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Palm probabilities and stationary queueing systems

The idea of Palm probabilities is one of conditioning on a point in
time where an event takes place.

Let {Tn} denote a sequence of r.v.’s such that
...T−1 < T0 ≤ 0 < T1 <, · · · . The r.v’s correspond to a sequence of
time points. Assume that the sequence is stationary i.e Ti+1 − Ti

are identically distributed.

Define:
Nt = N(0, t) =

∑
k

1I[0,t)(Tk)

then Nt is said to be a simple point process (it counts how many
points lie in [0, t). Now suppose {Xt} is a stochastic process defined
on a probability space (Ω,Ft, P ) on which also {Nt} is defined.
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A Palm probability tries to make sense of the following:

P
t(Xt ∈ A|∆Nt = 1)

i.e. the probability of Xt ∈ A when a point occurs.

Note the event ∆Nt = 1 occurs on a set of measure 0 and thus
making sense of such a conditional probability needs some care.

Let us see some examples.
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Suppose {Nt}t≥0 is a Poisson process with intensity λ i.e. Nt − λt isa Ft

martingale. Consider Xt too be Ft adapted.

E[Xt|∆Nt = 1] = lim
δ→0

E[Xt1I[N [t,t+δ]=1]]

E[1I(N [t,t+δ)=1]

= lim
δ→0

E[XtE[1I[N [t,t+δ)=1]|Ft]

E[1I[N [t,t+δ=1])|Ft]

By definition of the stochastic intensity E[1I[N(t,t+δ)=1]|Ft] = λδ + o(δ).

And hence we see that E[Xt|∆Nt = 1] = E[Xt]

We can make this argument completely rigorous. The key is that

conditioning w.r.t points of a Poisson process do not affect the

probabilities. This is an apparition of the so-called PASTA property. We

will see this more in detail later.

In general conditioning does affect the expectation.
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Let us see another example. Once again let {Nt} be a Poisson
process with intensity λ.

Let {Xt} be a stochastic process adapted to Ft then

E[
∫ t

0

Xs−dNs = E[
∑

n

XTn−1I[Tn≤t] = λ

∫ t

0

E[Xs]ds

This is sometimes called Campbell’s formula. In this case it just
follows from the martingale property.

However when Nt is a stationary point process we can still obtain a
similar formula if we replace the expectation on the r.h.s by
expectation w.r.t. Palm probability and λ by E[N [0, 1)]
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Let us now see a more general situation in the discrete-time case
(when there is no problem in defining the conditional probability).
Let {ξn} be a a stationary sequence of {0, 1} r.v. with
P(ξn = 1) = λ. Let {Tn} be the set of times when ξn = 1 and we
adopt the convention · · · < T−1 < T0 ≤ 0 < T1 < · · · . Let
N(n) = ξn.

We can now define for any A ∈ F :

P
n(Xn ∈ A) = P(Xn ∈ A|N(n) = 1)

=
P(Xn ∈ A, N(n) = 1)

P(N(n) = 1)

=
1
λ

P(Xn ∈ A, N(n) = 1)

The probability on the r.h.s is well defined since Nk, Xk are jointly
defined.

Note by convention we take P 0(T0 = 0) = 1
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Now from above it follows:

E[
∑

n

XTn1I[0≤Tn≤k]] =
k∑
0

E[Xn1I[N({n}=1]]

= λ
k∑
0

∫
dpn(x) = λ(k + 1)E0[X0]

by the definition of Palm probability above and stationarity.

This is exactly the analog of the result previously.
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In the continuous time case we can do the following: Let
λ = E[N [0, 1)] Now clearly for any r.v. X we can define a measure
µ(.) for A ∈ � as follows:

µ(A) =
1
λ

E[X
∑
Tn

1I[Tn∈A]]

This is absolutely continuous w.r.t. Lebesgue measure and hence
by the Radon-Nikodym theorem we can define a density, say p0(t).
And µ(A) =

∫
A

p0(s)ds where p0(t) = E[X |N({t} = 1]

Hence in particular:

E[XN(A)] = λ

∫
A

Et[X ]dt

This is a special case of the Campbell-Mecke formula.

In lecture 3 we will see these concepts more rigorously.
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Inversion Formula and the Waiting Time Paradox

In general how do we relate the Palm probability and the reference
probability?

