefore E|X=

n |
2 <∞ and E|X−n |

2 <∞ if E|Xn|2 <∞. Applying the
result for non-negative Xn to X+

n and X−n we have:

Sn
n

=

∑n
k=1X

+
k

n
−

∑n
k=1X

−
k

n

and the result follows.

Remark: Condition b) holds if

|R(t, s)| <
K

1 + |t− s|γ

for some constant K.

Let us conclude this section with a statement of the ergodic theorem for strictly stationary
processes. We will only discuss the continuous time case. The discrete-time case follows mutatis
mutandis.

Definition 2.6.1 A set A is said to be invariant for a process {Xt} if {Xs ∈ A; s ∈ <} implies that
{Xt+s ∈ A; s ∈ <} for all t ∈ <. In other words the shifted version of the process remains in A.

An example of an invariant set is :

A = {X. : lim
T→∞

1

T

∫ T

0
f(Xs+t)dt = 0}

Another example of a set which is not invariant the following:

A = {X. : Xs ∈ (a, b) for some s ∈ [0, T ]}

Then:

Definition 2.6.2 A stochastic process {Xt} is said to be ergodic if every invariant set A of realiza-
tions is such that IP(A) = 0 or IP(A) = 1.
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Remark: An ergodic process need not be stationary. For example a deterministic process can be
ergodic but is not stationary.

If the process is strictly stationary the following theorem can be stated.

Proposition 2.6.8 Let {Xt} be a strictly stationary process and f(.) be a measurable function such
that E[|f(Xt)|] <∞. Then

a) The following limit :

lim
T→∞

1

T

∫ T

0
f(Xs)ds

exists almost surely and is a random variable whose mean is E[f(X0)].

b) If in addition the process is ergodic then:

1

T

∫ T

0
f(Xs)ds

a.s.
→ E[f(X0)]

Let us study the issue of ergodicity a bit further via an example. The ergodic theorems (WLLN,

SLLN) state that time averages of the form either Sn
n or

∫ T
0
Xsds

T converge to their means or ensemble
averages E[X0] under appropriate conditions.

Ergodicity is much stronger since it states that limN→∞
∑N−1
k=0 f(Xk)→ E[f(X0)] for all ”nice”

functions. In other words, the SLLN applies to the sequence Yn = f(Xn). If we do not know that
{Xk} is ergodic then we would have to check that the SLLN applies to {Yk}.

To do so let us consider the following example in continuous time for simplicity.
Consider the process:

Xt(ω) = A(ω) cos(2πt+ θ(ω))

where A and θ are independent r.v’s with θ uniformly distributed in [0, 2π].
Then one can show that {Xt} is strictly stationary (see Problem 6 at the end of the chapter). A

natural question is whether {Xt} is ergodic.
First note that:

E[Xt] = E[A]

(
1

2π

∫ 2π

0
cos(2πt+ x)dx

)
= 0

= E[X0]

since the integral of a cosine function over a period is 0.
Also:

lim
T→∞

1

T

∫ T

0
Xtdt = lim

T→∞

1

T

∫ T

0
A cos(2πt+ θ)dt

= 0

Note, in the above A(ω) and θ(ω) are just treated as some constants. Hence the SLLN holds for
{Xt(ω)}.

Now let us see if the result holds for any arbitrary but ”nice” function. Let f(.) be a continuous
bounded function.
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E[f(X0)] = E[Af(cos(θ))]

=
1

2π
EA[

∫ 2π

0
f(A cosx)dx

= EA[

∫ 1

0
f(A cos(2πt)dt]

where EA denotes taking the average over the distribution of A since A and θ are independent.
Now let us compute 1

T

∫ T
0 f(Xt)dt.

lim
T→∞

1

T

∫ T

0
f(Xt)dt = lim

N→∞

1

N

∫ N

0
f(A cos(2πt+ θ))dt

= lim
N→∞

1

N

N∑
1

∫ 1

0
f(A cos(2πt+ θ))dt

= lim
N→∞

1

N

N∑
1

∫ 1+θ

θ
f(A cos(2πs))ds

= lim
N→∞

1

N

N∑
1

∫ 1

0
f(A cos(2πs))ds

=

∫ 1

0
f(A cos(2πs))ds

Comparing the two expressions we see that they are equal if and only if A is non-random. Thus,
in general, the process is not ergodic.

Indeed it can be shown that the only invariant r.v. corresponding to Xt is a r.v. which depends
on A(ω)., and so if it is a constant, then Xt will be ergodic.

