ECE 604- PSET 2 Solution

1. 1) By definition g(z) = Y 7> gpnz" where p, = P(X = n). Therefore for z € [0,1] we have:
g'(z) =35 np,z"~! > 0 and is therefore non-decreasing and

oo

g"(z) =Y _n(n— 1)2""?p, >0

n=2
and is therefore convex.

2) For ¢'(z) to be 0 for some z € [0,1] we need p, = 0Vn > 1 or P(X = 0) = 1. Similarly
for ¢"(z) = 0 we need p, =0V n >2or py+ p; = 1. Therefore if 0 < pg < 1 ¢'(z) >0
for z € [0,1] and hence g(z) is strictly increasing and if p(X > 2) > 0 < pg + p1 < 1 then
g"(z) > 0 or g(z) is strictly convex.

3) Now E[x] = ¢/(1). Therefore if ¢’(1) < 1 we see that the curve g(z) has a slope less than
that of z which is 1. Noting that ¢g(0) = pg and g(1) = > o, pn, = 1 we see that the two
curves y = z and y = g(z) only intersect at z=1 since g(z) is convex increasing. On the
other hand if E[X] > 1 then necessarily ¢’(1) > 1. If pp > 0 then the two curves must
intersect at z = 1 and some z € (0,1). Note if pyg = 0 then the curves intersect at z = 0
and z = 1 since g(z) is strictly convex.

2. Let Y, = max{X — 1, Xo,..., X,,} where the {X;}!" ; are i.i.d.. Then

P, <z)=Fy,(x) = P <

(X, < x>>
=1
— (F)"

Similarly:

P(Z,>x)=1—-Fgz, () = IP(ﬁ(Xi>x))
i=1
= (1-F(x)"

Now let ¢, =Y, — Z,, > 0. There are at least two ways of solving this problem.

First way:

Fp(z) =P, <z2) = ; /OOOIP(Yn — Zn|Zn = Xi = 2)dFx,(2)
=1
= Y P( ()] @<X;<z+2)dF(x)
=1 j=1,5#i

_ n/z (Fx(z+ 2) — Fy(2)" ' dF(2)
= n/_O:O(F(x + 2) — F(z))" YdF ()

1



The second is we integrate out w.r.t. the distribution of Z,. Note dFyz, (x) = n(l —
F(z))" 'dF(z).

Fy(z) =P <z2) = P, —-2Z,<z2)
— /OO P(Y, < Zy + 2|7 = 2)dFy, (z)

— 7°° P(Y, < &+ 2)|Zn = 2)(1 — F(2))"'dF(x)
50 n—1 n—1

= n/ P ( (Xj<axz+2) | ﬂ(Xj >x)) (1— F(z)" YdF(x)
0 j=1 j=1
o0 z+2)— Fz)" !

_ n/_oo (F<(1+_3: x;i_)l) (1 - F(z))" 'dF(z)

- n/O:O(F(m +2) — F(2))" ' dF (x)

where we have used the fact that if the minimum is x then the remaining (n-1) random variables
must be larger than x. In other words, given that Z,, = x changes the distribution of the max
Y,, since Y,, must be the max of the remaining (n-1) random variables and each of them must
be larger than x.

3. This problem is trivial since the random variables are independent and identically distributed.
By symmetry: E[X| X +Y]|=E[Y|X+Y]and E[ X +Y|X+Y]=X+Y.

The second result follows from the fact that E[X;|S,] = E[X;|S,] and therefore nE[X; | Sy,] =
E[Sp|Sn] = Sh.

4. X ~N(0,0%) and Y € {-1,1} with P(Y =1)=p=1-P(Y + —1).

(a) Z = X +Y. Then the characteristic function of Z is given by: Cz(h) = E[e?"?].
Now given Y =1, Z ~ N(1,0?%) and given Y = —1 Z ~ N(—1,02). Therefore:

() 1 ey L 1-p) 1 ey
zZ)=7p. e 20 — . (& 20
bz P V2mo P 2mo
and
Cy(h) = peih=3ho" 4 (1 — p)eih—gh®o’
= e = ) e
2

= 7 (cosh + j(2p — 1)sinh)

(b) W=XY

Let us compute the characteristic function of W

Cw(h) = Cx(h)p+ (1 —-p)C_x(h)
= Cx(h)

since Cx (h) = C_x(h) as X = N(0,02). This is only true because E[X] = 0.
Therefore W is Gaussian with the same distribution as X.



(¢) Now let U = W + X. We know that X and W are individually Gaussian but we do not
know if they are jointly Gaussian. It is clear by observation that W and X are dependent.

To compute the distribution of U we have:
Fy(z)=P(U<z2) = PX(Y+1)<2)

= ]P(Xg%]Yzl)p—i—(l—p):]P(Xg p+1—p 2>0

[NCRIRN

- p]P(XS%) 2 <0

which is clearly not a Gaussian distribution This shows that unless we specify the joint
distribution, the sum of two Gaussians need not be Gaussian.

