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Abstract— Since the original work of Grossglauser and Tse, Bansal and Liu [5] were among the first to study the delay-
which showed that the mobility can increase the capacity ofmad  capacity relationship in wireless networks. They considea
hoc network, there has been a lot of interest in characterizig the wireless network consisting of static sender-destinagiains

delay-capacity relationship in ad hoc networks. Various moility d bil | d d hi i h
models have been studied in the literature, and the delay-gmcity ~2NC¢ MODIIE rélays, and proposed a geographic routing scheme

relationships under those models have been characterizedhe that achieves a near optimal capacity and studied its delay
results indicate that there are trade-offs between the delaand performance. Perevalov and Blum [6] studied the delay &hit

the capacity, and that the nature of these trade-offs is stmgly  capacity of mobile ad hoc networks. Their work was motivated

influenced by the choice of the mobility model. Some questian ; ; ; ; ;
that arise are: (i) How representative are these mobility mdels by thediversity codingapproach given in [7].

studied in the lieterature? (i) Can the delay-capacity rehtionship Recent works of Neely and Modiano [8], EIGamal et al.
be significantly different under some other “reasonable” mdility  [9], Toumpis and Goldsmith [10], Sharma and Mazumdar [11],
mtisvel?k (iti)i) \ﬁ?a; \;vout'hﬂ! the de'ay-capfijccijty tra?ﬁ-off in a ;,ea' [12], Lin and Shroff [13], and Lin et al. [14], have all studie
network be like? In this paper, we address these questions. . . .
In particular, we analyze, gm%ng others, some of theq mobilit the ‘?"?'ay'capac'ty trade-offs in mobile .ad hoc ngtwo_rkse b
models that have been used in the recent related works, under mobility models and the network settings studied in these
a unified framework. We relate the nature of the delay-capadiy = Works differ considerably, and so do the delay-capacityera
trade-off to the nature of the node motion, thereby providing a offs that are reported. The mobility models studied in the
better understanding of the delay-capacity relationshipih ad hoc jiterature include the i.i.d. mobility model [8], [10], [13the
networks than earlier works. ; i . ;
random way-point mobility model [11], [12]; the Brownian
|. INTRODUCTION mobility model [11], [14], [9]; and the random walk mobility

In this paper, we study the delay and capacity trade-offs rip]odel [91. [15].

mobile ad hoc networks. We study the network layer notion Since the network settings considered in these works are
it was shown that the per-node capacity of a random wireledsthe node mobility has on the delay-capacity trade-off. Fo

; ; 1 ; example, both [8] and [13] study the i.i.d. mobility model,
network with static nqdes scales &s Vnlogn /! provided qyt the trade-offs reported in these works are quite differe
the same power level is used by all the nodes in the netwofK. : ; . o
N’ particular, in [8], the authors consider a cell partiton

Recent works [2], [3] have shown that a per-node capaciljc])é ; D
: twork setting and show that the trade-off< © (£), where
of ©(1/4/n) can be achieved when the nodes are allowed B is the average packet delay aids the average per-node

exercise power control. throughput, is both necessary as well as sufficient undér the
Grossglauser and Tse [4] have shown that significant gains. -y ’d | - J
: : . - g. Under a less restrictive network setting in [18p t
in the per-node capacity can be obtained by exploiting the ) ) 3 Dlog® n
mobility of the nodes in a mobile ad hoc network. In particulad€lay-capacity trade-off is shown to b < © ( === ).
they proposed a 2-hop relaying scheme, and showed that tHidiHS, we see that the delay-capacity trade-off dependsipt o
scheme can achieve a constant per-node capacity, which Q@ééhe nature of the node mobility, but also on the network
not vanish as the number of nodes grows arbitrarily large. TREWNG.
delay related issues were not addressed in [4]. The main insight we provide in this paper is that there
Since both capacity as well as delay are important frora a critical value of delay (henceforth denoted bxtical
an application point of view, a significant effort has retgnt delay), below which, the node mobility cannot be exploited for
been devoted within the networking research community bmproving the capacity. We also show that the critical delay

understand the delay-capacity relationship in ad hoc nétsvo depends on the nature of the node mobility, but not so much



on the network setting. In terms of the notion of criticalalel 2-hop delay in section Ill. We study the critical delay and 2-
(see section Il for a rigorous definition), some recent itssuhop delay under the hybrid random walk models in section 1V,
in the literature can be summarized as follows: and under the discretized random direction models in sectio
« The critical delay under the Brownian motion model an¥- A discussion on the implications of our results for large
random walk model is roughl@(n)* (see [14], [15]). mobile ad hoc networks is provided in section VI. Finally, we
« The critical delay under the random way-point mobilitgnd this paper with some concluding remarks in section VII.
model is roughly®(y/n) (see [12]).
« The critical delay under the i.i.d. mobility model &(1)
(see [13)]). A. The Network and Transmission Model
Observing the above results, it is natural to ask: (i) How We consider an ad hoc network consisting 1ofmobile
representative are the above mentioned mobility modeis? (lodes, distributed uniformly on a unit square. We consider
Can the critical delay and, in general, the delay-capaci@yhomogeneous scenario in which each node generates traffic
relationship be significantly different under some other-m@t the same rate. Further, we assume that each node, say node
bility model? (iii) How does the critical delay scale in a lreai, generates traffic for exactly one other node, say ni(dg
network? This paper makes the following contributions taivaand that the mapping — d(i) is bijective. We also assume
answering these fundamental questions: that the packet arrival process at each node is independlent o
« We propose and study a family dfybrid random walk the node mobility process. S
models and show that they exhibit a continuous range T"€ communication between argource-destinatiorpair
of critical delays in-between those of the i.i.d. mobility@n Possibly be carried out via multiple other nodes, aaisig
model and the random walk mobility model. In particulaffélays. That is, &ourcenode can, if possible, send a packet
for every3 betweert) and1, there exists a mobility model directly to itsdestinatiomode; or, the source node can forward
in the family of hybrid random walk modelfor which the packet to one or morelay nodes; the relay no_des can also
the critical delay is roughlyd(n?). As expectedg = 1 forward the packet to othe.r relay nodes_; and finally, a rela_ly
corresponds to random walk mobility model, afid= 0 nodg or the source node itself can deliver the packet to its
corresponds to the i.i.d. mobility model. destination node.

« We propose and study a family afiscretized random  For simplicity, we assume that the success or failure of
direction modelsexhibiting a continuous range of crit-2 transmission between a pair of nodes is governed by the

ical delays in-between those of the random way-poiMOtOCC)' model of [1]. LetV" be the bandwidth of the system
mobility model and the Brownian mobility model. Inin bits per second. LeX; denote the position of node for
particular, for everya between0 and 1/2, there exists ¢ = 1..n, at timet. Under the protocol model, nodecan
a mobility model in the class ofliscretized random communicate directly with nodg at a rate of /W bits per
direction modelsgfor which the critical delay is roughly second at time, if and only if, the following interference
©(n!/2+). Note thata = 0 corresponds to the randomConstraint is satisfied [1]:

way-point _mobility_ model, andv = 1/2 corresponds_ to d(Xf,th) > (1+ A)d(XZ,th) 1)
the Brownian mobility model. These models approximate

the motion of the nodes under the commonly used randd@f every other nodé # 4, j that is simultaneously transmit-

direction models in the literature (see, for example, [16]§ing. Here A is some positive number; ané(z,y) denotes
and are simpler to analyze. the Euclidean distance between pointgy; € R?. Note that

An interesting feature of the above classes of mobility nede©" @ packet to be successfully received by nofethe

is that all of them incur a delay of rough(n) under the 2- above interference constraint must be sat|sf_|ed over t.heeent
hop relaying scheme; which is in line with the other mobiligfuration of the packet transmission from nade node;.
models considered in the literature. Our results theresbosy  We use the following definition of throughput: Leg(?)
that the mobility models considered in the literature are f¢ the total number of bits delivered end-to-end for source-
some sense extreme: they either exhibit the smallest afritid@stination paii upto timet, then the throughpux(n) of the

delays (i.i.d. mobility model and random way-point molilit SYStem is given by

Il. THE MODEL

model) or the largest critical delays (Brownian motion mode (D)
and random walk mobility model), among the mobility models A(n) = liminf S
in their respective classses. oo it