This is given by the inversion formula:

E[Xk] = E[X0] = λE0[
T1−1∑
k=0

Xk]
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Proof: First note by definition of the Palm probability above:

λE
0[

T1−1∑
k=0

Xk] = E[
T1−1∑
k=0

Xk1I[T0=0]]

= E[
∞∑

k=0

Xk1Iξ0=1;ξ1,ξ2,..,ξk−1=0]]

= E[X0

∞∑
k=0

1I[ξ−k=1;ξ−k+1,...ξ−1=0]]

where we have used stationarity in the last step. Now∑∞
k=0 1I[ξ−k=−1;ξm=0,−k+1≤m≤1] = 1 a.s. since by definition λ < ∞

and this just corresponds to stating that there exists a point before
0 at a finite distance. Hence the result follows.

A simple consequence of this result is E
0[T1 − T0] = 1

λ obtained by
taking Xk = 1.
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In continuous-time the corresponding result is:

E[Xt] = λE
0[

∫ T1

0

Xsds]

where λ = E[N [0, 1)]

Let us now see a consequence of the inversion formula: the famous
inspection paradox.
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Let Nt be a point process.

Define: A(t) = TNt+1 − t. Then A(t) is the forward recurrence time-

time to the next point given we arrive at t.

Similarly define B(t) = t − TNt the backward recurrence time. Then

A(t) + B(t) = TNt+1 − TNt is the inter-point time interval. By

stationarity E
0[TNt+1 − TNt ] = E

0[T1 − T0] = E
0[T1] since under P 0 we

have T0 = 0.

Taking Xt = T1 − t and Xt = t − T0 and using the inversion formula we

have:

E[A(t) + B(t)] = E[T1 − T0] = λE
0[T 2

1 ]

Noting λ = (E0[T1])
−1 and the fact that E[X2] ≥ (E[X])2 we see that

E[T1 − T0] ≥ E
0[T1 − T0]. The exact difference is var0(T1)

E0[T1]
. What this

says is that observing an interval between two points biases us- i.e. if we

arrive at arbitrary time between two points, then we are more likely to

arrive in a long interval.
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Motivation

Let {X(t)}, t ∈ R, be a real valued stochastic process and let N be
a point process on R. The time average of {X(t)} up to time t is

Tt =
1
t

∫ t

0

X(s)ds

and the event average of {X(t)} up to time t is

Et =
1

N(0, t]

∫
(0,t]

X(s)N(ds)

The latter integral is interpreted as follows :∫
(0,t]

X(s)N(ds) =
∑
n≥1

X(Tn)1[Tn ≤ t]
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When the processes are stationary and ergodic, (1.1) corresponds
to the mean under the stationary measure while the event average
(1.2) converges to the mean under a measure termed the Palm
probability.

The natural questions are how does one formally define the Palm
probability and how does one compute it? What role does it play
in queues?
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Example: Jump distributions of Markov chains

Let {Tn} be points form a (strictly) increasing sequence of jump times of

a Markov chain X(t)., with the property limn→∞ Tn = +∞. Let

Xn = X(Tn) denote the discrete-time Markov chain viewed at the jump

times.

Assume that {X(t)} is ergodic, with stationary distribution π, so that

lim
t→∞

1

t

Z t

0

1I[X(s)=i]ds = π(i)

In general, the imbedded Markov chain {Xn} is not ergodic, and when it

is (under the condition that
P

i∈E π(i)qi < ∞ where q−1
i is the average

sojourn time in state i between two jumps)

lim
t→∞

1

N((0, t])

Z t

0

1I[X(s)=i]ds = lim
n→∞

1

n

nX
k=1

1I[Xn=i] = π0(i)
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where

π0(i) =
π(i)qiP

j∈E π(j)qj
�= π(i)

Equality π0(i) = π(i) holds for all i ∈ E if and only if qi = constant,

which is equivalent to {Tn} being a Poisson process.

What happens if x(t) is not Markov and the point process is not
Poisson?

This will bring us to Palm probabilities.
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Palm Probability

Let (Ω, F, P) be a complete probability space which carries a
measurable flow (shift) {θ}t. Let P be stationary w.r.t. {θt} i.e.

P ◦ θt
−1 = P

Let N be a point stationary point process (w.r.t the flow {θt}
defined on (Ω, F, P)

N(θtω, C) = N(ω, C + t)

where C is a Borel set in �.

Let λN denote the average intensity of N given by:

λN = E[N(0, 1]]
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The Palm Probability of (N,P) is defined by:

P 0
N (A) =

1
λN �(C)

E[
∫

C

1A(θs)N(ds)

where �(c) denotes the Lebesgue measure of C and the definition
does not depend on C.
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Properties of P 0
N

1. P 0
N (N{0} = 1) = P 0

N [T0 = 0] = 1

2. P 0
N ◦ θTn = P 0

N

3. E0
N [T1] = λ−1

N .

An immediate consequence of the definition is the so-called
Mathes-Mecke formula

λNE
0
N [

∫
�

v(s)ds] = E[
∫
�

v(0) ◦ θsN(ds)]

for any θt compatible process v(t)
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Stochastic Intensities and Martingale Representations

Let N be a simple, locally finite point process defined on R+ and let

{Ft} be a history of N satisfying the “usual” conditions. Then there

exists a unique nondecreasing process (unique within stochastic

equivalence) {A(t)}, t ∈ R+, that is Ft-predictable and right continuous

such that A0 = 0 and

E[

Z
R

X(s)N(ds)] = E[

Z
R

X(s)A(ds)]

for all non-negative Ft predictable processes {X(t)}, t ∈ R. The process

{A(t)} is called the (P,Ft) compensator of the point process N .

Moreover ∆A(t) ≤ 1 and

{ω |lim N(t, ω) = ∞} = {ω | lim A(t, ω) = ∞}. In fact, the process

{A(t)} is such that M = N − A is a local martingale .

If At is absolutely conttinuous w.r.t Lebesgue measure, its density

denoted by λt given by At =
R t

0
λsds is called the Ft-(stochastic)

intensity.
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If {X(t)} is any Ft predictable process such that for all t,∫
(0,t]

|X(s)|A(ds) < ∞, a.s.

the process {M̂(t)} defined by

M̂(t)
�
=

∫
(0,t]

X(s)
(
N(ds) − A(ds)

)

is a Ft-local martingale.

It is also true that the local martingale M = N − A is locally
square integrable and more generally if for all t∫

(0,t]

|X(s)|2(1 −�A(s))A(ds) < ∞, a.s.

then M̂(t) is a local square integrable martingale. The condition
above condition is automatically satisfied if the process {X(t)} is
bounded and N is locally finite.
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The quadratic variation process of M̂ denoted < M̂ > is defined as
the unique predictable, non-negative and increasing process that
makes M̂2− < M̂ > a local martingale. For the local martingale M̂

as defined earlier one has the explicit characterization for the
quadratic variation process

< M̂ >t=
∫

(0,t]

|X(s)|2(1 −�A(s))A(ds)
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Martingale SLLN

A. If Mt is a local square integrable martingale with a quadratic
variation process < M > and if < M >∞ (ω) < ∞ then Mt(ω)

B. If Mt is a local square integrable martingale with a quadratic
variation process < M > and if < M >∞ (ω) = ∞ then

Mt(ω)
<M>t(ω) → 0
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Papangelou’s Theorem

One of the fundamental theorems that links the Palm probabilities
with the stochastic intensity theory is the Papangelou Theorem.

Theorem : P 0
N << P on F0− iff N admits a Ft-intensity {λ(t)}.

Moreover, in that case λ(t, ω) = λ(0, θtω) where

λ(0) = λN
dP 0

N

dP


F0−

Remark In particular Papangelou’s formula can be written as:

λNE0
N [X ] = E[λ(0)X ]

for all non-negative F0− measurable r.v. X .
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Rate Conservation Formula for càdlàg processes

Via Papangelou’s theorem we can define a so-called Rate Conservation

Law (RCL) for càdlàg processes that allows us to derive most of the

important formulae associated with Palm theory.

To do so let us first obtain a representation for all cadlag processes of

bounded variation.

Every càdlàg process {Xt} càdlàg having jump discontinuities can be

written as:

Xt = X0 + Xc
t + Xd

t

where Xc
t is purely continuous (w.r.t. t) and Xd

t is purely discontinuous.

If the number of jumps in each compact interval is finite then the process

{Nt} defined by:

Nt =
X
s≤t

1[Xs �=Xs−]

is a locally finite, simple point process.
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Representation (contd)

Let ∆Xt = Xt − Xt− denote the jump of {Xt}. Then:

Xd
t =

∑
s≤t

∆Xs

and by the definition of {Nt}

Xd
t =

∫ t

0

YsdNs

where

Yt =
∞∑

n=0

(∆XTn)1[Tn,Tn+1)(t)

Finally if {Xt} is of bounded variation then

Xc
t =

∫ t

0

X+
s ds
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where X+
s denotes the right derivative of {Xt}.

