
Chapter 6

Continuous-time Markov Chains
(CTMC)

In this chapter we turn our attention to continuous-time Markov processes that take values in
a denumerable (countable) set that can be finite or infinite. Such processes are referred to as
continuous-time Markov chains. As we shall see the main questions about the existence of invariant
distributions, the ergodic theorem, etc. can be obtained from the corresponding techniques that we
saw for discrete-time Markov chains.

6.1 Definition and Basic Properties

Let {Xt}t≥0 be a stochastic process that takes values in a countable set E. Throughout this chapter
we will use the following notation:

Definition 6.1.1 Let FXt = σ{Xu, u ≤ t} i.e. the σ-field of events generated by the process up to
t. This is often referred to as the filtration generated by Xt or the history of the process up to t.

σ(X) will denote the sigma-field of events generated by the r.v. X. When the context is clear we
will drop the superscript X.

A continuous-time Markov chain is a Markov process that takes values in E. More formally:

Definition 6.1.2 The process {Xt}t≥0 with values in E is said to a a continuous-time Markov chain
(CTMC) if for any t > s:

IP
(
Xt ∈ A|FXs

)
= IP (Xt ∈ A|σ(Xs)) = IP (Xt ∈ A|Xs) (6.1. 1)

In particular, let us denote:

Pij(s, s+ t) = IP(Xt+s = j|Xs = i) (6.1. 2)

If Pij(s, s + t) = Pij(t), i.e. it only depends on the difference t between t + s and s then {Xt}
is referred to a a homogeneous CTMC or a homogeneous Markov chain for short. From now on we
will assume that the Markov chain is homogeneous that we will abbreviate as HMC.

Let us define the matrix (could be infinite dimensional) P (t) as

P (t) = {Pij(t)}ij∈E×E
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with P (0) = I. P (t) is referred to as the transition probability matrix of X.
Then from the Markov property we have the following semigroup property satisfied by P (t) that

is referred to as the Chapman-Kolmogorov equations.

Proposition 6.1.1 Let {Xt}t≥0 be a homogeneous CTMC taking values in E. Then:

P (s+ t) = P (s)P (t) = P (t)P (s)

or equivalently:
Pij(t+ s) =

∑
k∈E

Pik(s)Pkj(t) =
∑
k∈E

Pik(t)Pkj(s)

Let us now define the following sequence of times, Tn referred to as the jump-times of the Markov
chain when it transitions from one state to the other:

T1 = inf{t : Xt 6= X0}
Tn = inf{t ≥ Tn−1 : Xt 6= XTn−1}

Then by definition the sequence {Tn} forms a sequence of Markov or stopping times. This se-
quence allows us to characterize the sample-path trajectories of the M.C. In particular the trajectories
of {Xt} are piecewise constant between jump times. By definition {Xt} is right-continuous.

As in the case of DTMC we can show that CTMC Markov chains satisfy the strong Markov
property. We state the result below.

Proposition 6.1.2 Let τ be a Markov or stopping time relative to Ft .i.e the event: {τ ≤ t} ∈ Ft.
Then the following is true:

1. The process Xτ+t is independent of Fu, u ≤ τ given Xτ .

2. IP(Xτ+t = j|Xτ = i) = Pij(t).

The first important result we establish is the fact that the sequence of the inter-jump times given
by T1, T2 − T1, T3 − T2, · · · , Tn − Tn−1, · · · are independent and exponentially distributed random
variables and in particular can be viewed as the points of an inhomogeneous Poisson process that
we will specify.

Define:
τt = inf{s > t : Xs 6= Xt} (6.1. 3)

i.e. the first time after t when the process leaves the state Xt.

