1. 2) By definition $g(z)=\sum_{n=0}^{\infty} p_{n} z^{n}$ where $p_{n}=P(X=n)$. Therefore for $z \in[0,1]$ we have: $g^{\prime}(z)=\sum_{n=1}^{\infty} n p_{n} z^{n-1} \geq 0$ and is therefore non-decreasing and

$$
g^{\prime \prime}(z)=\sum_{n=2}^{\infty} n(n-1) z^{n-2} p_{n} \geq 0
$$

and is therefore convex.
2) For $g^{\prime}(z)$ to be 0 for some $z \in[0,1]$ we need $p_{n}=0 \forall n \geq 1$ or $P(X=0)=1$. Similarly for $g^{\prime \prime}(z)=0$ we need $p_{n}=0 \forall n \geq 2$ or $p_{0}+p_{1}=1$. Therefore if $0<p_{0}<1 g^{\prime}(z)>0$ for $z \in[0,1]$ and hence $g(z)$ is strictly increasing and if $p(X>2)>0 \leftrightarrow p_{0}+p_{1}<1$ then $g^{\prime \prime}(z)>0$ or $g(z)$ is strictly convex.
3) Now $E[x]=g^{\prime}(1)$. Therefore if $g^{\prime}(1) \leq 1$ we see that the curve $g(z)$ has a slope less than that of z which is 1 . Noting that $g(0)=p_{0}$ and $g(1)=\sum_{n=0}^{\infty} p_{n}=1$ we see that the two curves $y=z$ and $y=g(z)$ only intersect at $\mathrm{z}=1$ since $g(z)$ is convex increasing. On the other hand if $E[X]>1$ then necessarily $g^{\prime}(1)>1$. If $p_{0}>0$ then the two curves must intersect at $z=1$ and some $z \in(0,1)$. Note if $p_{0}=0$ then the curves intersect at $z=0$ and $z=1$ since $g(z)$ is strictly convex.
2. Let $Y_{n}=\max \left\{X-1, X_{2}, \ldots, X_{n}\right\}$ where the $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d.. Then

$$
\begin{aligned}
\mathbb{P}\left(Y_{n} \leq x\right)=F_{Y_{n}}(x) & =\mathbb{P}\left(\bigcap_{i=1}^{n}\left(X_{i} \leq x\right)\right) \\
& =(F(x))^{n}
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
\mathbb{P}\left(Z_{n}>x\right)=1-F_{Z_{n}}(x) & =\mathbb{P}\left(\bigcap_{i=1}^{n}\left(X_{i}>x\right)\right) \\
& =(1-F(x))^{n}
\end{aligned}
$$

Now let $\psi_{n}=Y_{n}-Z_{n} \geq 0$. There are at least two ways of solving this problem.
First way:

$$
\begin{aligned}
F_{\psi}(z)=\mathbb{P}\left(\psi_{n} \leq z\right) & =\sum_{i=1}^{n} \int_{0}^{\infty} \mathbb{P}\left(Y_{n}-Z_{n} \mid Z_{n}=X_{i}=x\right) d F_{X_{i}}(x) \\
& =\sum_{i=1}^{n} \mathbb{P}\left(\bigcap_{j=1, j \neq i}^{n}\left(x \leq X_{j} \leq x+z\right)\right) d F(x) \\
& =n \int_{-\infty}^{\infty}\left(F_{X}(x+z)-F_{X}(x)\right)^{n-1} d F(x) \\
& =n \int_{-\infty}^{\infty}(F(x+z)-F(x))^{n-1} d F(x)
\end{aligned}
$$

The second is we integrate out w.r.t. the distribution of Z_{n}. Note $d F_{Z_{n}}(x)=n(1-$ $F(x))^{n-1} d F(x)$.