Therefore we obtain the following evolution equation:

Xt = X0 +
∫ t

0

X+
s ds +

∫ t

0

YsdNs
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Rate Conservation Law (RCL)

We now state the main result.

Theorem Let {Xt} be a cadlag process of bounded variation that is
stationary w.r.t θt on

(
Ω,F , P

)
. Then:

E[X+
0 ] + λNE

0
N [∆X0] = 0

In particular for any f(.) that is C1 we have:

E[f ′(X0)X+
0 ] + λNE

0
N [∆f(X0)] = 0

where ∆f(X0) = f(X0) − f(X0−).
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Applications

The first simple application is the level crossing formula due to Brill and

Posner.

Theorem Let {X − t} be a stationary cadlag process that possesses a

density. Then:

p(x)E[X+
0 /X0 = x] = λNE

0
N [1[X0−>x] − 1[X0>x]]

Noting that:

1[X0−>x] − 1[X0>x] = 1[X0−>x]1[X0≤x] − 1[X0−≤x]1[X0>x]

We can re-write the result as:

p(x)E[X+
0 /X0− = x] = λNE0

N [1[X0−>x]1[X0≤x] − 1[X0−≤x]1[X0>x]]
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Formulae for Palm probabilities

Now we see two very fundamental formulae arising in Palm theory

namely: 1) The Palm inversion formula and 2) Neveu’s cycle formula.

Palm Inversion Formula

For any Xt that is compatible with θt (stationary):

E[X0] = λNE
0
N [

Z T1

0

Xsds]

Proof: Let T+(t) be the first point of Nt after t.

Define Yt =
R T+(t)

t
Xsds Then Y +

t = −Xt and Y0− = 0 since

T+(0−) = T0 and T0 = 0 under P
N
0 Hence

E[Y +
0 ] = −E[X0] = −λNE

0
N [∆Y0] = −λNE

0
N [

Z T1

0

Xsds]
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Neveu’s Exchange Formula

Let N and N ′ be two stationary point processes defined on
`
Ω,F , P

´
compatible with θt.

Then:

λNE
N
0 [f(0)] = λN′E

0
N′ [

Z T ′
1

0

(f ◦ θt)dNt]

Proof; We give a proof with a stochastic intensity. Define

g(t) =
R T ′

+(t)

t fsλsds

Then it is easy to see g+t = −ftλt and ∆g(0) =
R T ′

1
0

fsdNs. Then

applying RCL w.r.t. N ′ and using Papangelou’s formula we have:

λNE
0
N [f(0)] = λN′EN′ [

Z T ′
1

0

fsdNs]
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Taking f = 1 we see λN′E0
N′ [N [0, T ′

1] = λN we have

EN [f(0)] =
E

0
N′ [

R T ′
1

0
(f ◦ θt)dNt]

λN′E0
N′ [N [0, T ′

1]

which gives the cycle representation (the Palm distribution can be

obtained as an average over a selection of points of the original point

process).

Actually N and N ′ do not have to be subsets but only jointly defined

and compatible w.r.t θt on the same space.
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Little’s Formula

Consider a queueing system in which arrivals take place as a
stationary point process and each arrival at time Tn brings an
amount of work σn that is a stationary sequence. Assume the
arrivals are serviced in the order they arrive (FIFO)

Let Wt denote the workload in the queue at time t

Wt = W0 +
Nt∑

n=0

σn −
∫ t

0

1I(Ws > 0)ds

When there exists a stationary distribution (i.e. when
λNE0

N [σ] < 1 we obtain the so-called Little’s formula

given by:
E[Q] = λNE0

N [W0]

where Qt is the number of customers in the queue at time t.
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The proof follows by applying the RCL to the total sojourn time
process in the queue defined by:

Vt =
∫ t

0

(Ws − (t − s))+dNs
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Pollaczek-Khinchine Formula

Consider the function f(Wt) = W 2
t and σn to be i.i.d. Then

applying the RCL to this function we obtain:

E[Wo] =
λNE0

N [σ2
0 ]

2(1 − ρ)

where ρ = λNE0
N [σ0] < 1
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PASTA

PASTA says that if N is poisson then E[X0] = E
0
n[X0]

This readily follows from Papangelou’s theorem because if N is Poisson

λt(ω) = λ = λN .

On the other hand via the martingale SLLN for a PASTA type result to

hold we do not even require stationarity.