Proposition 6.1.3 Let {Xt} be a HMC on E. Let τt be as defined in (6.1. 3). Then there exists a
parameter qi > 0 such that:

IP(τt > u|Xt = i) = e−qit

Proof:
Let us define:

fi(u+ v) = IP(τt > u+ v|Xt = i)

Now, by the definition of τt, if τt > u+ v it implies that Xt+u = i since the process has not changed
state at time t+ u.
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Therefore,

fi(u+ v) = IP(τt > u, τt > u+ v|Xt = i)
= IP(τt > u+ v|τt > u,Xt = i)IP(τt > u|Xt = i)
= IP(τt > u+ v|Xt+u = i)IP(τt > u|Xt = i)
= fi(v)fi(u)

where we have used homogeneity and the strong Markov property in the last step.
Hence:

fi(u+ v) = fi(u)fi(v), fi(0) = 1

Hence the only solution to this equation with fi(t) ∈ (0, 1) is

fi(t) = e−qit

for some qi > 0.

The above result shows that the MC spends an amount of time that is exponentially distributed
in a given state.

Before proceeding, let us recall some properties of exponentially distributed random variables.

Proposition 6.1.4 Let X and Y be independent exponentially distributed r.v’s. with parameters λx
and λY respectively.

Then:

1. IP(X > u + v|X > u) = IP(X > v) = e−λXv for any u, v > 0. This is referred to as the
memoryless property.

2. Let S be any positive r.v. independent of X. Then :

IP(X > S + u|X > S) = IP(X > u) = e−λXu

3. Define Z = min(X,Y ) then:
IP(Z > u) = e−(λX+λY )u

And moreover Z is independent of the events {X < Y } and {Y < X}, i.e. it is independent
of which of the two random variables is smaller.

Proof: 1. follows by definition. 2. follows by conditioning on S and using independence. Only 3.
needs proof.

The first part of 3. is easy by the definition of Z, since:

IP(Z > u) = IP(X > u, Y > u) = IP(X > u)IP(Y > u) = e−(λX+λY )u

from independence of X and Y . For the second part :

IP(Z > u,X > Y ) = IP(Y > u,X > Y )

=
∫ ∞
u

IP(X > x)dFY (x)

=
∫ ∞
u

e−λXxλY e
−λY xdx

=
λY

λX + λY
e−(λX+λY )u
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But λY
λX+λY

is just the probability IP(X > Y ) and so

IP(Z > u,X > Y ) = IP(X > Y )IP(Z > u)

establishing the independence. The independence between Z and the event {Y > X} follows by
interchanging the roles of X and Y .

Remark 6.1.1 From Proposition 6.1.4 and the strong Markov property it readily follows that:
T1, T2 − T1, · · · forms a sequence of independent exponentially distributed random variables. Thus
the sequence {Tn} can be viewed as the points of an inhomogeneous Poisson process whose intensity
depends on the state of the underlying MC- sometimes referred to as a doubly stochastic Poisson
process.

We now turn our attention to the study of the behavior of P (t) and techniques for its computation.
Let us recall the properties of P (t)

• P (t) is continuous with P (0) = limt→0 P (t) = I

• P (t+ s) = P (s)P (t) = P (t)P (s)

Such an operator (as a function of t) is called a C0 semi-group. The additional requirement that
Pij(t) ∈ [0, 1] actually imposes further conditions that we shall see. THe key point is that from the
continuity and semi-group property the derivative of P (t) exists. We state this property below as a
proposition.

Proposition 6.1.5 Let P (t) be the probability transition matrix of a CTMC. Then the infinitesimal
generator (or simply generator) Q exists and is defined as:

Q = lim
t→0

P (t)− I
t

(6.1. 4)

and moreover:
d

dt
P (t) = QP (t) = P (t)Q (6.1. 5)

Proof: Rather than give the detailed proof, let us show that

lim
t→0

Pii(t)− 1
t

= qii

exists.
First note that from the semi-group property: P (t) = [P ( tn)]n and therefore Pii(t) ≥ [Pii( tn)]n

for all i ∈ E. Now since limt→0 Pii(t) = 1 there exists ε > 0 such that for all h ∈ [0, ε) Pii(h) > 0.
Therefore since for all finite t and n sufficiently large, t

n ∈ [0, ε) we have for every t ≥ 0, Pii(t) > 0.
Define:

fi(t) = − logPii(t) <∞

Since fi(t)→ 0 as t→ 0 and from the semi-group property it readily follows that:

fi(t+ s) ≤ fi(t) + fi(s)

or fi(t) is sub-additive.
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Define
qi = sup

t>0

fi(t)
t

Then it follows from sub-additivity that:

lim
h↓0

fi(h)
h

= qi

Therefore:

lim
h↓0

Pii(h)− 1
h

= lim
h↓0

efi(h) − 1
fi(h)

fi(h)
h

= −qi = qii

The proof of limh↓0
Pij(h)
h = qij for some qij > 0 is more complicated but can be shown similarly

by noting that
Pij(t) ≤ 1− Pii(t)

and from the Markov property:
Pij(nh) ≥ nPij(h)C

where C → 1 is a constant related to Pjj(h) as h→ 0.

Remark 6.1.2 The infinitesimal generator Q is often referred to as the rate matrix of the Markov
chain and plays the same function as the transition matrix P of discrete-time chains. We will use
the term rate matrix.

From the definition of Q it readily follows that formally we can write:

P (t) = eQt (6.1. 6)

If |E| <∞ then this is just the matrix exponential function. When |E| =∞ we need to define it an
appropriate way that we will discuss later. But first of all let us study some properties of Q and the
relation between qii and the parameter qi of the exponential sojourn time in state i we had shown
before.

We state this below.

Proposition 6.1.6 Let Q = {qij}(ij)∈E×E be the rate matrix of a CTMC. Then:

a)
∑

j∈E qij = 0 ∀ i ∈ E

b) qii = qi where qi is the parameter associated with the exponentially distributed sojourn time in
state i.

Proof: First note that for every t ≥ 0 ∑
j∈E

Pij(t) = 1

Therefore differentiating we obtain:

d

dt

∑
j∈E

Pij(t) = 0 =
∑
j∈E

qikPkj(t)

=
∑
k∈E

qik
∑
j∈E

Pkj(t)

=
∑
k∈E

qik
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So in particular: qii = −
∑

j 6=i qij < 0 since qij ≥ 0. By definition −qii is the rate at which the
MC exits from state i and thus from the definition of qi earlier we have qi = −qii.

The evolution equations for P (t) given by d
dtP (t) = QP (t) = P (t)Q are called the Kolmogorov

equations.
Specifically the form:

d

dt
P (t) = QP (t)

or
d

dt
Pij(t) = −qiPii(t) +

∑
k 6=i

qikPkj(t)

is called the Kolmogorov backward equation and is written interms of the change of flux out of state
i. Formally it can be viewed as taking conditioning Xt+h on Xh and then letting t→ 0.

The other equation is equivalent to stating:

d

dt
Pij(t) = −qiPii(t) +

∑
k 6=i

Pik(t)qkj

and is called the forward equation that represents the flux coming into state i. This can be viewed
as conditioning Xt+h on Xt and letting h→ 0.

6.1.1 Jump or Embedded Chains

Let Tn be the sequence of jump times of a CTMC Xt. The intervals Tn+1 − Tn = Sn denote the
sojourn times in a given state. Define the discrete-time process:

Yn = XTn

Then Yn is called the embedded or jump chain. Note that since the sequence {Tn} forms a set
of stopping or Markov times with respect to FX the process {Y − n} is a DTMC.

Let πij = IP(Yn=1 = j|Yn = i) = IP(XTn+Jn = j|XTn = i) denote the transition probabilities of
the chain {Yn}.

Lemma 6.1.1 The embedded MC {Yn} has the following transition probabilities:

πij = 0 i = j (6.1. 7)

=
qij
qi

j 6= i (6.1. 8)

Proof: If i=j, then by definition πii = 0 as the chain {Yn} only corresponds to changes in the state.
For j 6= i we have by the definition of the rates qij :

πij = Ei[
∫ S1

0
qijdt]

= qijEi[S1]

=
qij
qi

where we used the fact that conditioned on being in state i the mean sojourn time (given by the
mean of the exponential distribution with parameter qi) is 1

qi
.
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6.1.2 Regularity and Stationarity

Let us now turn our attention to the long-term behavior of CTMCs. The key issue is that of
existence of a stationary distribution and convergence to stationarity. As in the case of DTMCs, it
is fundamentally governed by the behavior of P (t) that itself is determined by the rate matrix Q.

