
ECE 604- PSET 2 Solution

1. 1) By definition g(z) =
∑∞
n=0 pnz

n where pn = P (X = n). Therefore for z ∈ [0, 1] we have:
g′(z) =

∑∞
n=1 npnz

n−1 ≥ 0 and is therefore non-decreasing and

g′′(z) =
∞∑
n=2

n(n− 1)zn−2pn ≥ 0

and is therefore convex.
2) For g′(z) to be 0 for some z ∈ [0, 1] we need pn = 0 ∀n ≥ 1 or P (X = 0) = 1. Similarly

for g′′(z) = 0 we need pn = 0 ∀ n ≥ 2 or p0 + p1 = 1. Therefore if 0 < p0 < 1 g′(z) > 0
for z ∈ [0, 1] and hence g(z) is strictly increasing and if p(X > 2) > 0 ↔ p0 + p1 < 1 then
g′′(z) > 0 or g(z) is strictly convex.

3) Now E[x] = g′(1). Therefore if g′(1) ≤ 1 we see that the curve g(z) has a slope less than
that of z which is 1. Noting that g(0) = p0 and g(1) =

∑∞
n=0 pn = 1 we see that the two

curves y = z and y = g(z) only intersect at z=1 since g(z) is convex increasing. On the
other hand if E[X] > 1 then necessarily g′(1) > 1. If p0 > 0 then the two curves must
intersect at z = 1 and some z ∈ (0, 1). Note if p0 = 0 then the curves intersect at z = 0
and z = 1 since g(z) is strictly convex.

2. Let Yn = max{X − 1, X2, . . . , Xn} where the {Xi}ni=1 are i.i.d.. Then

IP(Yn ≤ x) = FYn(x) = IP

(
n⋂
i=1

(Xi ≤ x)

)
= (F (x))n

Similarly:

IP(Zn > x) = 1− FZn(x) = IP

(
n⋂
i=1

(Xi > x)

)
= (1− F (x))n

Now let ψn = Yn − Zn ≥ 0. There are at least two ways of solving this problem.

First way:

Fψ(z) = IP(ψn ≤ z) =
n∑
i=1

∫ ∞
0

IP(Yn − Zn|Zn = Xi = x)dFXi(x)

=
n∑
i=1

IP(
n⋂

j=1,j 6=i
(x ≤ Xj ≤ x+ z)) dF (x)

= n

∫ ∞
−∞

(FX(x+ z)− FX(x))n−1 dF (x)

= n

∫ ∞
−∞

(F (x+ z)− F (x))n−1dF (x)
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The second is we integrate out w.r.t. the distribution of Zn. Note dFZn(x) = n(1 −
F (x))n−1dF (x).

Fψ(z) = IP(ψn ≤ z) = IP(Yn − Zn ≤ z)

=
∫ ∞
−∞

IP(Yn ≤ Zn + z|Zn = x)dFZn(x)

= n

∫ ∞
−∞

IP(Yn ≤ x+ z)|Zn = x)(1− F (x))n−1dF (x)

= n

∫ ∞
−∞

IP

n−1⋂
j=1

(Xj ≤ x+ z) |
n−1⋂
j=1

(Xj > x)

 (1− F (x)n−1dF (x)

= n

∫ ∞
−∞

(F (x+ z)− F (x))n−1

(1− F (x))n−1
(1− F (x))n−1dF (x)

= n

∫ ∞
−∞

(F (x+ z)− F (x))n−1dF (x)

where we have used the fact that if the minimum is x then the remaining (n-1) random variables
must be larger than x. In other words, given that Zn = x changes the distribution of the max
Yn since Yn must be the max of the remaining (n-1) random variables and each of them must
be larger than x.

3. This problem is trivial since the random variables are independent and identically distributed.
By symmetry: E[X|X + Y ] = E[Y |X + Y ] and E[X + Y |X + Y ] = X + Y .

The second result follows from the fact that E[Xi|Sn] = E[Xj |Sn] and therefore nE[Xi | Sn] =
E[Sn|Sn] = Sn.

4. X ∼ N(0, σ2) and Y ∈ {−1, 1} with IP(Y = 1) = p = 1− IP(Y +−1).

(a) Z = X + Y . Then the characteristic function of Z is given by: CZ(h) = E[ejhZ ].
Now given Y = 1, Z ∼ N(1, σ2) and given Y = −1 Z ∼ N(−1, σ2). Therefore:

pZ(z) = p.
1√
2πσ

e−
(z−1)2

2σ2 + (1− p). 1√
2πσ

e−
(z+1)2

2σ2

and

CZ(h) = pejh−
1
2
h2σ2

+ (1− p)e−jh−
1
2
h2σ2

= e−
h2

2
σ2

(p(ejh − e−jh) + e−jh)

= e−
h2

2
σ2

(cosh+ j(2p− 1) sinh)

(b) W=XY
Let us compute the characteristic function of W

CW (h) = CX(h)p+ (1− p)C−X(h)
= CX(h)

since CX(h) = C−X(h) as X = N(0, σ2). This is only true because E[X] = 0.
Therefore W is Gaussian with the same distribution as X.
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(c) Now let U = W + X. We know that X and W are individually Gaussian but we do not
know if they are jointly Gaussian. It is clear by observation that W and X are dependent.
To compute the distribution of U we have:

FU (z) = IP(U ≤ z) = IP(X(Y + 1) ≤ z)

= IP(X ≤ z

2
|Y = 1)p+ (1− p) = IP(X ≤ z

2
)p+ 1− p z ≥ 0

= pIP(X ≤ z

2
) z < 0

which is clearly not a Gaussian distribution This shows that unless we specify the joint
distribution, the sum of two Gaussians need not be Gaussian.

Now: E[W ] = 0 and var(W ) = σ2. and

cov(WX) = E(WX) = E[X2Y ] = σ2(2p− 1)

If p = 0.5 they would be uncorrelated but not independent because they are not jointly
Gaussian. In general, if p 6= 0.5 they are correlated and not independent.

5. First note that:
Zt = X cos(2πt+ θ) = cos 2πtX cos θ − sin 2πX sin θ

where for eact t , cos 2πt and sin 2πt are just non-random constants. If one defines X1 = X cos θ
and X2 = X sin θ then by a simple Jacobian calculation it can be seen X1 and X2 are independent
Gaussian random variables. Therefore Zt is a Gaussian r.v. for every t being a linear combination
of independent Gaussian r.v’s.

Now the joint distribution of {Zt1 , Zt2} can be computed as follows (by taking the moment
generating function) E[eh1Zt1+h2zt2 ] and noting that:

Z = aZt1 + bZt2

= aX cos(2πt1 + θ) + bX cos(2πt2 + θ)
= (a cos 2πt1 + b cos 2πt2)X cos θ − (a sin 2πt1 + b sin 2πt2)X sin θ

showing Z is Gaussian for any a and b from the fact that X cos θ and X sin θ are independent
Gaussians. Therefore since h1 and h2 are arbitrary, the r.v. in the exponent is a Gaussian and
one readily can obtain the conclusion that they are jointly Gaussian.

Indeed one can show it is a Gaussian stochastic process because all finite combinations will be
Gaussian.

6. Let us first compute the characteristic function of a Poisson r.v.

C(h) = E[ejhX ] =
∞∑
n=0

ejhnIP(X = n)

=
∞∑
n=0

ejhn
λn

n!
e−λ

= e−λ(1−ejh)
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Now Y =
∑n
i=1Xi where Xi ∼ Poisson(λi) and the X ′is are independent.

Therefore:

CY (h) =
n∏
i=1

CXi(h) =
n∏
i=1

e−λi(1−e
jh) = e−

∑n

i=1
λi(1−ejh)

where the last expression is just the characteristic function of a Poisson r.v. with parameter∑n
i=1 λi.

7. Advanced problem 1.

Let Z = X + Y and X and Y are independent. We want to show that if Z is Gaussian then X
and Y are also Gaussian. Indeed let us see the simple case: X and Y are identically distributed.
Suppose Z ∼ N(0, σ2). then by definition:

CZ(h) = CX(h)CY (h) = (CX(h))2

Therefore the characteristic function of X is just e−
σ2

4
h2

showing X ∼ N(0, σ
2

2 ). Of course they
need not be identical and so we need to show it more generally.

We show the result via the following idea of stable distributions.

Lemma

Let X and Y be 0 mean variance 1 i.i.d random variables.

Suppose there exist a,b. and c and a random variable Z such that:

aX + bY = cZ

where Z has the same distribution of X and Y ..

Then Z must be N(0, 1).

Proof:

E[ejhcX ] = C(ch) where C(h) = E[ejhX ]. Now from independence of X and Y we have c2 =
a2 + b2 and C(ch) = C(ah)C(bh). Define φ(x) = logC(x).

Then:
φ(ch) = φ(ah) + φ(bh) = φ(ah+ bh)

Noting that c2 = a2 + b2 we have

φ(x+ y) = φ(x) + φ(y) = φ(
√
x+ y)

The only solution of this equation is of the form:

C(x) = Kedx
2

Noting C(0) = 1 and C ′′(0) = −1 we obtain K = 1 and d = 1
2 showing that C(h) is the

characteristic function of a standard normal random variable.

This thus allows us to conclude that if Z is Gaussian and X and Y are independent then X and
Y must be Gaussian by this stability result where c2 = var(Z) and var(X) = a2, var(Y ) = b2

with c2 = a2 +B2. or Z = aX + bY where X and Y are independent N(0, 1) random variables.
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8. Advanced problem 2

To show that if f(.) is a ”nice” function then

E[f ′(X)−Xf(X)] = 0↔ X ∼ N(0, 1)

Let us show the sufficiency part. Let X be standard normal. Let EN [.] denote expectation w.r.t.
the standard normal.Then

EN [f ′(X)−Xf(X)] =
1√
2π

∫ ∞
−∞

(f ′(x)− xf(x))e−
x2

2 dx

Integrate by parts the first term on the rhs above.

∫ ∞
−∞

f ′(x)e−
x2

2 dx =
∫ ∞
−∞

xf(x)e−
x2

2 dx

hence the result follows.

Without loss of generality let us assume that X has a density p(x). Then we obtain:∫ ∞
−∞

(f ′(x)− xf(x))p(x) = 0 =
∫ ∞
−∞

f(x)(p′(x) + xp(x))dx

Since f(.) is arbitrary it implies that p′(x) + xp(x) = 0 or

p(x) = ce−
x2

2

From the normalization condition we obtain c = 1√
2π

. or p(x) is the density of a N(0, 1) r.v.

To show that there exists a function f(x) such that:

h(x)− EN [h(X)] = f ′(x)− xf(x)

one can readily see that if we define:

f(x) = e
x2

2

∫ x

−∞
(h(y)− EN [h])e−

y2

2 dy

then f(.) will satisfy:
EN [f ′(X)−Xf(X)] = 0
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