Now: E[W] =0 and var(W) = o2. and
cov(WX)=E(WX) =E[X?Y]=c%*2p—1)

If p = 0.5 they would be uncorrelated but not independent because they are not jointly
Gaussian. In general, if p # 0.5 they are correlated and not independent.

5. First note that:
Zy = X cos(2mt + 0) = cos 27t X cos § — sin 27 X sin 0

where for eact t , cos 27t and sin 27t are just non-random constants. If one defines X1 = X cos@
and Xy = X sin § then by a simple Jacobian calculation it can be seen X; and X5 are independent
Gaussian random variables. Therefore Z; is a Gaussian r.v. for every t being a linear combination
of independent Gaussian r.v’s.

Now the joint distribution of {Z;,, Z;,} can be computed as follows (by taking the moment
generating function) E[ef1%t1h2%:] and noting that:

Z = G,Ztl + bZt2
= aX cos(2mty + 0) + bX cos(2wts + 0)
= (acos2mt; + bcos27te) X cos — (asin 27ty + bsin 27te) X sin @

showing 7 is Gaussian for any a and b from the fact that X cos# and X sinf are independent
Gaussians. Therefore since h; and hs are arbitrary, the r.v. in the exponent is a Gaussian and
one readily can obtain the conclusion that they are jointly Gaussian.

Indeed one can show it is a Gaussian stochastic process because all finite combinations will be

Gaussian.

6. Let us first compute the characteristic function of a Poisson r.v.

C(h) = E[e’"X] = i IMIP(X = n)
n=0

o0 n

— Zejhn)‘ie—k
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Now Y = Y ; X; where X; ~ Poisson()\;) and the X/s are independent.

Therefore:
n

n . n .

Cy(h) = [[ Cx,(h) = [[e M0 = e~ imy Mlt=e™)

i=1 i=1

where the last expression is just the characteristic function of a Poisson r.v. with parameter
1 i

. Advanced problem 1.

Let Z=X+Y and X and Y are independent. We want to show that if 7 is Gaussian then X
and Y are also Gaussian. Indeed let us see the simple case: X and Y are identically distributed.
Suppose Z ~ N(0,0?). then by definition:

CZ(h) = Cx(h)Cy (h) = (Cx(h))?

02
Therefore the characteristic function of X is just e~ Th showing X ~ N (0, %2) Of course they
need not be identical and so we need to show it more generally.

We show the result via the following idea of stable distributions.
Lemma
Let X and Y be 0 mean variance 1 i.i.d random variables.

Suppose there exist a,b. and ¢ and a random variable Z such that:
aX +bY =cZ

where Z has the same distribution of X and Y'..
Then Z must be N(0,1).

Proof:

E[e/hX] = C(ch) where C(h) = E[e’*X]. Now from independence of X and Y we have c? =
a? 4+ b* and C(ch) = C(ah)C(bh). Define ¢(x) = log C(z).

Then:
od(ch) = ¢(ah) + ¢(bh) = ¢(ah + bh)

Noting that ¢ = a? + b? we have

Pz +y) = 9(x) + oy) = ¢(Va +y)

The only solution of this equation is of the form:
C(z) = Ke®’
Noting C(0) = 1 and C”(0) = —1 we obtain K = 1 and d = § showing that C(h) is the

characteristic function of a standard normal random variable.

This thus allows us to conclude that if Z is Gaussian and X and Y are independent then X and
Y must be Gaussian by this stability result where ¢? = var(Z) and var(X) = a?, var(Y) = b
with ¢ = a®? + B2. or Z = aX + bY where X and Y are independent N (0, 1) random variables.



8. Advanced problem 2

To show that if f(.) is a "nice” function then

Elf'(X)-Xf(X)] =0« X ~ N(0,1)

Let us show the sufficiency part. Let X be standard normal. Let Ex[.] denote expectation w.r.t.
the standard normal.Then

ENU'(0) = X0 = <= [~ (/@) ~ 2 @)% da

Integrate by parts the first term on the rhs above.

/_O:o f’(m)e*%daﬁ = /OO xf(x)efﬁdw

hence the result follows.

Without loss of generality let us assume that X has a density p(z). Then we obtain:
| @ —af@pe) =0= [ f@)' @) +apl@)da
Since f(.) is arbitrary it implies that p/(x) + 2p(z) = 0 or
2

x

p(w) = e~
From the normalization condition we obtain ¢ = \/%—W or p(z) is the density of a N(0,1) r.v.

To show that there exists a function f(x) such that:

h(z) = En[W(X)] = f'(2) = zf(z)

one can readily see that if we define:

then f(.) will satisfy:



