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Abstract. In this paper we study boundary properties of reflected diffusions
with positive and negative jumps, constrained to lie in the positive orthant
of Rn. We consider a model with oblique reflections and characterize the reg-
ulator processes in terms of semi-martingale local times at the boundary or
reflection faces of Rn

+. In particular, we show that under mild boundary con-
ditions on the diffusion coefficients, and under a completely-S structure for the
reflection matrix with an additional invertibility requirement, the regulator pro-
cesses do not charge the set of times spent by the process at the intersection of
two or more boundary faces. Other supporting results are also provided, as for
example the fact that the law in Rn

+ of the process at time t does not charge
boundary faces for Lebesgue-a.e. t. The case of hyper-rectangular state spaces
contained in the positive orthant is also considered.
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1. Introduction

Reflected diffusions with jumps arise in a wide variety of applications such
as finance, queueing and risk theory, and models of manufacturing plants. For



562 F.J. Piera, R.R. Mazumdar and F.M. Guillemin

example, Kella and Whitt [8], Chen and Whitt [3] have shown that, in the heavy
traffic limit, the process of the number of customers in an open queueing network
subject to service interruptions can be approximated in a weak-convergence
sense by reflected Brownian motions with jumps in the positive orthant. More
recently, such processes have also been shown to arise in the context of heavy-
tailed distributions, as for example random walk limits involving heavy-tailed
step distributions, [17].

Reflected diffusion models with jumps are natural generalizations of the class
of so-called piecewise deterministic Markov processes, [4]. The generalization
being that the diffusive component adds to the randomness of the evolution of
the process between jumps, and the reflections guarantee for the process to stay
within a given region, as for example in queueing networks where the processes
are non-negative. These models are also of interest in the risk and insurance
context, where the jumps could be the claims while the diffusion arises due to
volatility of the interest rates, for example. They also play an important role in
the context of barrier options in mathematical finance.

A special case of reflected diffusions, namely semi-martingale reflecting Bro-
wnian motion, or SRBM for short, has been studied quite extensively due to its
importance in models of queueing networks in heavy traffic, [5, 18, 19]. In [12]
the authors established a boundary property in that the regulator processes
do not charge the set of times spent by the SRBM at the intersection of two
or more boundary faces. This property was then used for example in [14] to
develop numerical methods for computing the stationary distribution (when it
exists) of queueing networks in heavy traffic, or in [5] in the context of Brow-
nian models of open queueing networks and the existence/uniqueness of their
stationary distributions. For the corresponding existence/uniqueness of SRBMs
in an orthant, see [15].

The authors considered one-dimensional reflected diffusions with jumps [10],
showing for example that the law in R+ of the process at time t does not as-
sign probability mass to the origin for Lebesgue-a.e. t, and characterizing the
regulator process in terms of the corresponding semi-martingale local time at
level zero. These boundary properties were then used to derive forward equa-
tions, and to study the stationary distributions of this class of one-dimensional
reflected processes.

This paper is devoted to study boundary properties of reflected diffusions
with possible time and space dependent drift and diffusion coefficients, as well
as in the presence of possible signed jumps, constrained to lie in the positive
orthant of Rn. In particular, we will show that the boundary property in [12]
continues to hold for this class of reflected diffusion models, but requiring, as
a trade-off in our proof, an additional invertibility condition on the reflection
matrix over just the completely-S structure considered for SRBMs in [12]. (In
fact the authors also established there the necessity of this structure for such
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processes to exist.) In addition, we will generalize to the multi-dimensional
setting the previously mentioned boundary properties in [10].

The organization of the paper is as follows. In Section 2 we introduce the
model to be considered and obtain some preliminary results. In Section 3 we give
the main results of the paper. In Section 4 we show how our results continue to
hold in the case of hyper-rectangular state spaces contained in Rn

+. Finally, in
Section 5 we offer some further comments on the scope of the results presented
in the paper.

2. Model formulation and preliminary results

Let n ≥ 2 be an integer, R the set of real numbers, Rn = ×n
i=1R, R+ =

{x ∈ R : x ≥ 0}, Rn
+ = ×n

i=1R+ and Rn×n the collection of all n × n real
matrices. Also, let (Ω,F , (Ft)t≥0,P) be a stochastic basis satisfying the usual
hypotheses, i.e., F0 contains all the P-null sets of F and the filtration (Ft)t≥0

is right continuous. We consider the following reflected diffusion constrained to
lie in Rn

+ with positive and negative jumps:

Xt = X0 +

t∫

0

b(s,Xs−) ds+

t∫

0

σ(s,Xs−) dWs +
∑

0<s≤t

∆Xt +RZt (2.1)

where1:

• X = (Xt)t≥0 = (X1
t , . . . , X

n
t )t≥0 is an (Ft)t≥0-adapted, Rn

+-valued càdlàg
semi-martingale, Xt− = lims↑tXs with X0− = 0 by convention, and
∆Xt = Xt − Xt−. We assume hereafter that

∑
0<s≤t |∆Xs| < ∞ a.s.

for each t > 0.

• W = (Wt)t≥0 = (W 1
t , . . . ,W

n
t )t≥0 is an (Ft)t≥0-standard Brownian mo-

tion on Rn.

• Z = (Zt)t≥0 = (Z1
t , . . . , Z

n
t )t≥0 is a continuous, (Ft)t≥0-adapted, Rn

+-
valued process, with each Zi non-decreasing, null at zero, and such that∫
R+

X i
s dZ

i
s = 0.

• b = (bi)i∈{1,...,n} : Rn+1
+ → Rn and σ = (σij)i,j∈{1,...,n} : Rn+1

+ → Rn×n

are Borel measurable functions. We set a = (aij)i,j∈{1,...,n} , σσT ,
where σT corresponds to the transpose of matrix σ.

1Throughout the paper (in)equalities involving vectors or vector-valued processes are to be
understood componentwise, “0” represents the appropriate null element clear from the context,
“∞” represents (∞, . . . ,∞) in a vectorial context and, even though vectors or vector-valued
processes are written as row vectors, they are treated as column vectors in all equations they
appear.
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• R = (Rij)i,j∈{1,...,n} ∈ Rn×n is a completely-S matrix (described below),
satisfying the following additional requirement: every principal submatrix
of R is non-singular, i.e., for each K ( {1, . . . , n} we have R(K) invertible,
where R(K) denotes the principal submatrix obtained from R by deleting
its kth row and column for all k ∈ K (none if K = ∅).

The terminology completely-S is used in [12] to designate a real square ma-

trix D having the property that, for each principal submatrix D̃ of D, there
exists a vector y with non-negative components (of the corresponding proper

dimension), such that D̃y > 0 ( in particular D must have strictly positive di-
agonal elements). The authors established there the necessity of this structure
on the reflection matrix for SRBMs in the positive orthant to exist. This is
not unexpected since it accounts for the fact that, upon hitting the boundary
of Rn

+, the SRBM cannot leave the orthant.
The additional invertibility requirement on principal submatrices of R that

we impose will allow us to relate the regulator processes Z i’s to semi-martingale
local times, as well as to establish the boundary property in that the Z i’s do not
charge the set of times spent by X at the intersection of two or more boundary
faces of Rn

+. Along with identifying the completely-S structure as the minimal
necessary on the reflection matrix of SRBMs in the positive orthant, in [12] the
authors also established the above boundary property for such class of processes
under that minimal structure. Though our assumptions here on R are more
restrictive because of the additional invertibility requirement on its principal
submatrices, we believe the setting in (2.1) still encompasses a large class of
models appearing in applications, in that the drift and diffusion coefficients are
allowed to depend on time and space, as well as X is allowed to have signed
jumps.

Note our requirements on R are satisfied for example by the class of P-
matrices, i.e., matrices for which every principal minor is strictly positive, see [2].
(Examples of this last class are real triangular matrices with strictly positive di-
agonal elements or, more generally, positive definite matrices.) However, our re-
quirements on R generate a class which strictly includes the class of P-matrices.
Indeed, consider for example n = 2 and

R =

(
1 2
1 1

)
.

Then, R is completely-S and every principal submatrix obtained from it is in-
vertible, but R is not a P-matrix.

In this paper we assume the existence of a tuple (X,Z), as already described,
satisfying (2.1), i.e., with semi-martingale X − X0 having canonical decompo-
sition X − X0 = A + M + J , A0 = M0 = J0 = 0, where the continuous
finite variation process A and the continuous local martingale term M are given
by A· =

∫ ·

0 b(s,Xs−) ds + RZ· and M· =
∫ ·

0 σ(s,Xs−) dWs, respectively, and
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J· =
∑

0<s≤· ∆Xs with
∑

0<s≤t |∆Xs| < ∞ a.s. for each t > 0. This paper is
not concerned with the existence issues. However, note for example (2.1), as
an equation in (X,Z) for a given particular structure of the jumps, possesses
unique strong solutions for each initial state X0 = x0 ∈ Rn

+ when b and σ satisfy
the usual local Lipschitz and linear growth conditions, and the following two
conditions are satisfied.

1) The jumps are of the form

∑

0<s≤t

∆Xs =

t∫

0

∫

E

ξ(s,Xs−, r) q(ds, dr),

where E is some Polish space (for example R), q is an (Ft)t≥0-Poisson ran-
dom measure on R+ × E with intensity measure (or compensator) q̂(dt, dr) =
λG(dr)dt, where the jump rate λ is finite and G is a probability measure on
(E,B(E)), ξ = (ξi)i∈{1,...,n} : Rn+1

+ ×E → Rn is Borel measurable and such that

ξ(t, x, r) ≥ −x and each ξi(t, x, r) 6= 0 for each (t, x, r) ∈ Rn+1
+ ×E, and G and ξ

satisfy the following. For each positive integer k, there exists ρk : E → R+,
such that

∫
E
ρ2

k(r)G(dr) < ∞ and, for all r ∈ E, all t ≤ k, and all x, y ∈ Rn
+

with ‖x‖, ‖y‖ ≤ k,

‖ξ(t, x, r) − ξ(t, y, r)‖ ≤ ρk(r)‖x− y‖

and
‖ξ(t, x, r)‖2 ≤ ρ2

k(r)(1 + ‖x‖2),

where ‖ · ‖ denotes the usual Euclidian norm in Rn.

2) R = I−Q, where I is the identity matrix in Rn×n and Q ∈ Rn×n is such
that Q ≥ 0, elementwise, and its spectral radius is strictly less than one. (Note
then R is a P-matrix.)

For more detailed treatments on the existence and uniqueness of solutions
to reflecting stochastic differential equations with jumps, see for example [9,13].
(An excellent treatment for the case without reflections but in the presence of
jumps can also be found in [7].)

Note that by writing X i = V i + RiiZi from equation (2.1), the regulator
process Zi of X i at level zero can be characterized as follows [6, 16, 17]:

Zi
· =

1

Rii
sup

s∈[0,·]

max{−V i
s , 0}. (2.2)

Of course, the above expression does not yield an explicit representation for Z
since each V i contains the components Zj , j 6= i. (Also note since X is con-
strained to lie in Rn

+, we have X0 ≥ 0 and ∆Xt ≥ −Xt− for all t > 0, and
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therefore the right-hand side in (2.2) is continuous, in agreement with the defi-
nition of Z.)

The following notation will be used throughout the paper. We write, for any
real-valued function f(t, x1, . . . , xn) with t ∈ R+ and x = (x1, . . . , xn) ∈ Rn

+, set
K ⊆ {1, . . . , n} and vector u ∈ Rn

+, f(t, xuK ) to indicate that all xi-arguments
in f with indexes i ∈ K are set to the values of the respective components
in u. If r ∈ R+ (i.e., just a scalar), then by f(t, xrK ) we indicate that all
xi-arguments in f with indexes i ∈ K are set to the value r. In the same
way, for u and v in Rn

+, and sets K1,K2 ⊆ {1, . . . , n}, K1 ∩K2 = ∅, we write
f(t, xuK1 , xvK2 ) to indicate that all xi-arguments in f with indexes i ∈ K1 are
set to the values of the respective components in u, and similarly for i ∈ K2

and v, with the same meaning as before in the case that u or v are just scalars.
Of course, any of the previous index sets is allowed to be empty, in which case no
corresponding setting of arguments takes place. For i ∈ {1, . . . , n} and r ∈ R+,
we simply write f(t, xri) for f(t, xr{i}). We use the previous notation in the
following context. When we write for example f(t, xuK ) > 0, we indicate that f
at time t is strictly positive for all values of its remaining x-arguments, i.e., for
all values of its xi-arguments with i ∈ Kc, where Kc denotes the complement
of K with respect to the index set {1, . . . , n}. All of the above applies the same
for f(x1, . . . , xn), i.e., for f not depending on t. Also, for i ∈ {1, . . . , n} we write
dx 6=i to denote dx1 · · · dxn when the ith differential dxi is omitted, x 6=i to denote
x ∈ Rn

+ when its ith coordinate xi is omitted as well, and Xri

t to denote Xt

when its ith component X i
t is replaced by r ∈ R+. Finally, 1{·} denotes the

indicator function of the corresponding event in parentheses, |K| the number

of elements in set K, K \ K̃ the usual set-theoretic difference, and m Lebesgue
measure in R+.

As usual, whenever we write a.e. (almost everywhere, or almost every) with-
out specifying the measure, we mean a.e. with respect to Lebesgue measure in
the corresponding real space (clear from the context), and whenever we write
a.s. (almost surely), we mean a.s. with respect to P.

Finally, we write PX
t for the law of Xt in Rn

+, t ∈ R+, [X i, X i]c for the
path by path continuous part of the quadratic variation process [X i, X i], and
(Li(t, r))t,r≥0 for the jointly continuous in t and right continuous in r version of
the local time (r ∈ R+ indicating the level) for semi-martingale X i. Note since∑

0<s≤t |∆Xs| < ∞ a.s. for each t > 0, by [11, Theorem 56 and Corollary 3,
p. 176 and 178, resp.] this version of the local time exists and, moreover, for
each (t, r) ∈ R2

+ we have

Li(t, r) = lim
ε↓0

1

ε

t∫

0

1{r ≤ X i
s ≤ r + ε} d[X i, X i]cs -a.s.

Obviously it is enough for us to consider in this paper r ≥ 0 only, since X is
constrained to lie in the positive orthant of Rn.
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Before establishing some preliminary lemmas towards the main results of
the paper to be given in the next section, we make the following remark.

Remark 2.1. Note since X is càdlàg, it can have at most a countable number
of jumps in any compact interval of times contained in R+. Therefore, we
can always replace Xs− by Xs in integrals of the form

∫ ·

0
f(Xs−)µ(ds), and

viceversa, when the measure µ is diffuse (i.e., when µ has no atoms). Note that
is the case for Lebesgue measure and for the measures dZ i

s and Li(ds, r) that Zi
s

and Li(s, r) induce in R+, respectively. This fact will be used from now on in
the paper without further comment.

Lemma 2.1. Let t ∈ R+ and K ⊆ {1, . . . , n}. Assume that there exists i ∈ K
such that aii(s, x0K ) > 0 for a.e. s ∈ [0, t]. Then we have a.s.:

m{s ∈ [0, t] : Xk
s = 0, ∀k ∈ K} = 0.

Also, for a.e. s ∈ [0, t] we have:

PX
s {x ∈ Rn

+ : xk = 0, ∀k ∈ K} = 0

i.e., for a.e. s ∈ [0, t], PX
s does not charge the set

⋂
k∈K{x ∈ Rn

+ : xk = 0}.

Proof. Since aii(·, ·) ≥ 0, we have a.s.:

0 ≤

t∫

0

1{Xk
s = 0, ∀k ∈ K}aii(s,Xs) ds

=

t∫

0

1{Xk
s− = 0, ∀k ∈ K}aii(s,Xs−) ds

≤

t∫

0

1{X i
s− = 0}aii(s,Xs−) ds

=

t∫

0

1{X i
s− = 0} d[X i, X i]cs.

But, by [11, Corollary 1, p. 168] we have a.s.:

t∫

0

1{X i
s− = 0} d[X i, X i]cs =

∞∫

0

Li(t, r)1{r = 0} dr = 0.
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Therefore, since aii(s, x0K ) > 0 for a.e. s ∈ [0, t], we conclude that a.s., 1{Xk
s =0,

∀k ∈ K} = 0 for a.e. s ∈ [0, t], from where the first part of the lemma follows.
As for the second part, note that by the first one and Fubini’s theorem:

0 = E

[ t∫

0

aii(s,Xs)1{X
k
s = 0, ∀k ∈ K} ds

]

=

t∫

0

E
[
aii(s,Xs)1{X

k
s = 0, ∀k ∈ K}

]
ds

and therefore, since aii(·, ·) ≥ 0, we conclude that for a.e. s ∈ [0, t]:

E
[
aii(s,Xs)1{X

k
s = 0, ∀k ∈ K}

]
= 0.

The second part of the lemma now follows again by the hypothesis aii(s, x0K )>0
for a.e. s ∈ [0, t]. 2

Remark 2.2. Note from Lemma 2.1, if for some t ∈ R+ and i ∈ {1, . . . , n} we
have aii(s, x0i) > 0 for a.e. s ∈ [0, t], then PX

s does not charge the ith face
of Rn

+, {x ∈ Rn
+ : xi = 0}, for a.e. s ∈ [0, t] as well.

Lemma 2.2. Let t, r ∈ R+, i ∈ {1, . . . , n}, and ψ be a bounded Borel measur-

able function from Rn
+ to R. Furthermore, for each ε ∈ R+, let Rn

+(i, r, ε) =
{x ∈ Rn

+ : r ≤ xi ≤ r + ε}. Assume that there exists η ∈ R+, η > 0, for which:

t∫

0

∫

Rn
+

(i,r,η)

|ψ(xri)|aii(s, x)PX
s (dx) ds <∞.

Then we have:

E

[ t∫

0

ψ(Xs)L
i(ds, r)

]
= lim

ε↓0

1

ε

t∫

0

∫

Rn
+

(i,r,ε)

ψ(xri)aii(s, x)PX
s (dx) ds.

Proof. By [11, Corollary 1, p. 168], for each ε ∈ R+ we have a.s.:

r+ε∫

r

Li(·, u) du =

·∫

0

1{r ≤ X i
s− ≤ r + ε} d[X i, X i]cs

=

·∫

0

1{r ≤ X i
s− ≤ r + ε}aii(s,Xs−) ds

=

·∫

0

1{r ≤ X i
s ≤ r + ε}aii(s,Xs) ds.
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Then, by using Fubini’s theorem, for each ε ∈ (0, η] we have:

1

ε

r+ε∫

r

E

[ t∫

0

ψ(Xri

s )Li(ds, u)

]
du

=
1

ε

t∫

0

E
[
ψ(Xri

s )1{r ≤ X i
s ≤ r + ε}aii(s,Xs)

]
ds

=
1

ε

t∫

0

∫

Rn
+

(i,r,ε)

ψ(xri)aii(s, x)PX
s (dx) ds.

Now, from [11, Theorem 50, p. 166] we know that, a.s., Li(s, r) can only increase
at times s when X i

s = r, and therefore

E

[ t∫

0

ψ(Xs)L
i(ds, r)

]
= E

[ t∫

0

ψ(Xri

s )Li(ds, r)

]
.

Since furthermore

E

[ t∫

0

ψ(Xri

s )Li(ds, r)

]
= lim

ε↓0

1

ε

r+ε∫

r

E

[ t∫

0

ψ(Xri

s )Li(ds, u)

]
du,

we conclude

E

[ t∫

0

ψ(Xs)L
i(ds, r)

]
= lim

ε↓0

1

ε

t∫

0

∫

Rn
+

(i,r,ε)

ψ(xri)aii(s, x)PX
s (dx) ds

and the lemma is then proved. 2

The following corollary, even though not used in the paper, is useful in
applications when densities exist.

Corollary 2.1. Let t, r ∈ R+, i ∈ {1, . . . , n}, and ψ be a bounded Borel mea-

surable function from Rn
+ to R. Assume that PX

s (dx) admits a (jointly mea-

surable in s and x) density pX,s(x) (w.r.t. Lebesgue measure), and that there

exists η ∈ R+, η > 0, for which

t∫

0

∫

Rn−1

+

|ψ(xri)| sup
r≤xi≤r+η

{aii(s, x)pX,s(x)} dx
6=i ds <∞.
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Furthermore, assume that for a.e. s ∈ [0, t], limxi↓r{a
ii(s, x)pX,s(x)} exists and

is finite a.e. over the support of ψ(xri) (as a subset of Rn−1
+ ). Then we have:

E

[ t∫

0

ψ(Xs)L
i(ds, r)

]
=

t∫

0

∫

Rn−1

+

ψ(xri) lim
xi↓r

{aii(s, x)pX,s(x)} dx
6=i ds.

Proof. Set h(s, x 6=i) = |ψ(xri)| supr≤xi≤r+η{a
ii(s, x)pX,s(x)} and

g(s) =

∫

Rn−1

+

h(s, x 6=i) dx 6=i,

s ∈ [0, t], x 6=i ∈ Rn−1
+ . Since

t∫

0

∫

Rn
+

(i,r,η)

|ψ(xri)|aii(s, x)PX
s (dx) ds =

t∫

0

∫

Rn
+

(i,r,η)

|ψ(xri)|aii(s, x)pX,s(x) dx ds

≤ η

t∫

0

g(s) ds

and
∫ t

0 g(s)ds <∞, by Lemma 2.2 we conclude:

E

[ t∫

0

ψ(Xs)L
i(ds, r)

]
= lim

ε↓0

1

ε

t∫

0

∫

Rn
+

(i,r,ε)

ψ(xri)aii(s, x)pX,s(x) dx ds.

Now, for a.e. s ∈ [0, t] we have, |ψ(xri)aii(s, x)pX,s(x)| ≤ h(s, x 6=i) for all
x ∈ Rn

+(i, r, η),
∫
Rn−1

+

h(s, x 6=i) dx 6=i = g(s) < ∞, and ψ(xri)aii(s, x)pX,s(x) →

ψ(xri) limxi↓r{a
ii(s, x)pX,s(x)}, as xi ↓ r, a.e. over the support of ψ(xri). There-

fore, by Lebesgue’s dominated convergence theorem we conclude that, for a.e.
s ∈ [0, t],

lim
xi↓r

∫

Rn−1

+

ψ(xri)aii(s, x)pX,s(x) dx
6=i =

∫

Rn−1

+

ψ(xri) lim
xi↓r

{aii(s, x)pX,s(x)} dx
6=i

and hence, for a.e. s ∈ [0, t] as well,

lim
ε↓0

1

ε

∫

Rn
+
(i,r,ε)

ψ(xri)aii(s, x)pX,s(x) dx =

∫

Rn−1

+

ψ(xri) lim
xi↓r

{aii(s, x)pX,s(x)} dx
6=i.
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Finally, for each ε ∈ (0, η] and s ∈ [0, t],
∣∣∣∣
1

ε

∫

Rn
+

(i,r,ε)

ψ(xri)aii(s, x)pX,s(x) dx

∣∣∣∣ ≤
1

ε

∫

Rn
+

(i,r,ε)

|ψ(xri)|aii(s, x)pX,s(x) dx

≤
1

ε
εg(s) = g(s)

and therefore, by using again Lebesgue’s dominated convergence theorem
(
∫ t

0
g(s) ds <∞), the corollary follows. 2

Remark 2.3. Note when aii is continuous in the space variable (e.g., σ satisfies a
local Lipschitz condition), aii(s, x) can be replaced by aii(s, xri) in the conclu-
sion of Corollary 2.1, being then pull out of the limit there, if the corresponding
hypothesis on the existence of the limit limxi↓r{a

ii(s, x)pX,s(x)} is replaced by
the respective one on the limit limxi↓r pX,s(x).