Let πi(t) = IP(Xt = i). Then from the Markov property it readily follows that:

πi(t) =
∑
j∈E

πj(0)Pji(t)

Suppose there exists a stationary distribution (also referred to as the equilibrium distribution),
that we denote by:

π = (π0, π1, · · · , πj , · · · )

Then:
π = πP (t), t ≥ 0

Now differentiating both sides we obtain:

d

dt
π = 0 = π

d

dt
P (t)

= πQP (t), ∀t ≥ 0

This implies that π satisfies:
πQ = 0 (6.1. 9)

The condition (6.1. 9) is thus necessary and the equation when expanded for each state i ∈ E
can be written as ∑

j∈E
πjqji = 0, i ∈ E

−qiiπi =
∑

j∈E,j 6=i
πjqji , i ∈ E (6.1. 10)

The equations (6.1. 10) is referred to as the (global) balance equations and states that in equi-
librium the total probability flux out of state i given by −qiiπi is equal to the probability flux into
state i.

Let us now study the relationship between the stationary distribution of a CTMC and its em-
bedded chain.

Proposition 6.1.7 Let π = (π0, π1m · · · , ) denote the stationary distribution of a homogeneous
CTMC {Xt}t≥0 and π̃ denote the the stationary distribution of the embedded chain Yn = XTn where
{Tn} are the jump points of Xt.

Let β =
∑

i∈E πiqi <∞. Then:

π̃i =
πiqi
β

(6.1. 11)

Proof: To show this result we need to show that π̃ = π̃P where P is the transition probability
matrix of Yn. But by definition Pij = qij

qi
, i 6= j, and 0 otherwise. So we need to establish that:

(
π0q0
β

, . . . ,
πiqi
β
, . . .) = (

π0q0
β

, . . . ,
πiqi
β
, . . .)P
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We obtain for the i-th term:

πqi
β

=
∑
j 6=i

πjqj
β

qji
qj

=
∑
j 6=i

πjqji
β

or:
πiqi =

∑
j 6=i

πjqji

which is equivalent to
πQ = 0

which corresponds to π being the stationary distribution of Xt as per assumption.

Note the factor β does not play a role in the calculations. It is just required for normalization.
We will now study the questions of ergodicity and convergence to steady-state for CTMCs. But
before doing so we need to introduce the important concept of regularity for CTMCs that does not
arise in the context of DTMCs.

The classification of states for CTMC is done via the embedded or jump chain Yn = XTn .

Definition 6.1.3 A state i is said to be recurrent (resp. transient) for Xt if and only if it is recurrent
(resp. transient) for the jump chain.

Definition 6.1.4 The state space E is said to be irreducible for Xt if and only if it is irreducible
for Yn.

Let Sn = Tn+1 − Tn be the sequence the sequence of sojourn times of the CTMC. By definition:
Tn =

∑n−1
1 Sk and let ξ = limn→∞ Tn =

∑∞
n=1 Sn. Then ξ is a measure of the lifetime of the process,

i.e. it is the total time that the process Xt spends in all the states. Now if Xt is well behaved we
would want ξ to be infinite. This is the issue of regularity and we will see that it is related to the
behavior of qi. If ξ <∞ it would imply that the MC has an infinite number of transitions in finite
time, and thus ξ =∞ means that the MC persists so that we can define the notion of a stationary
distribution as the fraction of time it spends in a given state.

To study regularity we need the following lemma.

Lemma 6.1.2 Let {Sk} be independent exponentially distributed r.v’s with E[Sn] = 1
λn

. Define
T∞ =

∑∞
n=1 Sn.