$$
\begin{aligned}
F_{\psi}(z)=\mathbb{P}\left(\psi_{n} \leq z\right) & =\mathbb{P}\left(Y_{n}-Z_{n} \leq z\right) \\
& =\int_{-\infty}^{\infty} \mathbb{P}\left(Y_{n} \leq Z_{n}+z \mid Z_{n}=x\right) d F_{Z_{n}}(x) \\
& \left.=n \int_{-\infty}^{\infty} \mathbb{P}\left(Y_{n} \leq x+z\right) \mid Z_{n}=x\right)(1-F(x))^{n-1} d F(x) \\
& =n \int_{-\infty}^{\infty} \mathbb{P}\left(\bigcap_{j=1}^{n-1}\left(X_{j} \leq x+z\right) \mid \bigcap_{j=1}^{n-1}\left(X_{j}>x\right)\right)\left(1-F(x)^{n-1} d F(x)\right. \\
& =n \int_{-\infty}^{\infty} \frac{(F(x+z)-F(x))^{n-1}}{(1-F(x))^{n-1}}(1-F(x))^{n-1} d F(x) \\
& =n \int_{-\infty}^{\infty}(F(x+z)-F(x))^{n-1} d F(x)
\end{aligned}
$$

where we have used the fact that if the minimum is x then the remaining ($\mathrm{n}-1$) random variables must be larger than x . In other words, given that $Z_{n}=x$ changes the distribution of the max Y_{n} since Y_{n} must be the max of the remaining ($\mathrm{n}-1$) random variables and each of them must be larger than x .
3. This problem is trivial since the random variables are independent and identically distributed. By symmetry: $E[X \mid X+Y]=E[Y \mid X+Y]$ and $E[X+Y \mid X+Y]=X+Y$.
The second result follows from the fact that $E\left[X_{i} \mid S_{n}\right]=E\left[X_{j} \mid S_{n}\right]$ and therefore $n E\left[X_{i} \mid S_{n}\right]=$ $E\left[S_{n} \mid S_{n}\right]=S_{n}$.
4. $X \sim N\left(0, \sigma^{2}\right)$ and $Y \in\{-1,1\}$ with $\mathbb{P}(Y=1)=p=1-\mathbb{P}(Y+-1)$.
(a) $Z=X+Y$. Then the characteristic function of Z is given by: $C_{Z}(h)=E\left[e^{j h Z}\right]$. Now given $Y=1, Z \sim N\left(1, \sigma^{2}\right)$ and given $Y=-1 Z \sim N\left(-1, \sigma^{2}\right)$. Therefore:

$$
p_{Z}(z)=p \cdot \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(z-1)^{2}}{2 \sigma^{2}}}+(1-p) \cdot \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(z+1)^{2}}{2 \sigma^{2}}}
$$

and

$$
\begin{aligned}
C_{Z}(h) & =p e^{j h-\frac{1}{2} h^{2} \sigma^{2}}+(1-p) e^{-j h-\frac{1}{2} h^{2} \sigma^{2}} \\
& =e^{-\frac{h^{2}}{2} \sigma^{2}}\left(p\left(e^{j h}-e^{-j h}\right)+e^{-j h}\right) \\
& =e^{-\frac{h^{2}}{2} \sigma^{2}}(\cos h+j(2 p-1) \sin h)
\end{aligned}
$$

(b) $\mathrm{W}=\mathrm{XY}$

Let us compute the characteristic function of W

$$
\begin{aligned}
C_{W}(h) & =C_{X}(h) p+(1-p) C_{-X}(h) \\
& =C_{X}(h)
\end{aligned}
$$

since $C_{X}(h)=C_{-X}(h)$ as $X=N\left(0, \sigma^{2}\right)$. This is only true because $E[X]=0$.
Therefore W is Gaussian with the same distribution as X.
(c) Now let $U=W+X$. We know that X and W are individually Gaussian but we do not know if they are jointly Gaussian. It is clear by observation that W and X are dependent. To compute the distribution of U we have:

$$
\begin{aligned}
F_{U}(z)=\mathbb{P}(U \leq z) & =\mathbb{P}(X(Y+1) \leq z) \\
& =\mathbb{P}\left(\left.X \leq \frac{z}{2} \right\rvert\, Y=1\right) p+(1-p)=\mathbb{P}\left(X \leq \frac{z}{2}\right) p+1-p \quad z \geq 0 \\
& =p \mathbb{P}\left(X \leq \frac{z}{2}\right) \quad z<0
\end{aligned}
$$

which is clearly not a Gaussian distribution This shows that unless we specify the joint distribution, the sum of two Gaussians need not be Gaussian.

Now: $E[W]=0$ and $\operatorname{var}(W)=\sigma^{2}$. and

$$
\operatorname{cov}(W X)=E(W X)=E\left[X^{2} Y\right]=\sigma^{2}(2 p-1)
$$

If $p=0.5$ they would be uncorrelated but not independent because they are not jointly Gaussian. In general, if $p \neq 0.5$ they are correlated and not independent.
5. First note that:

$$
Z_{t}=X \cos (2 \pi t+\theta)=\cos 2 \pi t X \cos \theta-\sin 2 \pi X \sin \theta
$$

where for eact $t, \cos 2 \pi t$ and $\sin 2 \pi t$ are just non-random constants. If one defines $X_{1}=X \cos \theta$ and $X_{2}=X \sin \theta$ then by a simple Jacobian calculation it can be seen X_{1} and X_{2} are independent Gaussian random variables. Therefore Z_{t} is a Gaussian r.v. for every t being a linear combination of independent Gaussian r.v's.

Now the joint distribution of $\left\{Z_{t_{1}}, Z_{t_{2}}\right\}$ can be computed as follows (by taking the moment generating function) $E\left[e^{h_{1} Z_{t_{1}}+h_{2} z t_{2}}\right]$ and noting that:

$$
\begin{aligned}
Z & =a Z_{t_{1}}+b Z_{t_{2}} \\
& =a X \cos \left(2 \pi t_{1}+\theta\right)+b X \cos \left(2 \pi t_{2}+\theta\right) \\
& =\left(a \cos 2 \pi t_{1}+b \cos 2 \pi t_{2}\right) X \cos \theta-\left(a \sin 2 \pi t_{1}+b \sin 2 \pi t_{2}\right) X \sin \theta
\end{aligned}
$$

showing Z is Gaussian for any a and b from the fact that $X \cos \theta$ and $X \sin \theta$ are independent Gaussians. Therefore since h_{1} and h_{2} are arbitrary, the r.v. in the exponent is a Gaussian and one readily can obtain the conclusion that they are jointly Gaussian.
Indeed one can show it is a Gaussian stochastic process because all finite combinations will be Gaussian.
6. Let us first compute the characteristic function of a Poisson r.v.

$$
\begin{aligned}
C(h)=E\left[e^{j h X}\right] & =\sum_{n=0}^{\infty} e^{j h n} \mathbb{P}(X=n) \\
& =\sum_{n=0}^{\infty} e^{j h n} \frac{\lambda^{n}}{n!} e^{-\lambda} \\
& =e^{-\lambda\left(1-e^{j h}\right)}
\end{aligned}
$$

Now $Y=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ and the $X_{i}^{\prime} s$ are independent.
Therefore:

$$
C_{Y}(h)=\prod_{i=1}^{n} C_{X_{i}}(h)=\prod_{i=1}^{n} e^{-\lambda_{i}\left(1-e^{j h}\right)}=e^{-\sum_{i=1}^{n} \lambda_{i}\left(1-e^{j h}\right)}
$$

where the last expression is just the characteristic function of a Poisson r.v. with parameter $\sum_{i=1}^{n} \lambda_{i}$.
7. Advanced problem 1.