Lemma 2.3. Let t ∈ R+ and i ∈ K ⊆ {1, . . . , n}. Assume that there exists

j ∈ K, j 6= i, such that ajj(s, x0K\{i}) > 0 for a.e. s ∈ [0, t]. Then we have a.s.:

t∫

0

1{Xk
s = 0, ∀k ∈ K}Li(ds, 0) = 0.

Proof. Since j ∈ K \ {i} is such that ajj(s, x0K\{i}) > 0 for a.e. s ∈ [0, t], from
Lemma 2.1 we conclude that

PX
s

{
x ∈ Rn

+ : xk = 0, ∀k ∈ K \ {i}
}

= 0

for a.e. s ∈ [0, t] as well. Therefore, for each η ∈ (0,∞) we have:

t∫

0

∫

Rn
+

(i,r,η)

1
{
xk = 0, ∀k ∈ K \ {i}

}
aii(s, x)PX

s (dx) ds = 0

and hence, from Lemma 2.2 we conclude:

E

[ t∫

0

1{Xk
s = 0, ∀k ∈ K}Li(ds, 0)

]
= 0.

But, since
∫ t

0 1{Xk
s = 0, ∀k ∈ K}Li(ds, 0) ≥ 0, the lemma follows. 2

Remark 2.4. Lemmas 2.1 to 2.3 above do not require the special invertibility
structure imposed on R. This special structure is required for Lemmas 2.4
and 2.5 below, as well as for the main results of the paper to be given in the
next section.
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Lemma 2.4. Define the Rn×n-valued process (Rt)t≥0 as Rij
t = Rij

1{X i
t− = 0}

if i 6= j, Rii
t = Rii. Then Rt is non-singular for each (t, ω) ∈ R+ × Ω.

Proof. Let t ∈ R+, and define the random index set Λt as {i ∈ {1, . . . , n} :
X i

t− > 0}. Then it is easy to see that

det [Rt] =





det [R], if |Λt| = 0,
n∏

i=1

Rii, if |Λt| = n,

det
[
R(Λt)

] ∏
i∈Λt

Rii, if 0 < |Λt| < n,

(2.3)

where det [·] denotes the determinant of the corresponding matrix in Rn×n.
Therefore, since by assumption we have that every principal submatrix extracted
from R is non-singular, we conclude det [Rt] 6= 0 for each (t, ω) ∈ R+ × Ω, and
the lemma is proved. 2

Lemma 2.5. Define the Rn×n-valued process (rt)t≥0 as rt = R−1
t , where

(Rt)t≥0 is the same as in Lemma 2.4. Then for each i ∈ {1, . . . , n} we have

a.s.:

Zi
· =

n∑

j=1

·∫

0

rij
s 1{Xj

s = 0}
[ 1

2
Lj(ds, 0) − bj(s,Xs) ds

]
.

Proof. Let i ∈ {1, . . . , n}. By applying the Meyer – Itô formula [11, Theorem
51, p. 167] to X i with convex function f(xi) = (xi)+ = max{0, xi}, xi ∈ R, and
using the facts that X i ≥ 0 and 1{X i

s− > 0} = 1 − 1{X i
s− = 0}, we obtain:

·∫

0+

1{X i
s− = 0} dX i

s =
∑

0<s≤·

1{X i
s− = 0}Xs +

1

2
Li(·, 0).

Then, by using equation (2.1) we conclude:

1

2
Li(·, 0) =

·∫

0

1{X i
s− = 0}bi(s,Xs−) ds

+

n∑

j=1

·∫

0

1{X i
s− = 0}σij(s,Xs−) dW j

s +

n∑

j=1

Rij

·∫

0

1{X i
s− = 0} dZj

s

where we have changed 0+ by 0 in all the integrals above since all the in-
tegrators are continuous. Now, the continuous local martingale term Gi

· ,



Reflected diffusions with jumps in the positive orthant 573

∑n

j=1

∫ ·

0 1{X i
s− = 0}σij(s,Xs−) dW j

s is such that Gi
0 = 0 and

[Gi, Gi]· =
n∑

j,k=1

·∫

0

1{X i
s− = 0}σij(s,Xs−)σik(s,Xs−) d[W j ,W k]s

=

·∫

0

1{X i
s− = 0}aii(s,Xs−) ds

=

·∫

0

1{X i
s− = 0} d[X i, X i]cs

=

∞∫

0

Li(·, r)1{r = 0} dr = 0

where for the fourth equality above we have used [11, Corollary 1, p. 168]. There-
fore, we have Gi ≡ 0 a.s. Also, since

∫
R+

X i
s dZ

i
s = 0 and Zi

0 = 0, we have

·∫

0

1{X i
s− = 0} dZi

s =

·∫

0

1{X i
s = 0} dZi

s = Zi
· a.s.

Moreover, since Li(0, 0) = 0 and Li(s, 0) can only increase at times s when
X i

s = 0 [11, Theorem 50, p. 166], we also have Li(·, 0) =
∫ ·

0 1{X i
s = 0}Li(ds, 0)

a.s. Hence, we may write:

n∑

j=1, j 6=i

1{X i
t− = 0}Rij dZj

t +Rii dZi
t = 1{X i

t = 0}
[ 1

2
Li(dt, 0) − bi(t,Xt) dt

]
.

The lemma now follows by using Lemma 2.4 and the fact that Z0 = 0. 2

3. Main results

Using the lemmas given in the previous section, we can now state and prove
the main results of the paper.