IP(T∞ <∞) = 0 if
∑
n

1
λn

=∞

= 1 if
∑
n

1
λn

<∞

Proof: First note that:
E[T∞] =

∑
n

1
λn

and therefore
∑

n
1
λn

<∞ implies that IP(T∞ =∞) = 0.
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On the other hand:

E[e−T∞ ] =
∞∏
n=1

E[e−Sn ] (by independence)

=
∞∏
n=1

λn
1 + λn

≤ [
∞∑
n=1

1
λn

]−1

Therefore if
∑∞

n=1
1
λn

=∞ it implies E[e−T∞ ] = 0 or IP(T∞ =∞) = 1.

Hence by noting that the r.v’s Sn are exponentially distributed with parameter λn = qXTn

IP(
∑∞

n=1
1

qXTn

=∞) = 1 implies that IP(ξ =∞) = 1

Now suppose the embedded MC is irreducible then
∑

n
1

qXTn

=
∑

i∈E Ni
1
qi
≥
∑

i∈E
1
qi

where

Ni =
∑∞

n=1 1I[XTn=i] ≥ 1. Therefore
∑

i∈E
1
qi

=∞ implies that ξ =∞ a.s..
This leads to the following definition:

Definition 6.1.5 A CTMC is said to be regular if IP(ξ =∞) = 1. If IP(ξ <∞) > 0 then ξ is said
to be an explosion time.
A regular Markov process is also referred to as non-exlosive.

The discrete-time analog of a non-explosive process is fii = IP(Xn = i eventually|X0 = i) = 1.
Now if the chain is irreducible, then fii = 1 ⇐⇒ E[Ni] = ∞ and IP(Ni = ∞) = 1, i.e. regularity
is equivalent to recurrence. A sufficient condition for a CTMC with |E| = ∞ to be regular is
supi qi = q <∞ since

∑
i

1
qi
≥
∑

i
1
q =∞.

We state and prove the result below.

Proposition 6.1.8 Let {Xt}t≥0 be a CTMC with generator Q. Then Xt is regular if any of the
following hold:

a) supi qi <∞

b) The embedded process Yn = XTn is recurrent.

Proof: The proof of a) has been discussed above so we will restrict ourselves to the proof of b).
Since Yn is recurrent, let N i

nbe the sequence of returns to state i. By definition N i
n →∞ because i

is recurrent.
Therefore noting that:

ξ ≥
∑
n

SN i
n

and N i
n →∞ it implies that ξ =∞ or the process Xt is regular.

Remark 6.1.3 It is useful to note that a) is true when |E| < ∞ . b) is also true when |E| < ∞
and the chain Yn is irreducible. Thus for finite chains we obtain positive recurrence (existence of a
stationary distribution) if the state space is finite and irreducible.

We now state the basic convergence and limit theorems for CTMCs.
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Proposition 6.1.9 Let {Xt} be a CTMC with state space E and generator Q and suppose E is
irreducible.

Define:
τi = inf{t > 0 : Xt = i|X0 = i}

Then:

i) If i is transient or null recurrent:
lim
t→∞

Pii(t) = 0

ii) If j is positive recurrent then:

lim
t→∞

Pij(t) = πj =
1

qjEj [τj ]

iii) If{Xt} is positive recurrent if and only if ∃ πi > 0 such that:

πi =
∑
j∈E

πjPji(t) ∀t ≥ 0

∑
i∈E

πi = 1

We conclude with a statement of the ergodic theorem for CTMC. The proof is similar to the
discrete case where we partition time into cycles where the chain regenerates and then use the SLLN
on those independent components.

Proposition 6.1.10 Let Xt be a positive recurrent CTMC then for any integrable function i.e.∑
i∈E |f(i)|πi <∞ ,we have the following SLLN :

lim
T→∞

1
T

∫ T

0
f(Xs)ds = Eπ[f(X0)] =

∑
i∈E

f(i)πi (6.1. 12)

Canonical examples of Markov chains are Poisson processes which have stationary independent
increments. Of course a Poisson process is by definition non-stationary in that limt→∞Nt =∞ and
has no stationary distribution.

In applications we most often encounter a very important class of Markov chains referred to as
birth-death processes. These CTMCs are defined through the Q matrix where:

qij = pi j = i+ 1
= qi j = i− 1, i ≥ 1
= 0 otherwise

It is easy to see that the CTMC possesses a stationary distribution iff
∑∞

n=1 ρn < ∞ where
ρn =

∏n−1
k=0

pk
qk+1

(use iii) of Proposition 6.1.9) . In particular when pn = λ and qn = µ then a

necessary and sufficient condition for the CTMC to be positive recurrent is ρ = λ
µ < 1 and then the

stationary distribution is given by:

πk = ρk(1− ρ), k = 0, 1, 2, · · · ,
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6.1.3 Uniformization of CTMC

Uniformization is a technique by which we construct a discrete-time MC whose distribution is the
same as the CTMC. Note the embedded chain is also a DTMC but the stationary distribution differs
from the stationary distribution of the CTMC.

Let us begin by considering the simple case first. If qi = q for all i in a CTMC then it is clear
that the stationary distribution of the embedded chain given by:

π̃i =
πiqi∑
j πjqj

=
πq

q
∑

j πj
= πi

or the two stationary distributions coincide. However if the qi’s are all the same then by construction
the jump times form the points of a Poisson process , say Nt, with rate q and thus:

Xt = YNt

where Yn is the embedded chain.
We will now show that when supi qi = q <∞ then we can perform a similar construction. Now

we know that:
d

dt
π(t) = π(t)Q

Define the matrix:
R = I +

1
q
Q

.
By construction the row sums of R are all 1, all elements are take values in (0, 1) and therefore

R is a stochastic matrix that can be associated with a DTMC, say Yn.
Therefore substituting we have:

d

dt
π(t) = π(t)q(−I +R)

Since supi qi <∞ we can write the solution as

π(t) = π(0)eQt

= π(0)eq[−I+R]t

= π(0)e−qteqRt

= π(0)
∞∑
n=0

e−qt
(qt)nRn

n!

=
∞∑
n=0

π̂(n)e−qt
(qt)n

n!
(6.1. 13)

where π̂(n) = π(0)Rn denotes the probability distribution of Yn starting with initial distribution
π(0).

Now define:
X̂t = YNt

where Nt is a Poisson process with rate q. Then by definition: X̂t = Yn Tn ≤ t < Tn+1 where Tn
are the points of the Poisson process.
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Now:

IP(X̂t = i) =
∞∑
k=0

IP(Yk = i)IP(Nt = k)

=
∞∑
k=0

(π(0)Rk)ie−qt
(qt)k

k!

= IP(Xt = i) from (6.1.13)

In other words we have constructed the process X̂t from the DTMC process Yn that has the
same distributions as Xt for all t not only the stationary distribution.

Uniformization is thus a very useful technique to convert a CTMC and view it in terms of a
DTMC with the same transient and stationary distribution. One important point to note, in the
jump or embedded chain the transition from i to i is forbidden while in the uniformized chain there
can be transitions from i to i as can be seen from the (i, i) element of R i.e. Rii = 1− qi

q > 0.

6.1.4 Hitting times

Let A ⊂ E be any subset of E.
Define TA = inf{t ≥ 0 : Xt ∈ A} denote the hitting or entrance time of Xt to A and τA =

inf{n ≥ 0 : XTn ∈ a} denotes the hitting time to A for the jump chain.
Clearly, since the entrance time to A of Xt must coincide with a jump in the embedded or jump

chain:
IP(τA <∞) = IP(TA <∞)

Define: hAi = IPi(TA <∞).