Let $Z=X+Y$ and X and Y are independent. We want to show that if Z is Gaussian then X and Y are also Gaussian. Indeed let us see the simple case: X and Y are identically distributed. Suppose $Z \sim N\left(0, \sigma^{2}\right)$. then by definition:

$$
C Z(h)=C_{X}(h) C_{Y}(h)=\left(C_{X}(h)\right)^{2}
$$

Therefore the characteristic function of X is just $e^{-\frac{\sigma^{2}}{4} h^{2}}$ showing $X \sim N\left(0, \frac{\sigma^{2}}{2}\right)$. Of course they need not be identical and so we need to show it more generally.
We show the result via the following idea of stable distributions.

Lemma

Let X and Y be 0 mean variance 1 i.i.d random variables.
Suppose there exist a,b. and c and a random variable Z such that:

$$
a X+b Y=c Z
$$

where Z has the same distribution of X and Y..
Then Z must be $N(0,1)$.

Proof:
$E\left[e^{j h c X}\right]=C(c h)$ where $C(h)=E\left[e^{j h X}\right]$. Now from independence of X and Y we have $c^{2}=$ $a^{2}+b^{2}$ and $\left.C_{(} c h\right)=C(a h) C(b h)$. Define $\phi(x)=\log C(x)$.
Then:

$$
\phi(c h)=\phi(a h)+\phi(b h)=\phi(a h+b h)
$$

Noting that $c^{2}=a^{2}+b^{2}$ we have

$$
\phi(x+y)=\phi(x)+\phi(y)=\phi(\sqrt{x+y})
$$

The only solution of this equation is of the form:

$$
C(x)=K e^{d x^{2}}
$$

Noting $C(0)=1$ and $C^{\prime \prime}(0)=-1$ we obtain $K=1$ and $d=\frac{1}{2}$ showing that $C(h)$ is the characteristic function of a standard normal random variable.
This thus allows us to conclude that if Z is Gaussian and X and Y are independent then X and Y must be Gaussian by this stability result where $c^{2}=\operatorname{var}(Z)$ and $\operatorname{var}(X)=a^{2}, \operatorname{var}(Y)=b^{2}$ with $c^{2}=a^{2}+B^{2}$. or $Z=a X+b Y$ where X and Y are independent $N(0,1)$ random variables.
8. Advanced problem 2

To show that if $f($.$) is a "nice" function then$

$$
E\left[f^{\prime}(X)-X f(X)\right]=0 \leftrightarrow X \sim N(0,1)
$$

Let us show the sufficiency part. Let X be standard normal. Let $E_{N}[$.] denote expectation w.r.t. the standard normal.Then

$$
E_{N}\left[f^{\prime}(X)-X f(X)\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(f^{\prime}(x)-x f(x)\right) e^{-\frac{x^{2}}{2}} d x
$$

Integrate by parts the first term on the rhs above.

$$
\int_{-\infty}^{\infty} f^{\prime}(x) e^{-\frac{x^{2}}{2}} d x=\int_{-\infty}^{\infty} x f(x) e^{-\frac{x^{2}}{2}} d x
$$

hence the result follows.
Without loss of generality let us assume that X has a density $p(x)$. Then we obtain:

$$
\int_{-\infty}^{\infty}\left(f^{\prime}(x)-x f(x)\right) p(x)=0=\int_{-\infty}^{\infty} f(x)\left(p^{\prime}(x)+x p(x)\right) d x
$$

Since $f($.$) is arbitrary it implies that p^{\prime}(x)+x p(x)=0$ or

$$
p(x)=c e^{-\frac{x^{2}}{2}}
$$

From the normalization condition we obtain $c=\frac{1}{\sqrt{2 \pi}}$. or $p(x)$ is the density of a $N(0,1)$ r.v. To show that there exists a function $f(x)$ such that:

$$
h(x)-E_{N}[h(X)]=f^{\prime}(x)-x f(x)
$$

one can readily see that if we define:

$$
f(x)=e^{\frac{x^{2}}{2}} \int_{-\infty}^{x}\left(h(y)-E_{N}[h]\right) e^{-\frac{y^{2}}{2}} d y
$$

then $f($.$) will satisfy:$

$$
E_{N}\left[f^{\prime}(X)-X f(X)\right]=0
$$