We state the result below:

Theorem: If N is a simple point process with Ft intensity λt and {Xt}
is a Ft − predictable process then on the set

Ω̃ = {ω | lim
t→∞

A(t, ω) = ∞}
one has the pointwise result

lim
t→∞


1

N(t)

Z t

0

X(s)N(ds) − 1

A(t)

Z t

0

X(s)A(ds)

ff
= 0

In other words limt→∞ Tt − Et = 0 a.s..
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Palm theory for general stationary increasing measures

Because of the high speed of modern networks we actually need to

extend Palm theory to general stationary increasing processes.

Let A(0, t) be a continuous increasing process with stationary increments.

Let θt be a measurable flow and we assume At = A(0, t) is compatible

with it. We can define a (fluid) Palm measure readily as follows:

For any Borel set C

P 0
A(C) =

1

λA
E[

Z
[0,1]

1IC(θs)A(ds)

and in particular:

For all F-measurable processes (Z(t), t ≥ 0) ,

E

Z
�

Z(s) ◦ θsA(ds) = λAEA

Z
�

Z(s)ds.
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Fluid queues

For c > 0, define (Q(t), t ≥ 0) as:

Q(t) = Q(0) + A(t) − ct + Z(t),

where (Z(t), t ≥ 0) is an increasing process, null at 0, which satisfies

• For all t ≥ 0, Q(0) + A(t) − ct + Z(t) ≥ 0,

• The support of Z(dt) is included in the set {s ≥ 0, Q(s) = 0}.
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Define ρA = λA

c . Then, under the condition ρA < 1, it can be
shown that there exists a stationary regime for Q, i.e. there is a
unique {θt} consistent solution defined on the same probability
space (Ω,F , P ).
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Assume that A is a continuous, stationary, increasing random measure

with E[A(0, 1]] = λA and ρA = λAc−1 < 1. Then,

1) For all continuous functions ϕ

cEϕ(Q(0))1{Q(0)>0} = λAEAϕ(Q(0))1{Q(0)>0}.

2) For all Borel sets B of � which do not contain the origin 0,

PA[Q(0) ∈ B] = ρA
−1P [Q(0) ∈ B]

3) At the origin i.e. when B = {0},

PA[Q(0) = 0] = ρ−1
A (P [Q(0) = 0] − 1) + 1
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Little’s Law for Fluid Queues

Under the hypotheses above:

E[Q(0)] = ρAEA[Q(0)]

Note unlike the classical Little’s law that relates the average
number to the average waiting time here we just have a kind of
Mecke formula.
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Now consider an input of the type ON-OFF given by the following
description:

Arrival Rate

t Wt

C

Unfinished workload at time t

A(0,t) − Workload arrived upto time t

Let N be a stationary marked point process with points
{Tn; n ∈ Z} and marks {(Ln, Sn, Fn), n ∈ Z} such that

• T0 ≤ 0 < T1,

• The random marks (Ln) are positive,

• Each triplet (Tn, Ln, Sn) satisfies Tn+1 − Tn = Ln + Sn,

• The marks Fn are continuous increasing processes null at 0,
constant on ]Ln, +∞[ and such that
Fn(t) ≥ ct on {0 ≤ t ≤ Ln} (burstiness assumption).
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Define the following random measure:

A(B) ≡
∑
n∈Z

∫
B−Tn

Fn(dt)

where B is a Borel set in �
Then A(t) is a continuous stationary increasing process that
specifies the cumulative input up to time t..
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We assume that, under PN , the Palm measure associated with N ,
the sequences (Fn), (Ln) and (Sn) are i.i.d. and mutually
independent and in addition the r.v’s Sn are exponentially
distributed. Defining m ≡ EN [T1],
n ≡ EN [F0(L0)] = EN [A(0, T1]] = λAm and
q = P [T0 + L0 < 0] = EN [S0]

m .
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With respect to the filtration (Ft) generated by the process
A([u, t])t≥0, u < t, the stochastic intensity of the point process (Nt)
is given by

λt ≡ (qm)−11{ξt=0}

where ξt ∈ {0, 1} and takes the value 1 if the source is ON at time t
and 0 otherwise.
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Pollaczek-Khinchine Formula for Fluid Inputs

E[Q(0)] =
1

c − λA

1

m
EN0 [F0(L0)−λAL0]

2− 1

m
EN0

»Z L0

0

t(F0(dt)−λAdt)

–

where m = EN0 [T1], F0(t) is denotes the cumulative input on [0, t] for

the source when ON under PN0 , L0 is the length of an ON period of the

source and λA = E[A(0, 1)].

Note the difference with the Pollaczek-Khinchine formula in the point

process case.
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