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Abstract— Since the original work of Grossglauser and Tse,
which showed that the mobility can increase the capacity of an ad
hoc network, there has been a lot of interest in characterizing the
delay-capacity relationship in ad hoc networks. Various mobility
models have been studied in the literature, and the delay-capacity
relationships under those models have been characterized.The
results indicate that there are trade-offs between the delay and
the capacity, and that the nature of these trade-offs is strongly
influenced by the choice of the mobility model. Some questions
that arise are: (i) How representative are these mobility models
studied in the lieterature? (ii) Can the delay-capacity relationship
be significantly different under some other “reasonable” mobility
model? (iii) What would the delay-capacity trade-off in a real
network be like? In this paper, we address these questions.
In particular, we analyze, among others, some of the mobility
models that have been used in the recent related works, under
a unified framework. We relate the nature of the delay-capacity
trade-off to the nature of the node motion, thereby providing a
better understanding of the delay-capacity relationship in ad hoc
networks than earlier works.

I. I NTRODUCTION

In this paper, we study the delay and capacity trade-offs in
mobile ad hoc networks. We study the network layer notion
of capacity, first introduced by Gupta and Kumar [1]. In [1],
it was shown that the per-node capacity of a random wireless
network with static nodes scales asΘ

(

1√
n log n

)

, provided
the same power level is used by all the nodes in the network.
Recent works [2], [3] have shown that a per-node capacity
of Θ(1/

√
n) can be achieved when the nodes are allowed to

exercise power control.
Grossglauser and Tse [4] have shown that significant gains

in the per-node capacity can be obtained by exploiting the
mobility of the nodes in a mobile ad hoc network. In particular,
they proposed a 2-hop relaying scheme, and showed that their
scheme can achieve a constant per-node capacity, which does
not vanish as the number of nodes grows arbitrarily large. The
delay related issues were not addressed in [4].

Since both capacity as well as delay are important from
an application point of view, a significant effort has recently
been devoted within the networking research community to
understand the delay-capacity relationship in ad hoc networks.

Bansal and Liu [5] were among the first to study the delay-
capacity relationship in wireless networks. They considered a
wireless network consisting of static sender-destinationpairs
and mobile relays, and proposed a geographic routing scheme
that achieves a near optimal capacity and studied its delay
performance. Perevalov and Blum [6] studied the delay limited
capacity of mobile ad hoc networks. Their work was motivated
by thediversity codingapproach given in [7].

Recent works of Neely and Modiano [8], ElGamal et al.
[9], Toumpis and Goldsmith [10], Sharma and Mazumdar [11],
[12], Lin and Shroff [13], and Lin et al. [14], have all studied
the delay-capacity trade-offs in mobile ad hoc networks. The
mobility models and the network settings studied in these
works differ considerably, and so do the delay-capacity trade-
offs that are reported. The mobility models studied in the
literature include the i.i.d. mobility model [8], [10], [13]; the
random way-point mobility model [11], [12]; the Brownian
mobility model [11], [14], [9]; and the random walk mobility
model [9], [15].

Since the network settings considered in these works are
quite different, it is difficult to single out the impact the nature
of the node mobility has on the delay-capacity trade-off. For
example, both [8] and [13] study the i.i.d. mobility model,
but the trade-offs reported in these works are quite different.
In particular, in [8], the authors consider a cell partitioned
network setting and show that the trade-off:λ ≤ Θ

(

D
n

)

, where
D is the average packet delay andλ is the average per-node
throughput, is both necessary as well as sufficient under their
setting. Under a less restrictive network setting in [13], the
delay-capacity trade-off is shown to be:λ3 ≤ Θ

(

D log3 n
n

)

.
Thus, we see that the delay-capacity trade-off depends not only
on the nature of the node mobility, but also on the network
setting.

The main insight we provide in this paper is that there
is a critical value of delay (henceforth denoted bycritical
delay), below which, the node mobility cannot be exploited for
improving the capacity. We also show that the critical delay
depends on the nature of the node mobility, but not so much



on the network setting. In terms of the notion of critical delay
(see section III for a rigorous definition), some recent results
in the literature can be summarized as follows:

• The critical delay under the Brownian motion model and
random walk model is roughlyΘ(n)∗ (see [14], [15]).

• The critical delay under the random way-point mobility
model is roughlyΘ(

√
n) (see [12]).

• The critical delay under the i.i.d. mobility model isΘ(1)
(see [13]).

Observing the above results, it is natural to ask: (i) How
representative are the above mentioned mobility models? (ii)
Can the critical delay and, in general, the delay-capacity
relationship be significantly different under some other mo-
bility model? (iii) How does the critical delay scale in a real
network? This paper makes the following contributions toward
answering these fundamental questions:

• We propose and study a family ofhybrid random walk
models, and show that they exhibit a continuous range
of critical delays in-between those of the i.i.d. mobility
model and the random walk mobility model. In particular,
for everyβ between0 and1, there exists a mobility model
in the family of hybrid random walk modelsfor which
the critical delay is roughlyΘ(nβ). As expected,β = 1
corresponds to random walk mobility model, andβ = 0
corresponds to the i.i.d. mobility model.

• We propose and study a family ofdiscretized random
direction modelsexhibiting a continuous range of crit-
ical delays in-between those of the random way-point
mobility model and the Brownian mobility model. In
particular, for everyα between0 and 1/2, there exists
a mobility model in the class ofdiscretized random
direction modelsfor which the critical delay is roughly
Θ(n1/2+α). Note thatα = 0 corresponds to the random
way-point mobility model, andα = 1/2 corresponds to
the Brownian mobility model. These models approximate
the motion of the nodes under the commonly used random
direction models in the literature (see, for example, [16]),
and are simpler to analyze.

An interesting feature of the above classes of mobility models
is that all of them incur a delay of roughlyΘ(n) under the 2-
hop relaying scheme; which is in line with the other mobility
models considered in the literature. Our results thereforeshow
that the mobility models considered in the literature are in
some sense extreme: they either exhibit the smallest critical
delays (i.i.d. mobility model and random way-point mobility
model) or the largest critical delays (Brownian motion model
and random walk mobility model), among the mobility models
in their respective classses.

The rest of the paper is organized as follows. We introduce
thehybrid random walk modelsanddiscretized random direc-
tion models, and discuss our network and transmission model
in the next section. We define the notions of critical delay and

∗Note that in [14], the results are stated in terms of the variance parameter
σ2(n). We have setσ2(n) = 1/n for the sake of easy comparison with the
other results.

2-hop delay in section III. We study the critical delay and 2-
hop delay under the hybrid random walk models in section IV,
and under the discretized random direction models in section
V. A discussion on the implications of our results for large
mobile ad hoc networks is provided in section VI. Finally, we
end this paper with some concluding remarks in section VII.

II. T HE MODEL

A. The Network and Transmission Model

We consider an ad hoc network consisting ofn mobile
nodes, distributed uniformly on a unit square. We consider
a homogeneous scenario in which each node generates traffic
at the same rate. Further, we assume that each node, say node
i, generates traffic for exactly one other node, say noded(i),
and that the mappingi 7→ d(i) is bijective. We also assume
that the packet arrival process at each node is independent of
the node mobility process.

The communication between anysource-destinationpair
can possibly be carried out via multiple other nodes, actingas
relays. That is, asourcenode can, if possible, send a packet
directly to itsdestinationnode; or, the source node can forward
the packet to one or morerelay nodes; the relay nodes can also
forward the packet to other relay nodes; and finally, a relay
node or the source node itself can deliver the packet to its
destination node.

For simplicity, we assume that the success or failure of
a transmission between a pair of nodes is governed by the
protocol model of [1]. LetW be the bandwidth of the system
in bits per second. LetX i

t denote the position of nodei, for
i = 1...n, at time t. Under the protocol model, nodei can
communicate directly with nodej at a rate ofW bits per
second at timet, if and only if, the following interference
constraint is satisfied [1]:

d(Xk
t , Xj

t ) ≥ (1 + ∆)d(X i
t , X

j
t ) (1)

for every other nodek 6= i, j that is simultaneously transmit-
ting. Here∆ is some positive number; andd(x, y) denotes
the Euclidean distance between pointsx, y ∈ R

2. Note that
for a packet to be successfully received by nodej, the
above interference constraint must be satisfied over the entire
duration of the packet transmission from nodei to nodej.

We use the following definition of throughput: Letλi(t)
be the total number of bits delivered end-to-end for source-
destination pairi upto timet, then the throughputλ(n) of the
system is given by

λ(n) = lim inf
t→∞

n
∑

i=1

λi(t)

t
.

Next, we describe our mobility models, starting with the
hybrid random walk models.

B. Hybrid Random Walk Models

These models are parametrized by a single parameterβ,
which takes values between0 and 1/2. The unit square is
divided into n2β squares of area1/n2β each (henceforth
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Fig. 1. The figure shows the division of the unit square into cells and subcells
and also the motion of a node under the hybrid random walk model.

referred to as cells), resulting in a discrete torus of size
nβ × nβ. Each cell is then further divided inton1−2β square
subcells of area1/n each†, as shown in Fig. 1. Time is
divided into slots of equal duration. At each time slot a
node is assumed to be in one of the subcells inside a cell.
Initially, each node is equally likely to be in any of then
subcells, independent of the other nodes. At the beginning
of a time-slot, a node jumps from its current subcell to one
of the subcells in an adjacent cell, chosen in an uniformly
random fashion. By adjacent cell we mean the following: Let
(i, j) : i, j = 0, 1, ..., nβ − 1, be a numbering of the cells of
the 2-d torus, as shown in Fig. 2. The cells adjacent to cell
(i, j) are the cells(i+1, j), (i−1, j), (i, j+1), and(i, j−1),
where the addition and subtraction operations are performed
modulo nβ . Note that forβ = 0, the above mobility model
is essentially the i.i.d. mobility model considered in [8],[13],
[10]; and for β = 1/2, it is the same as the random walk
model of [9].

Next, we describe the random direction models (see, for
example, [16]).

C. Random Direction Models

These models are parametrized by a single parameterα,
which takes values between0 and1/2. The initial position of
each node is assumed to be uniformly distributed inside the
unit square. The motion of each node under these models is
independent and identical to the other nodes. The motion of a
node is divided into multiple trips. At the beginning of a trip,
the node chooses a directionθ uniformly between[0, 2π], and
moves a distance ofn−α in that direction, with a speedvn,
and the process repeats itself. Note that we are assuming a
complete warp-around of the unit square (see Fig. 3).

Remark 1. In the rest of the paper, we considervn =
Θ(1/

√
n), as in [12]. This particular choice of node speed is

motivated by the fact that we keep the network area fixed and
let the number of nodes increase to infinity, which means that
the average neighborhood size scales asΘ(1/

√
n). In order

†Throughout this paper we ignore the issues pertaining ton1−2β , n2β not
being perfect squares.
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Fig. 2. A numbering of cells on a 2-d torus.

to account for this “shrinking” of the neighborhood size, we
scale the node velocity asΘ(1/

√
n). Note that, alternatively,

one could scale the area of the network in proportion ton,
while keeping the velocity of the nodes fixed.

Next, we describe the discretized random direction models,
that we study in this paper. As discussed before, these mod-
els approximate the motion of the nodes under the random
direction models, and are simpler to analyze.

D. Discretized Random Direction Models

These models, like the random direction models, are
parametrized by a single parameterα, which takes values
between0 and1/2. The unit square is divided inton2α squares
of area1/n2α each (henceforth referred to as cells), resulting
in a discrete torus of sizenα × nα.

Time is divided into slots of equal duration. At the beginning
of a time slot, each node jumps from its current cell to an
adjacent cell, chosen uniformly from within the set of adjacent
cells. The motion of a node during the time slot is as follows:
The node chooses a start and end point uniformly from within
the current cell. During the time slot, the node moves from
the start point to the end point. In order to keep the duration
of all time slots the same, the velocity of the node is chosen
to be inversely proportional to the distance between the start
and the end point.

In view of Remark 1, the duration of a time slot should
be Θ(n1/2−α). In order to be able to compare these models
with the Brownian motion model of [11], [14], we consider
σ2

n = 1/n, whereσ2
n is the variance parameter of the Brownian

motion model, as defined in [11], [14]. Note that with the
above choice ofσ2

n and vn, each node moves an average
distance ofΘ(1/

√
n) in unit time, under all these models.

Also observe that under these settings, the discretized random
direction model withα = 1/2 degenerates into the random
walk model, which is the discrete time version of the Brownian
motion model.

III. PRELIMINARIES: CRITICAL DELAY, 2-HOP DELAY,
SCHEDULING SCHEMES

In this section, we build the platform required for the study
of the critical delay in the subsequent sections. We first start



Fig. 3. The figure shows the motion of a node under the random direction
model.

by providing a rigorous definition of the critical delay and
motivating its study.

It is now well known that the per-node throughput capacity
of static ad hoc networks scales asO(1/

√
n), with the capacity

achieving scheme being the famous multihop relaying scheme.
Grossglauser and Tse [4] showed that a constant throughput
per-node can be achieved under any stationary and ergodic
mobility model which preserves the uniform distribution of
the nodes at all times. The delay performance of the capacity
achieving 2-hop relaying scheme of [4] has been studied in
many recent works [8], [9], [13], [11], [12], [15], and the 2-hop
relaying scheme has been shown to incur an average delay of
aboutΘ(n) under many different mobility models. Alternative
schemes that provide a throughput in between that of multi-
hop relaying and 2-hop relaying have also been studied in
the literature, under various mobility models. The objective
of these schemes is to provide better delay performance than
the 2-hop relaying scheme by compromising the throughput
capacity. An important quantity to study in this respect is what
we call the critical delay, which we next define:

Definition 1. Let C be the class of scheduling and relaying
schemes under consideration, and letDc, λc be the average
delay and the per-node throughput, respectively, under scheme
c ∈ C . The critical delay under the class of schemesC ,
denoted byDC , is the minimum average delay that must be
tolerated under a given mobility model in order to achieve a
per-node capacity ofω(1/

√
n), that is,

DC = inf
{c∈C :λc=ω(1/

√
n)}

Dc. (2)

Remark 2. Note that the requirement ofω(1/
√

n) capacity in
the above definition is to ensure that the asymptotic throughput
is above that of static ad hoc networks.

Remark 3. Note that each schemec in the class of schemes
C is actually sequence of schemescn, wherecn is the scheme
used withn nodes in the network. Similarly,λc and Dc are
also sequences rather than numbers. The infimum in Eq.(2)
should therefore be interpreted as a sequence of infimums,
one for eachn.

Remark 4. From the above definition, it is clear that the
larger the classC is, the smaller the critical delay would be.
Ideally, one would like the classC to include all possible
scheduling schemes. In that case, if the delay that can be
tolerated is smaller than the critical delay for a given mobility
model, then one cannot exploit the node motion under that
mobility model to increase the throughput capacity (in order
sense) beyond its value under static conditions.

Henceforth, we will denote by2-hop delay, the delay under
the 2-hop relaying scheme. Observe that the trade-off between
the delay and the capacity exists for delay values that are
greater than the critical delay, and smaller than the 2-hop delay.
Next, we introduce two key notions:first hitting timeand the
first exit time, which will be used to study the 2-hop delay and
critical delay, respectively.

We start with some notation. LetS denote the unit square
centered at the origin, and letx, y be two points insideS. We
denote by[x] the set of points{x − 1, x, x + 1}, and define

d([x], [y]) = min
xi∈[x],yj∈[y]

d(xi, yj).

We denote byB(x, r) the set of pointsy inside S such that
d([x], [y]) ≤ r. Let Xt

i denote the position of the nodei at
time t, under some mobility model. Note that the indext could
either be continuous or discrete, depending on the mobility
model. We are now ready to define the notion of the first exit
time:

Definition 2 (First Exit Time). Let X0
i = x. The first exit

time ofB(x, r), denoted byτr
E , is given by:

τr
E = inf{t ≥ 0 : Xt

i /∈ B(x, r)}.
It should be clear from the above definition that the statisti-

cal proprieties of the exit time do not depend on the choice of
the pointx and nodei. Also note that the notion of exit time
is well studied in the mathematics literature, under a variety
of contexts. Our interest in notion of exit time stems from the
fact that it has a close connection with the critical delay, which
will be exploited in the subsequent sections.

We will next define the first hitting time. In our case, we
find it more convinient to define it in discrete time. In order
to do so, we need some more notation. LetX(t) be a Markov
chain on state spaceS, with stationary distributionΠ. We have
the following definition:

Definition 3 (First Hitting Time). The first hitting time for
the set of statesA is given by:

τA
H = inf{t ≥ 0 : X(t) ∈ A},

with X(0) being distributed according toΠ.

Again, we would like to point out that the notion of the
first hitting time has been widely studied in the mathematics
literature, under many different contexts. As will be discussed
in subsequent sections, the first hitting time has a close
connection with the 2-hop delay as well as the critical delay.
This connection has been exploited in several recent works



for estimating the 2-hop delay under various mobility models
(see, for example, [12], [14]).

Next, we recall the result concerning the first hitting time
for a single state in case of a 2-d torus of size

√
n×√

n (for
a proof see, for example, [14]):

Lemma 1. LetH denote the first hitting time for a single state
on a 2-d torus of size

√
n ×√

n, thenE{H} = Θ(n logn).

The above result will be used quite often during the analysis
in subsequent sections.

We now define the class of scheduling schemes that we
will study in this paper. The only restriction we place on our
scheduling schemes is the following:

Assumption A:
• Only the source node is allowed to initiate a replication,

that is, the relay nodes holding a packet arenot allowed
to initiate a replication.

Note that almost all scheduling schemes that have been consid-
ered in the literature satisfy Assumption A. To understand this,
we must elaborate on the notion of replication. Byreplication
we mean packet duplication, that is, creating redundant copies
of a packet. This is different from multihop relying where a
single copy of a packet exists in the network. It is importantto
note that the notions ofreplication andrelaying are different,
even though both involve forwarding packets to other relay
nodes. To understand this, suppose nodei decides toreplicate
a packet at nodej; then nodei can either transmit the
packet directly to nodej; or use multihop relaying, where the
packet reaches nodej through multiple intermediate nodes.
Note that, if asked by nodei, the intermediate nodes may
also keep a copy of the packet with them, and in that case,
all of them are considered to receive the packet due to the
samereplication decision initiated by nodei. In this example,
although both nodei and the other intermediate nodes forward
the packet to other nodes, their roles are different. Nodei is
the one thatinitiates the replication, while the intermediate
nodespassively followthe instructions of nodei. Thus, we
see that Assumption A only prohibits relay nodes toinitiate
replication and, in particular, multihop relaying is allowed
under Assumption A.

We also allowimmediate captureof the destination using
multihop relaying or long range wireless broadcast, at any time
during the replication process. Note that by capture we mean
the successful delivery of a packet to its destination node.
Although we allow for other less intuitive alternatives, ina
typical scheduling scheme a successfulcaptureusually occurs
when a relay node holding the packet comes within a small
area around the destination node, so that fewer resources are
needed to forward the packet to the destination. For example,
a relay node could enter a disk of a certain radius around the
destination, or a relay node could enter the same cell as the
destination. We call such an area thecapture neighborhood.
The purpose ofreplication is to reduce the time before a
successfulcaptureoccurs (since with more nodes holding the
packet, the likelihood of one of them capturing the destination
sooner is higher).

We use the word “immediate” to emphasize that capture can
be carried out (using multihop relaying or long range wireless
broadcast, if required) at a much faster time-scale than the
node mobility, and the same is true of the replication process
as well. The reason for this is that the packet transmission is
usually carried out at a much faster time scale than the node
mobility, and as a result the change in the position of a node
during a packet transmission is often negligible.

Note that almost all scheduling schemes that have been
studied in the literature satisfy Assumption A [4], [9], [8], [12],
[11], [10], [13], [15]. The reason for this, we believe, is that in
a distributed system, where nodes make replication decisions
and capture decisions without any knowledge of the decisions
at the other nodes, restricting the replication decisions to
the source node is a natural way tocontrol the number
of copies of a packet. Note that higher redundancy implies
smaller throughput. The source node of a packet is in the best
position to control both the total number of replications ofthe
packet and the number of relay nodes getting a copy of the
packet with each replication. If the relay nodes were allowed
to initiate replication, then additional cooperation among the
relay nodes would likely be required in order to limit the
number of replicas of a packet. An interesting example of
this would be the scheme of Bansal and Liu [5], where the
relay nodes know the location of the static destination node,
and also have some knowledge of the future direction of other
relay nodes’ movement, based on which they cancooperate
to make selective and more efficient replication toward the
destination. Whether such a scheme can be devised for an ad
hoc network with mobile source-destination pairs is still an
open research challenge.

IV. CRITICAL DELAY AND 2-HOP DELAY UNDER HYBRID

RANDOM WALK MODELS

In this section, we study the critical delay and the 2-hop
delay under hybrid random walk models. We first study the
critical delay.

A. Critical Delay

Recall that the critical delay is the minimum delay that must
be tolerated in order to achieve a throughput ofω(1/

√
n).

Next, we develop lower bounds on the critical delay for the
hybrid random walk models. Observe that forβ = 0 (which
corresponds to the i.i.d. mobility model) we have the trivial
lower bound of1 on the critical delay. Further, it has been
shown in [13] that a throughput of roughlyΘ(1/n1/3) =
ω(1/

√
n) can be achieved with a constant average delay under

the i.i.d. mobility model, which implies that1 is also an
asymptotically tight bound (in order terms).

In the sequel, assume therefore thatβ > 0. The main idea is
to show that if the average delay is below a certain value, then
on average the packets travel a distance ofΘ(1) using wireless
transmissions before getting delivered to their corresponding
destination nodes; and then to show that under the protocol
model, this results in a throughput ofO(1/

√
n).
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Fig. 4. The figure shows Disks A and B of radius1/16 centered at
(−1/4,−1/4) and (1/4, 1/4), respectively, that are used in the proof of
Lemma 3.

Recall the mobility model described in section II-B. Let
τr
E,β be the first exit time in case of a hybrid random walk

model with parameterβ. We start by establishing the following
lower bound onτ1/8

E,β , that holds with probability approaching
1 asn → ∞. The proof is available in Appendix IX-A.

Lemma 2. For 0 < β ≤ 1/2, we have

P

(

τ
1/4
E,β ≤ n2β

1024 logn

)

≤ 4

n2
.

Now we are ready to show that if the average delay is
smaller than fon2β

2048 log n , wherefo = 1/2400, then, on average,
the packets must be relayed overΘ(1) distance.

Lemma 3. Consider a network withn nodes moving in
accordance with a hybrid random walk model with parameter
β > 0. If the average delay of the packets under a scheduling
scheme is smaller than fon2β

2048 log n , then there existsNo < ∞
such that for alln ≥ No we have that the packets must, on
average, be relayed over a distance no smaller thanfo/10.

Proof: Consider disks A and B of radius1/16, as shown
in Fig.4. Note that according to our assumption in section II-
A, the arrival process at each node is independent of the node
mobility process. For a given number of nodesn, let fn denote
the fraction of packets having their sources inside disk A and
the destinations inside disk B, at the time of arrival. Sincethe
nodes remain uniformly distributed within the subcells at all
times under our settings, we have thatfn → (π( 1

16 )2)2 asn →
∞. Thus for alln ≥ No, whereNo is chosen appropriately,
we havefn ≥ fo. Now since the average delay is smaller than

fon2β

2048 log n , the delay of at least of one-half of such packets must
be at most

2

fn
· fon

2β

2048 logn
≤ n2β

1024 logn
,

for all n ≥ No. Consider one such packet; let its time of arrival
be t. Using Lemma 2 and the union bound, we have that with

a probability of at least

1 − n · 4

n2
= 1 − 4

n
,

none of then nodes in the network will exit the disk of radius
1/8 centered around its initial position at timet before timet+

n2β

1024 log n . Let S′ andD′ be the positions of the source and the
destination, respectively, for which the distance betweenthe
source and the destination at timet is minimized (see Fig.4).
Let the destination be captured by the relay noder, and letR
be its position when it receives the packet in consideration(see
Fig.4). Assuming that the total time spent in the replication
(which resulted in the relayr getting a copy of the packet) and
capture iso(n2β/ logn), the contribution of node movement
during the replication and capture phase in carrying the packet
toward the destination would beo(1), and can be ignored. Now
a simple geometrical argument shows that in order to reach
the destination, the packet must be relayed over a distance of
at least

1√
2
− 2 · 1

16
− 2 · 1

8
− 1

8
= d0 >

1

5
,

where the term 1√
2
− 2 · 1

16 corresponds to the minimum
possible distance between the source and the destination at
time t, that is, the distance between the pointsS′ andD′; the
term2· 18 corresponds to the maximum distance the source and
the destination can possibly travel toward each other between
time

[

t, t + n2β

1024 log n

]

; and the term1
8 corresponds to the

maximum distance that the relay node can possibly move in
the direction of the destination after it receives the packet and
before timet + n2β

1024 log n .

By choosingNo large enough, we can ensure thatd0(1 −
1/n) ≥ 1/5 for n ≥ No, and the average distance that the
packets must be relayed over in that case would be no smaller
than

fo

2
· 1

5
=

fo

10
,

proving the Lemma.

Remark 5. Note that in the above proof we assumed that
the total time spent in the replication and capture phase is
o(n2β/ logn). This assumption is motivated by the fact that
in most scheduling schemes the replication and capture are
performed using a wireless broadcast or multihop relaying,
and are therefore carried out at a much faster time-scale than
the node mobility. Note also that a packet might be relayed
over several hops during either the replication or capture
phase, and for technical consistency, one might then need to
scale down the packet size in order to keep the total time spent
in replication and capture phases small enough. This kind of
packet size scaling has been used quite often in the literature
(see, for example, [10], [9], [13], [15]).

We now recall the following result from [14], which shows
that if the packets are on average relayed overΘ(1) distance,
then the throughput capacity must beO(1/

√
n).

Lemma 4. Suppose that there exists a constantc > 0,



independent ofn, such that on average the packets are relayed
over a total distance no less thanc, thenλ(n) = O(1/

√
n).

Remark 6. In [14], the above result is proved under the
protocol model discussed before in section II-A. By following
the line of analysis used for proving Theorem4.2 in [3], it is
possible to establish the above result under the generalized
physical model (see [3]), which is more realistic than the
protocol model.

The following result is an easy consequence of Lemmas 3
and 4, and the definition of critical delay.

Proposition 1. Under the class of scheduling schemes satisfy-
ing Assumption A, the critical delay for a hybrid random walk
model with parameterβ > 0 scales asΩ(n2β/ log n).

We now derive an upper bound on the critical delay. Note
that the delay under any scheme that can provide a throuhput
of ω(1/

√
n) is essentially an upper bound on the critical

delay. Forβ = 1/2 (which corresponds to the random walk
mobility model) it is claimed in [9] that a simple modification
of the 2-hop relaying scheme of Grossglauser and Tse can
provide a throughput capacity ofΘ(1), incurring a delay
of Θ(n logn). This result immediately establishes an upper
bound of Θ(n log n) on the critical delay forβ = 1/2. In
what follows, we consider hybrid random walk model with
parameterβ, for 0 < β < 1/2, and show that the critical
delay for the model scales asO(n2β log n).

The idea is to develop a scheduling and relaying scheme
that can provide a throughput ofω(1/

√
n), while incurring

a delay ofO(n2β log n). In this paper, we only provide the
main insight behind such a scheme, leaving out the detailed
analysis for our future work.

Consider a scheme in which each packet is replicated at a
single relay node, which delivers the packet to the destination
node once it is in the same cell as the destination node,
possibly using multihop transmission. Note that such a scheme
would require an appropriate scaling of the packet size to
ensure that the packet can be delivered to the destination within
one slot, i.e., before the relay and the destination can possibly
move into different cells. We now provide an approximate
analysis of the delay and the throughput for such a scheme.
In order to keep our discussion simple and insightful, we will
ignore possible delays due to queueing at the source or the
relay nodes. More precisely, we will assume that the delay of
the packet is the time it takes for the relay node to move into
the same cell as the destination node, starting from the time
it receives the packet from the source node.

Now consider a packet arrival at the source node. Note that
since the packet arrival process at each node is independentof
the node mobility process, the source node and the destination
node are equally likely to be in any of the cells, at the time of
the packet arrival. Thus the delay of the packet is of the same
order as the expected first hitting time of a single state, in case
of a random walk on a 2-d torus of sizenβ × nβ , which, by
Lemma 1 isΘ(n2β log n).

Now for estimating the throughput, we need to account

for the following factors: (i) the loss in throughput due to
multiple relayings of the same packet, (ii) the loss in through-
put due to the interference. Using the standard multihop
scheme, where each hop carries the packet overΘ(

√

log n/n)
distance‡, and noting that the packet travels a distance of
no more thanΘ(1/nβ) using multihop transmissions, it fol-
lows that the number of times a packet must be relayed is
O(n1/2−β/

√
log n). The loss in throughput due to multiple

relayings is correspondinglyO(n1/2−β/
√

log n). Now since
each transmission is carried overΘ(

√

log n/n) distance, it
follows easily using the protocol model that the nodes which
are within Θ(

√

log n/n) distance of the sender must be
kept quite, resulting in a loss of throughput by a factor of
Θ(log n). Thus the throughput of such a scheme would be
Ω(nβ−1/2/

√
log n) = ω(1/

√
n) for β > 0.

The above discussion shows that the critical delay scales as
O(n2β log n) for a hybrid random walk model of parameterβ.
Although, the above arguments are heuristic, they can easily be
made precise. However, in order to do so, one would need to
specify the details of the scheduling scheme, which is beyond
the scope of this paper.

Remark 7. By choosing the size of the capture neighborhood
appropriately (e.g.,Θ(1/ logn)), one can show that the criti-
cal delay is bounded byΘ(n2β log log n).

B. 2-Hop Delay

In this section, we analyze the 2-hop delay under the hybrid
random walk models. Recall that the original 2-hop relaying
protocol of Grossglauser and Tse [4] allows only the nearest
neighbor transmissions. Subsequent works [8], [11], [9], [15],
[12] have considered a slightly different version of the protocol
in which the transmissions are carried out between nodes that
are either in the same cell (of sizeΘ(1/

√
n) × Θ(1/

√
n)),

or are within a distance ofΘ(1/
√

n) from each other. Note
that these different versions of the protocol are roughly the
same, because whenn nodes are distributed uniformly within
a unit square the nearest neighbor distance is on the order of
Θ(1/

√
n).

Next, we analyze the delay under the 2-hop relaying pro-
tocol, assuming that the transmissions are scheduled between
nodes that are in the same subcell. As in the analysis of critical
delay, we will ignore the queueing delays, postponing their
analysis to future work. Thus we would mainly be interested
in estimating the time it takes for the relay node and the
destination node to come within the same subcell, starting
from two randomly and uniformly chosen subcells in the
network. Let us denote this random time byT . In subsequent
analysis, we will say that two nodes are in a “meeting” if they
are currently inside the same cell, and will denote the time
between successive meetings as theinter-meeting time.

Observe that

T = τ1n
2β−1 + ...+(τ1 + ...+τi)

(

1 − n2β−1
)i−1

n2β−1 + ...,
(3)

‡Note that this is the minimum possible order of the communication range
for ensuring almost sure connectivity (see [1]).



where τ1 is the time required for the nodes to enter the
same cell, starting from their initial random and uniformly
distributed positions, henceforth denoted byfirst meeting time;
and τi for i ≥ 2 are the successiveinter-meeting times.
Observe thatn2β−1 is the probability that the nodes choose
the same subcell inside a given cell. It is easy to see that
the mean first meeting time is of the order of the mean first
hitting time of a single state, in case of a ranodm walk on a
2-d torus of sizenβ × nβ . Using Lemma 1, it follows that
E{τ1} = Θ(n2β log n). Further, the mean inter-meeting times
are of the order of the meanfirst return time(for definition,
see, for example, [17, Chap 2, p. 2]) of a random walk on a
2-d torus of sizenβ × nβ, which is well known to ben2β.
We therefore haveE{τi} = Θ(n2β) for i ≥ 2. Taking the
expectations on both sides of Eq. (3), and performing some
simple algebraic manipulations, we obtain

E{T } = E{τ1} + E{τ2}n1−2β

= Θ(n2β log n) + Θ(n2β)n1−2β

Thus forβ < 1/2, we haveE{T } = Θ(n); and forβ = 1/2,
we haveE{T } = Θ(n logn).

Remark 8. Note that our results forβ = 0 and β = 1/2
are in agreement with the corresponding results for the i.i.d.
mobility model in [8] and the random walk model in [15].
Both these works also account for the queueing delays: In [8],
queueing delays at the source nodes as well as relay nodes
are considered, whereas, [15] considers queueing delays at
the relay nodes only. It is interesting to see that our simplified
analysis yields exact results (in order sense) for two extreme
choices ofβ, i.e., β = 0, 1/2.

Remark 9. Observe that all hybrid random walk models
incur roughly Θ(n) delay under the 2-hop relaying scheme,
but their critical delays vary significantly. More precisely, as
β increases the critical delay increases as well (roughly as
Θ(n2β)), shrinking the delay-capacity trade-off region. The
two extreme cases being: (i) the i.i.d. mobility model (i.e.,
β = 0), for which ω(1/

√
n) capacity can be achieved even

under a constant delay constraint; and (ii) the random walk
model (i.e.,β = 1/2), for which the delay on the order of
Θ(n/ logn) or more must be tolerated in order to achieve a
capacity ofω(1/

√
n).

V. CRITICAL DELAY AND 2-HOP DELAY UNDER

DISCRETIZEDRANDOM DIRECTION MODELS

In this section, we study the critical delay and the 2-hop
delay under discretized random direction models. As in the
previous section, we first study the critical delay.

A. Critical Delay

Recall that the discretized random direction models are
characterized by a single parameterα that takes values be-
tween 0 and 1/2. As in the previous section, we will first
derive a lower bound on the critical delay by lower bounding
the first exit time for a disk of radius1/8. Let τ1/8

E,α denote the
first exit time for such a disk in case of discretized random

direction model with parameterα. Let the duration of a time
slot be Cn1/2−α. For α = 0, one trivially obtains a lower
bound ofΘ(

√
n) on τ

1/8
E,α. For α > 0, we have the following

result, the proof of which follows mutatis mutandis from the
proof of Lemma 2:

Lemma 5. For 0 < α ≤ 1/2, we have

P

(

τ
1/4
E,α ≤ Cn1/2+α

1024 logn

)

≤ 4

n2
.

It is interesting to note that a similar result can also be
proved for random direction models (see Appendix IX-B):

Lemma 6. Let T
1/8
E,α denote the first exit time of a disk of

radius 1/8 for a random direction model with parameterα.
For 0 < α ≤ 1/2, we have

P

(

T
1/8
E,α ≤ Cn1/2+α

768 logn

)

≤ 4

n2
.

The following Lemma and Proposition can now be proved in
a similar fashion to Lemma 3 and Proposition 1, respectively.

Lemma 7. Consider a network withn nodes moving in
accordance with a discretized random direction model with
parameterα > 0. If the average delay of the packets under a
scheduling scheme is smaller thanCfon1/2+α

2048 log n , then there exists
No < ∞ such that for alln ≥ No we have that the packets
must on an average be relayed over a distance greater than
fo/10.

Proposition 2. Under the class of scheduling schemes sat-
isfying Assumption A, the critical delay for a discretized
random direction model with parameterα > 0 scales as
Ω(nα+1/2/ log n).

Remark 10. Analogs of the results in Lemma 7 and Proposi-
tion 2 can easily be proved for random direction models using
Lemma 6.

Remark 11. Note that forα = 0, using the lower bound of
Θ(

√
n) on τ

1/8
E,α, and arguing as in the proof of Lemma 7, we

can easily establish a lower bound ofΘ(
√

n) on the critical
delay. Moreover, the same reasoning shows that a lower bound
of Θ(

√
n) on critical delay also holds under the random way-

point mobility model. This result was earlier shown in [12],
but under a more restricted class of scheduling and relaying
schemes than in this paper.

Next, we will establish an upper bound on the critical
delay. Consider the scheme discussed before in section IV-
A. Recall that the packet is replicated to at most one relay
node, which delivers it to the destination node on entering the
same cell as the destination node. The approximate analysis
of the throughput and delay under such a scheme can be
carried out following the line of analysis in section IV-A,
and it is straightforward to show that the delay under such
a scheme will beΘ(n1/2+α log n) and the throughput will be
Ω(nα−1/2/

√
log n) = ω(1/

√
n) for α > 0. Thus forα > 0,

the critical delay is bounded above byΘ(n1/2+α log n).



Remark 12. One might think that by increasing the size of the
capture neighbrohood to1/nγ where0 < γ < α, one might be
able reduce the delay belowΘ(n1/2+α log n), while maintain-
ing a throughput ofΩ(1/

√
n). This is, however, not possible.

In fact, it can be shown that with a capture neighborhood
of sizer(n) the delay becomesΘ(n1/2+α log (1/r(n))), and
the throughput becomesΘ(1/r(n)

√
n log n). Thus choosing a

capture neighborhood of size1/nγ for any γ > 0 will not
change the order of the delay. Note also that by increasing
the size of the capture neighborhood toΘ(1/ logn), one can
show an upper bound ofΘ(n1/2+α log log n) on the critical
delay.

Next, we considerα = 0. Note that for α = 0, the
discretized random direction model is almost the same as the
random way-point mobility model, with the only difference
being that the successive trips (moving between the chosen
pair of points) that a node makes under the discretized random
direction model are independent; whereas, there is some
dependency between successive trips in case of the random
way-point mobility model (since the next trip starts from the
point where the previous trip ends). The random way-point
mobility model has been analyzed§ in [12]. In particular, a
protocol that allows one to trade-off throughput for the delay
has been developed in [12], and shown to achieve the following
delay-capacity trade-off:

D(n) = O(n/k(n) log n), andλ(n) = Ω(1/k(n) logn),

whereD(n) is the average packet delay and theλ(n) is the
per-node throughput. Following the line of analysis in [12],
one can show that the same delay-capacity trade-off can also
be achieved under the discretized random direction model with
α = 0. Now by choosingk(n) =

√
n/a(n) logn where

a(n) → ∞ asn → ∞, (4)

it follows that the critical delay isO(a(n)
√

n log2 n) for all
a(n) satisfying condition (4). In particular, the critical delay
is o(nγ) for any γ > 1/2.

B. 2-Hop Delay

In this section, we analyze the 2-hop delay under the
discretized random direction models. We will assume that the
transmissions are scheduled between nodes that are within a
distance of1/

√
n from each other, and will ignore the queue-

ing delays. Thus we would mainly be interested in estimating
the time it takes for the relay node and the destination node to
come within a distance of1/sqrtn of each other, starting from
two randomly and uniformly chosen positions in the network.

Let us denote this random time byT . Arguing as in section
IV-B, it can be shown thatE{T } = Θ(n1/2−α)Θ(E{τ1} +
E{τ2}/p), whereτ1 is the first meeting time;τ2 is the inter-
meeting time; andp is the probability that two nodes will come
within a distance of1/

√
n of each other any time during a

§Although [12] considers a slightly different version of therandom way-
point mobility model on a sphere, the results in [12] can easily be extended
to a 2-d torus.

time slot, given that they are within the same cell in that time
slot. Note that the factor ofΘ(n1/2−α) comes because the
duration of each time slot is nowΘ(n1/2−α). As in section
IV-B, we haveE{τ1} = Θ(n2α log n) andE{τ2} = Θ(n2α).
Furthermore, it is easy to see thatp = Θ(nα−1/2). Thus

E{T } = Θ(n1/2+α log n) + Θ(n).

Hence we see thatE{T } = Θ(n logn) for α = 1/2, andΘ(n)
for 0 ≤ α < 1/2.

Remark 13. Once again, we note that our results forα = 0
andα = 1/2 are in agreement with the corresponding results
for the randon walk model in [15] and the random way-point
mobility model in [12]. Both these works also account for the
queueing delays: In [12], queueing delays at the source nodes
as well as relay nodes are considered, whereas, [15] considers
queueing delays at the relay nodes only. Again, we see that
our simplified analysis yields exact results (in order sense) for
two extreme choices ofα, i.e., α = 0, 1/2.

Remark 14. Observe that all discretized random direction
models incur roughlyΘ(n) delay under the 2-hop relaying
scheme; however, their critical delays vary significantly.More
precisely, asα increases the critical delay increases as well
(roughly as Θ(nα)), shrinking the delay-capacity trade-off
region. The two extreme cases being: (i)α = 0 (random way-
point mobility model), for whichω(1/

√
n) capacity incurring

delays of aboutΘ(
√

n); and (ii) α = 1/2 (random walk
model), for which the delay on the order ofΘ(n/ logn) or
more must be tolerated in order to achieve a capacity of
ω(1/

√
n).

VI. D ISCUSSION

The main contribution of this paper is the definition and
study of the notion of critical delay, which provides us with
a platform to compare and contrast several existing mobility
models. The notion of critical delay is important as it provides
us a way of determining whether a particular form of node
mobility can be exploited to improve the throughput capacity
under a given delay constraint. We also showed that there
exists a strong connection between the notion of exit time and
critical delay, and used this connection to estimate the critical
delay under various mobility models.

The results obtained in the previous sections are summarized
in Fig.5. Clearly, the mobility models considered in the litera-
ture are in some sense extreme: they either exhibit the smallest
critical delays or the largest critical delays among all mobility
models having roughly the same 2-hop delay. Thus, on one
extreme, there is almost no delay-capacity trade-off underthe
Brownian motion model and the random walk model, and,
on the other extreme, there is a smooth delay-capacity trade-
off for a wide range of delays under the random way-point
mobility model and the i.i.d. mobility model.

An interesting insight provided by our results is that the crit-
ical delay is inversely proportional to thecharacteristic path
length. By characteristic path length, we mean the distance
that a node travels without changing direction. (Recall that in



case of (discretized) random direction model with parameter
α, the characteristic path lengthis of the order ofn−α and
the critical delay is roughly of the order ofn1/2+α.) Thus
in terms of application support, a scenario where the nodes
move over long distances without changing directions (as in
the random way-point mobility model) is more desirable than
a scenario where nodes change directions over short distances
(as in the Brownian motion model). This is because the former
scenario provides more flexibility in terms of choosing the
point of operation on the delay-capacity trade-off curve, and
can therefore support a wider range of applications.

In a real world scenario, it is rather unlikely that the
(density) number of nodes in the network will have a strong
influence on the motion of the nodes. We therefore believe
that a mobility model like the random way-point model might
be more appropriate for determining the sclaing laws for large
mobile ad hoc networks, rather than a mobility model like the
Brownian motion model (random walk model). We therefore
expect that future mobile ad hoc networks would provide
network designers with ample flexibility in terms of choosing
the desired operational point on the delay-capacity trade-off
curve, and this oppurtunity must be fully exploited for optimal
operation of such networks, possibly using a cross-layer design
approach.

VII. C ONCLUSION

We have studied the delay-capacity trade-offs in mobile
ad hoc networks. We introduced the meaningful notion of
critical delay to systematically study how much delay must
be tolerated for a given form of node mobility to result in an
improvement of the network capacity. The notion of critical
delay allowed us to look at various forms of node mobility
studied in the literature from a common perspective, and to
compare and contrast them.

We proposed two different classes of mobility models and
showed that they both exhibit critical delays that are in-
between that of the mobility models studied in the literature,
thus showing that the mobility models considered in the litera-
ture are rather extreme. More importantly, we showed that the
critical delay is inversely proportional to the characteristic path
length, which is the distance nodes travel without changing
directions. These results, among other things, provide a clear
understanding of why is it that the critical delay under the
Brownian motion model is larger than the critical delay under
the random way-point mobility model.

In a real world scenario, one would expect the number of
nodes or the density of nodes to have little, if any, influenceon
the motion of nodes. Correspondingly, one would expect the
characteristic path length to have a rather weak depenence,
if at all, on the number of nodes or the node density. One
might therefore expect the critical delay in a real world
scenario to be close toΘ(

√
n), as in the case of the random

way-point mobility model. This result is optimistic, sinceit
suggests that the future mobile ad hoc networks would provide
network designers with ample flexibility in terms of choosing
the desired operational point on the delay-capacity trade-off
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Fig. 5. The figure shows the scaling of critical delay in case of the hybrid
random walk models and discretized random direction models.

curve; an oppurtunity that must be fully exploited for optimal
operation of such networks, possibly using a cross-layer design
approach.
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IX. A PPENDIX

In this section, we provide proofs for Lemmas 2 and 6.
We start with the following simple result that is a version of
Hoeffding’s Inequality (see, for example, [18, Chapter 3, pg.
120]).

Lemma 8. Let X1, X2, ..., Xn be i.i.d. random variables
taking values in[−l, l] for 0 < l < ∞, and supposeE{Xi} =
0 for all i. Let Sn =

∑n
i=1 Xi and σ2

Sn
be the variance of

Sn. Then
P(Sn ≥ µσSn) ≤ e−µ2/4,

for all 0 ≤ µ ≤ 2σSn/l.

We are now ready to prove Lemmas 2 and 6.

A. Proof of Lemma 2

Recall the hybrid random walk model of section II-B, and
the definition ofτ1/8

E,β, given in section III. As discussed in
section III, the statistical properties of the first exit time do
not depend on the choice ofy. So lety be the origin, that is,
the point(0, 0). Let (x0, y0) be the cell containing the origin.
Also, let (xt, yt) be the cell in which nodei lies at timet.
Further, let

τ+
x , inf

{

t ≥ 0 : (xt − x0) ≥
nβ

16

}

;

τ−
x , inf

{

t ≥ 0 : (xt − x0) ≤ −nβ

16

}

;

andτ+
y ,τ−

y be similarly defined withyt, y0 in place ofxt and
x0, respectively. Observe that

P(τ
1/8
E,β ≤ m) ≤ P(τ+

x ≤ m or τ−
x ≤ m or τ+

y ≤ m or τ−
y ≤ m)



for m ≥ 0. Using the union bound and appealing to the
symmetry of node motion, we obtain

P(τ
1/8
E,β < m) ≤ 4P(τ+

x < m).

Now observe that before timeτ1/8
E,β , xt has the following

form:

xt = x0 +

t
∑

i=1

si,

wheresi are i.i.d. random variables taking values in{−1, 0, 1}
with probabilities{1/4, 1/2, 1/4}, respectively. Although,xt

is not a simple random walk, it is clear due to its symmetry
that the reflection principle for 1-d random walk holds in case
of xt as well, and we have

P
(

τ+
x ≤ k

)

= 2P

(

x⌊k⌋ − x0 ≥ nβ

16

)

. (5)

for k ≥ 0, where⌊·⌋ denotes the greatest integer function. Now
since eachsi has mean0 and variance1/2, a straightforward
application of Lemma 8 gives:

P

(

xt − x0 ≥ nβ

16

)

≤ e
−n2β

512t , (6)

for t ≥ nβ/16. Substitutingk = n2β

1024 log n in Eq. (5), and
combining with Eq. (6), we obtain

P

(

τ+
x ≤ n2β

1024 logn

)

≤ e−2 log n =
1

n2
,

and the result follows by noting that

P(τ
1/8
E,β ≤ m) ≤ 4P(τ+

x ≤ m)

for m ≥ 0.

B. Proof of Lemma 6

Recall the random direction model of section II-B, and the
definition of τ

1/8
E,α, given in section III. Arguing as in the

previous proof, it suffices to considery = (0, 0). Let (xt, yt)
be the position of the nodei after t trips. Let

τx , inf{t ≥ 0 : |xt| ≥ 1/8
√

2},

and
τy , inf{t ≥ 0 : |yt| ≥ 1/8

√
2}.

It is then clear that

P(τ
1/8
E,α ≤ m) ≤ P(τx ≤ m or τy ≤ m).

Appealing to the symmetry of the node motion and using the
union bound, we obtain

P(τ
1/8
E,α ≤ m) ≤ 2P(τx ≤ m).

Let sk be the x-coordinate of the nodes’ position immediately
after completing thekth trip. Before timeτ

1/8
E,α, sk has the

simple form:

sk =

k
∑

i=1

zi,

where zi are i.i.d. random variables taking values in
[−n−α, n−α]. Note also that eachzi has mean zero and
variancen−2α/2. Using Lemma 8, we have

P(sk ≥ 1/8
√

2) ≤ e−
n2α

256k ,

for k ≥ nα/8
√

2. Using the symmetry of the node motion
once again, we have

P(|sk| ≥ 1/8
√

2) ≤ 2e−
n2α

256k .

Noting that the duration of each trip isCn1/2−α, it follows
that

P

(

τx ≤ k · Cn1/2−α
)

= P

(

∪k
i=1|si| ≥ 1/8

√
2
)

≤
k

∑

i=⌈nα/8
√

2⌉

2e−
n2α

256i

≤ k · 2e−
n2α

256k ,

where ⌈n2α/8
√

2⌉ denotes the smallest integer greater than
n2α/8

√
2. Now sincen2α ≤ n for α ≤ 1/2, we have

P

(

τx ≤ Cn2α

768 logn
· n1/2−α

)

≤ n · 2e−3 log n =
2

n2
.

Thus

P

(

τ
1/8
E,α ≤ Cnα+1/2

768 logn

)

≤ 4

n2
,

as claimed.
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