ECE603- Statistical Signal Processing Problem Set 3 Winter 2014

Note: Reminder midterm next Friday, Feb 28.

These problems are related to filtering and representations of w.s.s. processes.

- 1. Let $\sigma_n^2 = E|\xi_n \hat{\xi_n}|^2$ where $\hat{\xi_n} = E[\xi_n|H_0]$. Show that the sequence is singular or deterministic if $\sigma_n^2 = 0$ for some $n \geq 1$, and if $\sigma_n^2 \to R(0) < \infty$ as $n \to \infty$ then the sequence is regular.
- 2. Show that the sequence $\xi_n=e^{in\varphi}$ where φ is uniform on $[0,2\pi]$ is regular. Find the etimator $\hat{\xi_n}=E[\xi_n|H_0]$ and σ_n^2 and show that the nonlinear estimator :

$$\tilde{\xi_n} = \left(\frac{\xi_0}{\xi_{-1}}\right)^n$$

provides a correct estimate of ξ_n given the past (\cdot, ξ_{-1}, ξ_0) i.e. $E|\tilde{\xi_n} - \xi_n|^2 = 0$.

Here we see the best estimator in the mean squared sense is a non-linear estimator.

3. Let an observation sequence be given by:

$$\xi_k = \theta_k + n_k$$

where θ_k is the signal and n_k is the noise sequence independent of the signal sequence.

Both θ_k and n_k are correlated sequences with spectral densities for $z = e^{-2\pi\lambda}$:

$$p_{\theta}(z) = \frac{1}{|1 + bz|^2}$$

and

$$p_n(z) = \frac{1}{|1 + cz|^2}$$

.

Find $[\theta_{n+m}|\xi_k, k \leq n]$.

Repeat the problem if:

$$p_{\theta}(z) = |2 + z|^2$$

and

$$p_n = 1$$

.

4. Let $\{W_t; t \geq 0\}$ be a standard Brownian motion process and A be a r.v. with E[A] = 0 and $E[A^2] = 1$ independent of $\{W_t\}$. Suppose we observe the process:

$$X_t = At + W_t \; ; \quad t \ge 0$$

Let \hat{A}_t denote the linear MMSE estimator of A given $X_s, 0 \leq s \leq t$. Find the explicit form of the estimator in the form:

$$\hat{A}_t = \int_0^t h(t, s) dX_s$$

i.e. find h(t, s).