Theorem 3.1. Let t ∈ R+, and assume that there exist i, j ∈ K ⊆ {1, . . . , n},
i 6= j, such that aii(s, x0K\{j}) > 0 and ajj(s, x0K\{i}) > 0 for a.e. s ∈ [0, t].
Then for each q ∈ K we have a.s.:

t∫

0

1{Xk
s = 0, ∀k ∈ K} dZq

s = 0.
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Proof. Let q ∈ K. From Lemma 2.5 we have a.s.:

t∫

0

1{Xk
s = 0, ∀k ∈ K} dZq

s

=

n∑

l=1

t∫

0

rql
s 1

{
Xk

s = 0, ∀k ∈ K ∪ {l}
}[1

2
Ll(ds, 0) − bl(s,Xs) ds

]
.

From the assumptions and Lemma 2.1 we conclude, m
{
s ∈ [0, t] : Xk

s = 0, ∀k ∈

K ∪ {l}
}

= 0 a.s. for each l ∈ {1, . . . , n}, and therefore

t∫

0

rql
s 1

{
Xk

s = 0, ∀k ∈ K ∪ {l}
}
bl(s,Xs) ds = 0

also a.s. for each l ∈ {1, . . . , n}. Furthermore, from the assumptions and
Lemma 2.3 we conclude that for each l ∈ {1, . . . , n} we have a.s., 1

{
Xk

s = 0,

∀k ∈ K ∪ {l}
}

= 0 for a.e. s ∈ [0, t] with respect to the measure Ll(ds, 0).
Hence, we have a.s.:

t∫

0

rql
s 1

{
Xk

s = 0, ∀k ∈ K ∪ {l}
}
Ll(ds, 0) = 0

for each l ∈ {1, . . . , n} as well. The theorem is now proved. 2

Theorem 3.2. Assume that for each i ∈ {1, . . . , n} we have aii(t, x0i) > 0 for

a.e. t ∈ R+. Then for each i ∈ {1, . . . , n} we have a.s.:

Zi
· =

Li(·, 0)

2Rii
.

Proof. Let t ∈ R+ and i ∈ {1, . . . , n}. We have a.s.:

Zi
t =

t∫

0

1{X i
s = 0} dZi

s =

n∑

j=1

t∫

0

rij
s 1{X i

s = Xj
s = 0}

[1

2
Lj(ds, 0) − bj(s,Xs) ds

]

=
1

2

t∫

0

rii
s 1{X i

s = 0}Li(ds, 0)

where the first equality above follows by the same arguments as in the proof of
Lemma 2.5, the second one from Lemma 2.5 itself, and the third one from the
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fact that aii(s, x0i) > 0 for a.e. s ∈ [0, t] (by the same arguments as in the proof
of Theorem 3.1). Then, since also for each j 6= i we have ajj(s, x0j ) > 0 for a.e.
s ∈ [0, t], from Lemma 2.3 we conclude that a.s.:

Zi
t =

1

2

t∫

0

rii
s 1{X i

s = 0, Xj
s > 0, ∀j 6= i}Li(ds, 0)

=
1

2

t∫

0

rii
s 1{X i

s− = 0, Xj
s− > 0, ∀j 6= i}Li(ds, 0).

But, it is easy to see that on {(s, ω) ∈ R+ × Ω : X i
s−(ω) = 0, Xj

s−(ω) > 0,
∀j 6= i}, rii

s (ω) = 1/Rii. Hence, we have a.s.:

Zi
t =

1

2Rii

t∫

0

1{X i
s− = 0, Xj

s− > 0, ∀j 6= i}Li(ds, 0)

=
1

2Rii

t∫

0

1{X i
s = 0}Li(ds, 0) =

Li(t, 0)

2Rii

where the second equality above follows again from Lemma 2.3, and the last
one by the same arguments as in the proof of Lemma 2.5. Therefore, for each
t ∈ R+ we have Zi

t = Li(t, 0)/2Rii a.s., and indistinguishability now follows
from almost surely sample path continuity. The theorem is proved. 2

Corollary 3.1. Assume the same as in Theorem 3.2 above. Then for each

i ∈ {1, . . . , n}, a.s., the random measures in t, dZ i
t and Li(dt, 0), are supported

by the same set in R+ and, moreover, this set is contained in {t ∈ R+ : X i
t = 0,

Xj
t > 0, ∀j 6= i}.

Proof. Follows directly from Lemma 2.3 (or Theorem 3.1) and Theorem 3.2. 2

Corollary 3.2. For each i ∈ {1, . . . , n}, set V i = X i −RiiZi. Then, under the

same assumptions as in Theorem 3.2 above, for each i ∈ {1, . . . , n} we have a.s.:

Li(·, 0) = 2 sup
s∈[0,·]

max {−V i
s , 0}.

Proof. Follows directly from Theorem 3.2 and (2.2). 2

4. Case of a hyper-rectangular state space

The results obtained in the previous sections can be readily adapted to the
case of a hyper-rectangular state space contained in Rn

+. In that direction, let
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u = (u1, . . . , un) ∈ Rn
+ with each ui > 0, and consider the following reflected

diffusion with signed jumps constrained to lie in ×n
i=1[0, u

i]:

Xt = X0 +

t∫

0

b(s,Xs−) ds+

t∫

0

σ(s,Xs−) dWs +
∑

0<s≤t

∆Xs +RZt − R̃Z̃t (4.1)

where X , b, σ and W are as before, but of course with the state space of X , as
well as the spatial domain of b and σ, now replaced by ×n

i=1[0, u
i], the definition

of Z remains unchanged, and

• Z̃ = (Z̃t)t≥0 = (Z̃1
t , . . . , Z̃

n
t )t≥0 is a continuous, (Ft)t≥0-adapted, Rn

+-

valued process, with each Z̃i non-decreasing, null at zero, and such that∫
R+

(ui −X i
s) dZ̃

i
s = 0.