In general there are no easy conditions to know when a process is ergodic (except in the Gaussian
case discussed in the next chapter) and thus proving an ergodicity result usually involves using the
SLLN applied to the process Yt = f(Xt). The second important point to note that even if {Xt}
is stationary , f(Xt) need not be stationary and thus the above theorem states that ergodicity is
maintained under nonlinear transformation but not stationarity. In many engineering books ergodic
processes are taken to be a synonymous of stationary processes but as the above results show they
are not necessarily linked concepts.

2.7 Discussion : Classical limit theorems

Let us conclude with a discussion of the classical limit theorems due to de Moivre-Laplace and
Poisson limit theorem which were the pre-cursors of the Law of Large Numbers and the CLT.

Let {Xi} be a sequence of i.i.d. {0, 1} random variables where {Xi = 1} is identified as a
”success”. Let Pr(Xi = 1) = p, Pr(Xi = 0) = q = 1 − p and Sn =

∑n
i=1Xi. Then Sn counts

the number of successes in n independent observations or trials. The distribution of Sn is the well
known Binomial distribution denoted by B(n, p, k) = Pr(Sn = k) =

(n
k

)
pkqn−k. It is easy to see that

E[Sn] = np and var(Sn) = npq.
The classical de Moivre-Laplace limit theorem states that for large n Sn−np√

npq ∼ N(0, 1).
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Let us also note that the above result implies the LLN. First note that:

Pr{|
Sn
n
− p| ≤ ε} = Pr{|

Sn − np
√
npq

| ≤ ε
√
n

pq
}

Now from the de Moivre-Laplace theorem:

Pr{|
Sn − np
√
npq

| ≤ ε
√
n

pq
} −

1
√

2π

∫ ε
√

n
pq

−ε
√

n
pq

e−
x2

2 dx→ 0 as n→∞

Noting that limn→∞
∫ ε√ n

pq

−ε
√

n
pq

e−
x2

2 dx = 1 we have : Pr{|Snn − p| ≤ ε} → 1 which is the conclusion of

the WLLN.
Note that while the Gaussian (or Normal approximation) works for fixed p and large n there is

also another approximation which is of interest when the probability of success is small. This is the
so-called Poisson convergence theorem which we state and prove below.

Proposition 2.7.1 (Poisson approximation of Binomial probabilities)
Let B(n, p(n), k) be the Binomial distribution with the probability of success p(n) such that :

p(n)→ 0 as n→ ∞ and limn→∞ np(n)→ λ > 0.
Then for k = 0, 1, . . .

|B(n, p(n), k) − πk| → 0 as n → ∞

where {πk} denotes the Poisson distribution given by:

πk =
λk

k!
e−λ

Proof: Since by assumption p(n) = λ
n + o( 1

n ) we have:

B(n, p(n), k) =
n(n− 1) · · · (n− k + 1)

k!
[
λ

n
+ o(

1

n
)]k[1−

λ

n
+ o(

1

n
)]n−k

Now as n→∞ ,
n(n− 1) · · · (n− k + 1)

k!
[
λ

n
+ o(

1

n
)]k →

λk

k!
and

[1−
λ

n
+ o(

1

n
)]n−k → e−λ

Hence B(n, p(n), k)→ πk as n→∞.

While there are other limit theorems of interest, in most applications the SLLN and the CLT
turn out to be the most useful.

Concluding remarks

In this chapter we defined the notion of a stochastic process and studied their characterization in
terms of distributions and sample-paths. We delineated several important classes of processes which
can be characterized in terms of their moments. Finally we have discussed how empirical means
are related to the means under the probability measure (the ensemble average) through the use of
ergodic theorems. In the sequel we will study in detail w.s.s. processes and Markov processes which
take values in a discrete set i.e. Markov chains.
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Exercises

1. Let {Xt} be a random telegraph process defined as follows.

(a) Xt takes values {−1, 1}.

(b) IP(X0 = 1) = IP(X0 = −1) = 1
2

(c) Xt = (X0)(−1)Nt where {Nt} is a Poisson process with intensity λ > 0.

Find E[Xt], var(Xt) and cov(Xt,Xs). Show that it is an independent increment process.

2. Let {Xt} be a 0 mean Gaussian process with covariance

R(t, s) = exp{−2λ|t− s|}

Find the conditional density pXt/Xs(x/y). Show that it is not an independent increment
process.

3. Let {Xt} be the stochastic process defined below:

Xt =
√

2cos(2πft+ φ)

where f and φ are random variables with the following densities:

pφ(φ) =
1

2π
0 ≤ φ ≤ 2π

pf (f) =
2λ

λ2 + π2f2
−∞ < f <∞

Find E[Xt] and cov(Xt,Xs).

The above problems show that there is very little information about a stochastic process
obtained by knowing the mean and covariance without specifying the sample-paths.

