
ECE 604- PSET 4 Solution

Answers to selected problems only given in detail. Routine problems are not worked out in detail

1. This problem basically shows that any Gauss-Markov process can be viewed as a time-changed
Brownian motion.

a)To show that Xt =
√
λW t

λ
is BM it is enough to show E[XtXs] = min(t, s) which follows

easily since t
λ is monotone in t.

b) Suppose g(t)
f(t) is increasing in t then, for s > t,

E[XtXs] = f(t)f(s) min{ g(t)
f(t)

,
g(s)
f(s)
} = f(s)g(t) = e−λ(s−t)

Hence the result follows by taking g(t) = eλt and f(t) = e−λt.

2. To solve this problem we need to use the Borel-Cantelli lemma (1st part).

Define An = {Xn > nε} = {Xnε > n}.
For any non-negative r.v. X we have:

∞∑
m=0

IP(X > m+ 1) ≤ E[X] =
∞∑
m=0

∫ m+1

m
IP(X > x)dx =≤

∞∑
m=0

IP(X > m)

.

Therefore we have (using the fact that the {Xn} are identically distributed (as say X1):

IP(
∞⋃
n=1

An) ≤
∞∑
n=1

IP(
X1

ε
> n) ≤ E[X1]

ε
<∞

Hence by Borel-Cantelli lemma, {An} i.o. is 0 a.s. or Xn
n > ε only a finite number of times and

hence goes to 0 almost surely.

3. This is a very useful result for showing mean square convergence.

Suppose limn,m→∞E[XnXm] = C then we have:

lim
n,m→∞

E[Xn −Xm]2 = lim
n,m→∞

{
E[X2

n]− 2E[XnNm] + E[X2
m]
}

= C − 2C + C = 0

On the other hand if limn,m→∞E[Xn −Xm]2 → 0 then it necessarily follows that

lim
n,m→∞

E[XnXm] = lim
n→∞

E[X2
n] = lim

m→∞
E[X2

m] = C

Consider the Gauss-Markov process:

Xn+1 = aXn + bwn
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with |a| > 1. Then we know Rn+1 = a2Rn + b2 → ∞ and so {Xn} does not converge in the
mean square.

To show that Xn
an = Yn converges in the mean square we need to show that:

lim
n

sup
m

E[(Yn+m − Yn)2]→ 0

From a computational standpoint it becomes quite messy and so we use the criterion as stated
in the first part of the problem.

First note that for n > m:

Xn = an−mXm +
n∑

k=m+1

an−kbWk−1

Therefore:

E[YnYm] = a−2mE[Xm2] =
1
a2m

(a2mR0 +
m∑
k=1

(a2)k−1b2) = R0 +
b2

a2 − 1
+ o(a−2m)

Therefore as m→∞ the r.h.s → R0 + b2

a2−1
= C and hence the result follows.

4. This problem directly follows from the Strong Law of Large Numbers (SLLN).

Indeed let Ii denote the i− th sub-interval. Then:

Zm(i) =
m∑
k=1

1[Xk∈Ii]

Then: by the SLLN Zm
m → pi a.s.

Now

logRm =
n∑
i=1

Zm(i) log pi

and hence:

logRm
m

=
n∑
i=1

∑m
k=1 1[Xk∈Ii]

m
log pi →

n∑
i=1

pi log pi = −h as m→∞

5. This problem is just one where we compute the Fourier transform and see whether it is non-
negative for all ω ∈ (−∞,∞). Because the functions are only functions of t-s we need to consider
the functions R(t).

The answers to these are therefore: a) Yes. b) Yes c) No.

6. The answer is from the hint. It is a covariance function truncated at some t < T and by
computing its Fourier transform we see it can be negative and hence the truncated function
cannot be a covariance function.

7. Here the R(n) are the Fourier coefficients (Helmholtz theorem) and we can see that the corre-
sponding spectral density is given by:

S(ω) = R(0) + 2R(5) cos 5ω + 2R(15) cos 15ω

where ω = 2πλ. Hence we see that for ω = π we have: S(ω) = π− 4− 6 < 0 so S(ω) is negative
and hence cannot be a spectral density.
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8. This is easy. Define Yt =
√
aXat where cov(Xt, Xs) = R(t, s). Then cov(Yt, Ys) = aR(at, as)

and thus aR(at, as) is a bona fide covariance.

9. First note that:
E[ejωWt ] = e−

1
2
ω2t

.

Now

E[X(t)] =
1
2j

E[ej(2πft+Wt) − e−j(2πft+Wt)]

= e−
t
2 sin(2πft)

→ 0 as t→∞

Now we need to compute the covariance and show that limt→∞R(t, t+ T ) = S(T ) where S(T )
is a covariance function.

Now:
R(T, T + t) = E[X(T )X(T + t)]−E[X(T )]E[X(T + t)]

From the calculations above we see that both E[X(T )] and E[X(t + T )] go to 0 as T → infty
so we only need to consider the first term.

Now:

E[X(T )X(T + t)] = E[sin(2πfT +WT ) sin(2πf(T + t) +WT+t)]

=
1
2
E[cos(2πft+WT+t −WT )]− 1

2
cos(2πf(2T + t) +WT +Wt+T )]

Now as in the first part limT→∞E[cos(2πf(2π(2T + t) +WT +WT+t)]→ 0 and WT+t−WT has
the same distribution as Wt hence:

lim
T→∞

R(T, T + t) = R(t) =
1
2
E[cos(2πft+Wt)] =

1
2
e−

t
2 cos 2πft

and so the process is asymptotically w.s.s.

10. Y (t) = eX(t) where X(t) is a w.s.s. Gaussian process with mean m and covariance R(t).

Now:
E[Y (t)] = E[X(t)] = em+ 1

2
R(0)

where we have used the fact that if X is N(m,σ2) , E[eX ] = em+ 1
2
σ2

.

Hence :

cov(Y (s)Y (s+ t)] = E[Y (s)Y (s+ t)] = E[Y (s)]E[Y (s+ t)]
= E[Y (s)Y (s+ t)]− e2m+R(0)

Now:

E[Y (s)Y (s+ t)] = E[eX(s)+X(s+t)]

= e2m+ 1
2
(2R(0)+2R(t))

= e2m+R(0)+R(t)
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Hence
cov(Y (s)Y (s+ t)) = e2m+R(0)

(
eR(t) − 1

)
A sufficient condition for the spectral density to exist is:∫ ∞

−∞
eR(t)dt <∞

There is no simple answer without further knowledge of R(t).
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