• R = (Rij)i,j∈{1,...,n}, R̃ = (R̃ij)i,j∈{1,...,n} ∈ Rn×n are completely-S ma-
trices, satisfying the following additional requirement: letM be the matrix
with blocks M11 = R, M12 = −R̃, M21 = −R and M22 = R̃; then, we
assume that for each k ∈ {1, . . . , n}, every k×k principal submatrix of M
is non-singular, i.e., for each K ⊆ {1, . . . , 2n} with |K| ≥ n, M (K) is
invertible, with the same meaning as before for M (K). Note these condi-
tions are satisfied, for example, by real triangular matrices R and R̃ with
strictly positive diagonal elements.

Models as the one in (4.1) appear in the context of queueing theory, when
work arrives to a network of finite-buffer queues. There, with X i representing
the buffer content in the ith network element and ui the maximum buffer allo-
cation allowed in that element, the restriction 0 ≤ X ≤ u comes naturally into
play, work arriving in excess of this maximum being lost, see for example [1].

Like in the previous case, we assume the existence of a three-tuple (X,Z, Z̃),
as already described, satisfying (4.1). (Note now the continuous finite variation
process in the canonical decomposition of X −X0 is A· =

∫ ·

0
b(Xs−) ds+RZ·−

R̃Z̃·, A0 = 0.)

Note that, by writing X i = Ṽ i − R̃iiZ̃i from equation (4.1), the regulator

process Z̃i of X i at level ui can be characterized as

Z̃i
· =

1

R̃ii
sup

s∈[0,·]

max {Ṽ i
s − ui, 0}. (4.2)

(Obviously, the comments immediately below (2.2) also apply to this case,
mutatis-mutandis.)

Also, note that by the jointly continuity in t and right continuity in r of
Li(t, r), we have a.s. Li(·, ui) = 0. Hence, the results in this section will be



Reflected diffusions with jumps in the positive orthant 577

established in terms of

Li(t, ui−) = lim
r↑ui

Li(t, r) = lim
ε↓0

1

ε

t∫

0

1{ui − ε ≤ X i
s ≤ ui} d[X i, X i]cs

where, since
∑

0<s≤t |∆Xs| < ∞ a.s. for each t > 0, the above limits exist and
are equal by [11, Theorem 56 and Corollary 3, p. 176 and 178, resp.]. Note that
Li(·, ui−) is a.s. continuous, non-decreasing, and can only increase at times t
when X i

t = ui.
The corresponding versions of Lemmas 2.1 and 2.3 are stated in Lemmas 4.1

and 4.2 below, respectively. We omit the proofs since they follow by the same
arguments as before. (For the proof of Lemma 4.2, note the version of Lemma 2.2
when the integrator is Li(ds, r−), instead of Li(ds, r), is obvious.)

Lemma 4.1. Let t ∈ R+ andK, K̃ ⊆ {1, . . . , n}, such that K∩K̃ = ∅. Assume

that there exists i ∈ K ∪ K̃ such that aii(s, x0K , xufK ) > 0 for a.e. s ∈ [0, t].
Then we have a.s.:

m
{
s ∈ [0, t] : Xk

s = 0, ∀k ∈ K,Xq
s = uq, ∀q ∈ K̃

}
= 0.

Also, for a.e. s ∈ [0, t] we have:

PX
s

{
x ∈ Rn

+ : xk = 0, ∀k ∈ K,xq = uq, ∀q ∈ K̃
}

= 0.

Lemma 4.2. Let t ∈ R+ and K, K̃ ⊆ {1, . . . , n}, such that K ∩ K̃ = ∅. If

i ∈ K and there exists j ∈ K ∪ K̃, j 6= i, such that ajj(s, x0K\{i} , xufK ) > 0 for

a.e. s ∈ [0, t], then we have a.s.:

t∫

0

1
{
Xk

s = 0, ∀k ∈ K,Xq
s = uq, ∀q ∈ K̃

}
Li(ds, 0) = 0.

In the same way, if i ∈ K̃ and there exists j ∈ K ∪ K̃, j 6= i, such that

ajj(s, x0K , xufK\{i}) > 0 for a.e. s ∈ [0, t], then we have a.s.:

t∫

0

1
{
Xk

s = 0, ∀k ∈ K,Xq
s = uq, ∀q ∈ K̃

}
Li(ds, ui−) = 0.

Remark 4.1. Lemmas 4.1 and 4.2 above do not require the special invertibility
structure imposed on M (recall M is the matrix with blocks M 11 = R, M12 =

−R̃, M21 = −R andM22 = R̃). This special structure is required for Lemma 4.3
below, as well as for the subsequent results.
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Lemma 4.3. Define the Rn×n-valued processes (Rt)t≥0, (R̃t)t≥0, (ρt)t≥0 and

(ρ̃t)t≥0 as follows:

Rij
t = Rij1{X i

t− = 0} if i 6= j, Rii
t = Rii;

R̃ij
t = R̃ij1{X i

t− = ui} if i 6= j, R̃ii
t = R̃ii;

ρij
t = −Rij1{X i

t− = ui}; and ρ̃ij
t = −R̃ij1{X i

t− = 0}.

Furthermore, set (Mt)t≥0 as the R2n×2n-valued process with blocks M 11
t = Rt,

M12
t = ρ̃t, M

21
t = ρt and M22

t = R̃t. Then Mt is non-singular for each (t, ω) ∈
R+ × Ω.

Proof. Let t ∈ R+, and define the random index sets Λt and Λ̃t as {i ∈
{1, . . . , n} : X i

t− > 0} and {i ∈ {n + 1, . . . , 2n} : X i−n
t− < ui−n}, respec-

tively. Then, it is easy to see that

det [Mt] =






det [R]

n∏

i=1

R̃ii if |Λt| = 0,

det
[
R̃

] n∏

i=1

Rii if |Λ̃t| = 0,

n∏

i=1

RiiR̃ii if
∣∣Λt ∪ Λ̃t

∣∣ = 2n,

det
[
M (Λt∪eΛt)

] ∏

i∈Λt

Rii
∏

j+n∈eΛt

R̃jj if |Λt||Λ̃t| > 0

and |Λt ∪ Λ̃t| < 2n.