4. Show that a Poisson process is mean square continuous and almost surely continuous at every
t.

5. Let {Xt} be a Gaussian process for t ∈ [0, T ]. Let E[|Xt+h−Xt|2] = hα for some α > 0. Show
that {Xt} is almost surely sample continuous no matter how small α can be.

6. Let {Xt; −∞ < t <∞} be the stochastic process defined by:

Xt = A cos(2πt+ θ)

where A is a non-negative r.v. independent of θ which is uniformly distributed in [0, 2π).

(a) Show that {Xt} is a stationary process.

(b) Show that E[Xt] = 0 provided E[A] <∞.

(c) If A has the Rayleigh distribution given by:

pA(x) =
x

σ2
exp{−

x2

2σ2
} ;x ≥ 0

Show that {Xt} is a Gaussian process. Is {Xt} Markov?
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7. a) Show
√
λW t

λ
is a standard Brownian motion process.

b) Let {Xt; −∞ < t <∞} be a 0 mean Gaussian process with E[XtXs] = e−λ|t−s|. Express
Xt for t ≥ 0 in the form

Xt = f(t)W g(t)
f(t)

where {Wt; t ≥ 0} is a standard Brownian motion.

8. Consider the finite sequence of mean 0 jointly Gaussian r.v’s {Xi}10
i=1 with:

E[XiXj ] = 2−|i−j|

Find:

a) E[X5/X4,X3]

b) E[X7/X8,X9,X10]

c) E[X6X9/X7,X8]

9. Let {Nt; t ≥ 0} be a non-homogeneous Poisson process with time-dependent intensity λt > 0
for all t defined as follows:

a) N0 = 0

b) For t > s, IP(Nt −Ns = k) =
(
∫ t
s
λudu)k

k! exp{−
∫ t
s λudu}

Show that Nt has independent increments. Let {Tn} be the points of Nt i.e. Nt = n; t ∈
[Tn, Tn+1). Find the probability density pTn(t) and show that

∑∞
n=1 pTn(t) = λt . Show that

IP(T1 <∞)) = 1⇒
∫∞
0 λudu =∞.

10. Let {Xn} be the discrete-time Gauss Markov process defined by:

Xn+1 = aXn + bwn

where X0 ∼ N(0, σ2) and {wn} is an i.i.d. N(0, 1) sequence independent of X0. Define
Rk = E[X2

k ].

a) Show that {Xn} converges asymptotically to a stationary process if Rk → R∞ as n→∞.

b) Show that Rn → R∞ if |a| < 1. Find R∞.

c) Under the condition above, find what σ2 must be in order that {Xn} is a stationary process.

d) If a > 1 show that Xn
an converges in the mean square.

11. Let {Xn} be a sequence of non-negative identically distributed r.v’s with E[Xn] < ∞. Then
show that :

Xn

n

a.s
→ 0

12. Let Nt be a Poisson process with intensity λ. Show that

Nt

t

a.s
→ λ
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13. Let {Xn} be i.i.d. r.v’s with mean m and finite variance. Define Sn =
∑n

1 Xk. Then show
that:

E[X1/Sn, Sn+1, ...]
a.s
→ m

14. Let Xt be a zero mean w.s.s. process with covariance R(t). Suppose that for some T > 0,
R(T ) = R(0). Then :

a) Show that IP(Xt+T = Xt) = 1 for every t.

b) Show that R(t+KT ) = R(t) for every t and not just for t=0.

c) Find the best linear mean squared estimate of Xt+KT given Xt i.e. find the constant C
which minimizes E[(Xt+KT − CXt)

2].

15. Let {Xn} be a second order sequence (mean 0). Show that a necessary and sufficient condition
for {Xn} to converge in the mean square is that:

E[XnXm]→ C

as n,m →∞ independently and C is a constant. Using this condition repeat problem 10.

16. Let {Xn} be a sequence of independent {0, 1} r.v’s with Pr(Xn = 1) = pn and Pr(Xn = 0) =
1− pn. Show that as n→∞

(a) Xn
P
→0 ⇐⇒ pn → 0

(b) Xn
Lp
→ 0 ⇐⇒ pn → 0

(c) Xn
a.s.
→ 0 ⇐⇒

∑∞
n=1 pn <∞

17. Let us now consider some applications of the Chebychev inequality and the CLT in obtaining
so-called sample size estimates in random sampling situations.

Let p be the fraction of a population who have a preference for a given product (or candidate).
We choose n randomly sampled members of the population. Let Mn be the fraction of the
sampled population who have the preference. Mn is thus an estimate of p.

a) Using Chebychev’s inequality and the fact that p(1−p) ≤ 0.25 find the size of the population
n if we want to obtain an estimate of p within 0.01 with 95% confidence.

b) Via the CLT show that a better estimate (smaller n) of the sample size is possible for the
same level of confidence.
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