Proposition 6.1.11 Let Q denote the generator of {Xt}. Then:

hAi = 1 i ∈ A∑
j∈E

qijh
A
j = 0 i /∈ A (6.1. 14)

bf Proof: We exploit the results for discrete-time chains to show this.
If i ∈ A then by definition τA = 0 and so there is nothing to prove.
If i /∈ A then:

IPi(τA <∞) =
∑
j∈E

IPi(τA <∞, j)

=
∑
j∈E

IP(τA <∞|X0 = i,X1 = j)Pij

=
∑

j∈E,j 6=i
hAj Pij

where Pij = qij
qi

Therefore substituting we obtain:
∑

j 6=i h
A
j
qij
qi

= hAi or:

−qihAi +
∑
j 6=i

hAj qij = 0

which gives the result noting that qi = −qii.
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Remark 6.1.4 Note that hAi = 1 ∀i is a solution to (6.1. 14). And thus if the chain is recurrent
it is the only solution. On the other hand one can show that hAi is the minimal solution in that if
there is any other solution to (6.1. 14) then it will be larger.

In a similar way we can compute the mean hitting times.

Proposition 6.1.12 Let kAi = Ei[TA] where TA is the hitting time. Then:

kAi = 0 i ∈ A
qik

A
i = 1 +

∑
j 6=i

qijk
A
j (6.1. 15)

Proof: The only twist in the proof is that we need to take into account the sojourn times.
If i ∈ A the result is trivial. So for i /∈ A, let J)i denote the sojourn time in state i, we have:

Ei[TA] = kAi = Ei[Ji +
∑
j∈E

Ei[TA − Ji|XT1 = j,X0 = i]

= Ei[Ji] +
∑

j 6=i,j∈E
Ej [TA]

qij
qi

=
1
qi

+
1
qi

∑
j 6=i

qijk
A
j

whence the stated result follows.

6.1.5 Reversibility

We conclude our discussion of CTMCs with the notion of reversibility of Markov chains. This
property plays a very important role in the structure and behavior of many useful queueing models.

Recall a MC remains a MC in reverse time too. However, even if a MC is homogeneous in forward
time the reverse time MC need not be homogeneous. Let us show this result in the CTMC case.

Let T be fixed and define Yt = XT−t, t ≥ 0. Then Yt is a process that evolves in reverse
time. Let us show that {Yt} is Markov. This follows from the fact that given Yt = XT−t the events
A ∈ σ{Ys, s < t} = σ{XT−s, s < t} and B ∈ σ{Yu, u > t} = σ{XT−u, u > t} are conditionally
independent belonging to the past and future of T − t from the assumption that Xt is Markov. It
remains to calculate the transition probability matrix of Yt.

P̃ij(t, s) = IP(Yt+s = j|Ys = i) =
IP(Yt+s = j, Ys = i)

IP(Ys = i)

=
IP(Ys = i|Yt+s = j)IP(Yt+s = j)

IP(Ys = i)

=
IP(XT−s = i|XT−(t+s) = j)IP(XT−(t+s) = j)

IP(XT−s = i)

= Pji(t)
πj(t+ s)
πi(s)

It is important to note that the rhs is a function of t and s and not on their difference and thus
the reverse chain in inhomogeneous.
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Now suppose {Xt} is stationary. Then πi(t) = πi where π = (π0, π1, · · · , πi, . . .) is the stationary
distribution . In that case:

P̃ij(t, s) = Pji(t)
πj
πi

or the reverse chain is also homogeneous.
Let us also compute its generator.
Let Q̃ denote the generator then:

d

dt
P̃ij(t)|t=0 = q̃ij =

πj
πi

∑
k

qjkPki(t)|t=0 =
πj
πi
qji

Clearly: ∑
j

q̃ij =
∑
j

πj
πi
qji = 0

since by definition
∑

j πjqji = 0 by definition of the stationary distribution. So Q̃ is a bona fide rate
matrix.

Let us show that π remains the stationary distribution of Yt.
We know by definition that:

(πQ)j =
∑
i

πiqij = 0 =
∑
i

πi
πj
πi
q̃ji

= πj
∑
i

q̃ji = 0

= (πQ̃)j

establishing that π is the stationary distribution for Yt.
We can collect all these results and state stem as a proposition:

Proposition 6.1.13 Let {Xt} be a stationary CTMC on E that is irreducible with stationary dis-
tribution π. If the generator Q satisfies the detailed balance equation given by:

πiqij = πjqjI (6.1. 16)

Then the reversed process {X−t} properly modified to be right-continuous is distributionally equivalent
to {Xt}.

Proof: By the definition of the generator of the reverse process Q̃ we see that Q̃ = Q and there-
fore both Markov processes are stationary with the same generator and are thus distributionally
equivalent.

Reversibility of the underlying CTMC has many nice properties that follow as a result of the
detailed balance equation (6.1. 16).

Lemma 6.1.3 Let Q be the generator of a reversible CTMC on E. Then, ∃ gi > 0 such that:

qij
qji

=
gj
gi

(6.1. 17)
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proof: Since the CTMC is reversible it must satisfy the detailed balance: we can take gi = Cπi
for any constant C and hence we get the required result. On the other hand, if qij

qji
satisfies the

above relation then gi will satisfy the detailed balance equation and we can then normalize the g.’s
to obtain the stationary distribution.

We conclude our study of CTMCs by pointing two important properties associated with reversible
processes. The first is the notion of partial balance.

Proposition 6.1.14 Let{Xt} be a reversible Markov process. Let A ⊂ E be any closed1 subset of
E and denote Ac = E −A. Then the process satisfies the following partial balance equations :∑

j∈Ac

∑
i∈A

πiqij =
∑
j∈Ac

∑
i∈A

qjiπj (6.1. 18)

In order to check for reversibility it appears that one needs to compute the stationary distribution
πi. This it turns out is not necessary. The result is called the Kolmogorov loop criterion.

Definition 6.1.6 Given a collection of states i, i1, · · · , in, i that defines a closed path from i to i we
say that Kolmogorov’s loop criterion is satisfied if:

qii1qi1i2 · · · qini = qiinqinin−1 · · · qi1i (6.1. 19)

Proposition 6.1.15 A stationary CTMC is reversible if and only if ∀ i, j ∈ E, qij = 0 =⇒ qji = 0
and Kolmogorov’s loop criterion is satisfied for every closed path.

A simple application of these results relates to truncated Markov Chains.
Example 1:

Let {Xt} be a reversible MC and let A ⊂ E. Define the truncated markov process XA
t as one

with the following generator:

q̄ij = qij if i, j ∈ A
q̄ii = −

∑
i,j∈A,j 6=i

qij

Then XA
t is a Markov is a CTMC on A with stationary distribution denoted by πA given by:

πAi =
πi∑
j∈A πj

i ∈ A (6.1. 20)

Reversibility is an idea that translates to discrete-time Markov chains too. Indeed we can state
the following result.

Proposition 6.1.16 Let {Xn} be a discrete time MC on (E,P ) with stationary distribution π. If:

πiPij = πjPji

Then {Xn} is reversible and the process {X−n}n≥0 has the same probabilistic behavior as {Xn}.
1By a closed set it means the states within that set can communicate with each other without the need to exit that

set.
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A simple example of a reversible MC is the random graph model below.

A random graph model
Consider a finite connected random graph with n nodes. A pair of nodes (i, j) are said to be

connected if there is a link or arc between them. Let wij be a positive weight on arc (i, j) with
wij = wji. Define w − ij = 0 if there is no arc between i and j.

Define a random walk on the graph as the probability of going from i→ j as wijP
k wik

. Then since
the P matrix is completely symmetric one would expect the MC to be reversible. Let π denote the
stationary distribution.

Indeed for all i and j we have:

πi∑
k wik

=
πj∑
k wjk

= C

and therefore
πi = C

∑
k

wik

.
Noting

∑n
i=1 πi = 1 we obtain C = [

∑
k

∑
iwik]

−1 and hence:

πi =
∑

k wik∑
k

∑
iwik

If wij = 1 then it corresponds to a random walk on a random graph where the probability of
going to a neighboring node is uniform.

This concludes the key results about CTMCs that will be of use when we study queueing systems.
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