(4.3)

Therefore, since by assumption we have that for each k ∈ {1, . . . , n}, every k×k
principal submatrix extracted from M is non-singular, we conclude det [Mt] 6= 0
for each (t, ω) ∈ R+ × Ω, and the lemma is proved. 2

Theorem 4.1. Assume that for each i ∈ {1, . . . , n} we have aii(t, x0i) > 0 and

aii(t, xui
i) > 0 for a.e. t ∈ R+. Then for each i ∈ {1, . . . , n} we have a.s.:

Zi
· =

Li(·, 0)

2Rii

and

Z̃i
· =

Li(·, ui−)

2R̃ii
.

Proof. Let i ∈ {1, . . . , n}. By applying the Meyer – Itô formula [11, p. 167,
Theorem 51] to X i with convex function f(xi) = (xi)+ = max {0, xi}, xi ∈ R,
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and using equation (4.1), by the same arguments as in the proof of Lemma 2.5
we find:

n∑

j=1
j 6=i

1{X i
t− = 0}Rij dZj

t +Rii dZi
t −

n∑

j=1

1{X i
t− = 0}R̃ij dZ̃j

t =
1

2
Li(dt, 0) (4.4)

where we have also used Lemma 4.1 to conclude that, since aii(t, x0i) > 0 for
a.e. t ∈ R+,

∫ ·

0
1{X i

s = 0}bi(s,Xs) ds = 0 a.s. (note from Lemma 4.1 we have∫ t

0
1{X i

s = 0}bi(s,Xs) ds = 0 a.s. for each t ∈ R+; indistinguishability follows
from continuity). Now, since Li(·, ui) = 0 a.s., by [11, Corollary 1, p. 177] we
have, also a.s.:

Li(·, ui−) = −2

·∫

0

1{X i
s− = ui}

[
bi(s,Xs) ds+

n∑

j=1

Rij dZj
s −

n∑

j=1

R̃ij dZ̃j
s

]
.

But, since aii(t, xui
i) > 0 for a.e. t ∈ R+, again from Lemma 4.1 (by the same

arguments as above) the term including the drift is identically zero. Also, since∫
R+

(ui −X i
s) dZ̃

i
s = 0 and Z̃i

0 = 0, we have

·∫

0

1{X i
s− = ui} dZ̃i

s =

·∫

0

1{X i
s = ui} dZ̃i

s = Z̃i
· a.s.

Hence, we may write:

−
n∑

j=1

1{X i
t− = ui}Rij dZj

t +

n∑

j=1
j 6=i

1{X i
t− = ui}R̃ij dZ̃j

t + R̃ii dZ̃i
t =

1

2
Li(dt, ui−).

(4.5)
Thus, from equations (4.4) and (4.5) (i = 1, . . . , n), Lemmas 4.2 and 4.3, and

the fact that Zi
0 = Z̃i

0 = Li(0, 0) = Li(0, ui−) = 0 for each i, we conclude

that for each t ∈ R+, Zi
t = Li(t, 0)/2Rii and Z̃i

t = Li(t, ui−)/2R̃ii, a.s., and
indistinguishability now follows from almost surely sample path continuity. The
theorem is proved. 2

Corollary 4.1. Assume the same as in Theorem 4.1 above. Then for each

i ∈ {1, . . . , n}, a.s., the random measures in t, dZ i
t and Li(dt, 0), are supported

by the same set in R+ and, moreover, this set is contained in
{
t ∈ R+ : X i

t = 0,

Xj
t /∈ {0, uj}, ∀j 6= i

}
. This same conclusion holds for the random measures in t,

dZ̃i
t and Li(dt, ui−), but now the common support is contained in

{
t ∈ R+ :

X i
t = ui, Xj

t /∈ {0, uj}, ∀j 6= i
}
.
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Proof. Straightforward from Lemma 4.2 and Theorem 4.1. 2

The next corollary corresponds to the respective version of Theorem 3.1 in
the previous section. For simplicity we will state it under the same assumptions
as in Theorem 4.1.

Corollary 4.2. Let t ∈ R+ and K, K̃ ⊆ {1, . . . , n}, such that K ∩ K̃ = ∅ and

|K ∪ K̃| ≥ 2. Assume the same as in Theorem 4.1. Then for each i ∈ K we

have a.s.:
t∫

0

1{Xk
s = 0, ∀k ∈ K,Xq

s = uq, ∀q ∈ K̃}dZi
s = 0.

In the same way, for each i ∈ K̃ we have a.s.:

t∫

0

1{Xk
s = 0, ∀k ∈ K,Xq

s = uq , ∀q ∈ K̃} dZ̃i
s = 0.

Proof. Straightforward from Lemma 4.2 and Theorem 4.1. 2

The respective version of Corollary 3.2 is obvious from Theorem 4.1 and (4.2).

5. Concluding remarks

In this paper we have established a boundary behavior characterization for
reflected diffusions with signed jumps, constrained to lie in the positive or-
thant of Rn. We have related the regulator processes of such diffusions to their
corresponding semi-martingale local times, proving that known properties for
SRBMs continue to hold in this more general setting, but requiring, as a trade-
off in our proofs, an additional invertibility condition on the reflection matrix.
Even though this extra requirement reduces to some extent the scope of our
results, we believe it still encompasses a large class of models appearing in ap-
plications. Also, signed jumps have been allowed, which is of interest in several
areas such as in risk theory or in financial models with claims arising at random
times. Finally, we note the results exposed in the paper are not only relevant
from the point of view of defining the boundary behavior and obtaining a semi-
martingale local time characterization of the regulator processes, but also they
are of use in characterizing the stationary distributions of this class of processes,
as it was done for example in [10] for the one-dimensional case.
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