The rest of the paper is organized as follows. We introducenext we describe our mobility models, starting with the
the hybrid random walk modelanddiscretized random direc- ,yprid random walk models.

tion models and discuss our network and transmission mode
in the next section. We define the notions of critical delag arB. Hybrid Random Walk Models

. . , These models are parametrized by a single paramgter

*Note that in [14], the results are stated in terms of the wagaparameter hich tak | b d1/2. Th . .
o2(n). We have set2(n) = 1/n for the sake of easy comparison with theW_ _'C ta_ es values betweeh and 1/2. e unit square 1Is
other results. divided into n?® squares of ared/n?’ each (henceforth
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Fig. 1. The figure shows the division of the unit square infis@nd subcells Fig. 2. A numbering of cells on a 2-d torus.
and also the motion of a node under the hybrid random walk iode

to account for this “shrinking” of the neighborhood size, we
referred to as cells), resulting in a discrete torus of sizzale the node velocity &3(1/+/n). Note that, alternatively,
n® x nf. Each cell is then further divided inte' ~2” square one could scale the area of the network in proportionnto
subcells of areal/n eacH, as shown in Fig. 1. Time is while keeping the velocity of the nodes fixed.

divided into slots of equal duration. At each time slot a . . . N
. : I Next, we describe the discretized random direction models,
node is assumed to be in one of the subcells inside a Cﬁle

Initially, each node is equally likely to be in any of the at we study in this paper. As discussed before, these mod-

subcells, independent of the other nodes. At the beginniﬁ?egtﬁggorﬁ'(%aeﬁ tgﬁdg?gogrﬁglé?ﬁonsgzizinder the random

of a time-slot, a node jumps from its current subcell to one
of the subcells in an adjacent cell, chosen in an uniformly. Discretized Random Direction Models
random fashion. By adjacent cell we mean the following: Let These models, like the random direction models, are

(i,4) : 4,5 = 0,1,...,n° — 1, be a numbering of the cells of parametrized by a single parameter which takes values
the 2-d torus, as shown in Fig. 2. The cells adjacent to c@lbtweery) and1/2. The unit square is divided inte?* squares
(i,7) are the cell{i+1,j), (i—1,7), (1,j+1), and(i,j—1),  of areal/n2* each (henceforth referred to as cells), resulting
where the addition and subtraction operations are perfdrmg 3 discrete torus of size® x n®.

modulon”. Note that for3 = 0, the above mobility model  Time is divided into slots of equal duration. At the begirgin
is essentially the i.i.d. mobility model considered in [BI3], of a time slot, each node jumps from its current cell to an
[10]; and for 3 = 1/2, it is the same as the random walkadjacent cell, chosen uniformly from within the set of aejatc

model of [9]. o cells. The motion of a node during the time slot is as follows:
Next, we describe the random direction models (see, fphe node chooses a start and end point uniformly from within
example, [16]). the current cell. During the time slot, the node moves from

the start point to the end point. In order to keep the duration
of all time slots the same, the velocity of the node is chosen

These models are parametrized by a single parametery, pe inversely proportional to the distance between thet sta
which takes values betwe@nand1/2. The initial position of 4.4 the end point.

each node is assumed to be uniformly distributed inside the;, view of Remark 1, the duration of a time slot should
unit square. The motion of each node under these mOdelS‘b'éS@(nl/Qfa)_ In order to be able to compare these models

indep_end_erjt anc_i identicgl to the other nodes_. The motion_omh the Brownian motion model of [11], [14], we consider
node is divided into m_ultlp_le trips. At the beginning of aptri o2 = 1/n, wheres? is the variance parameter of the Brownian
the node chooses a directiéruniformly between(0, 2], and  otion model, as defined in [11], [14]. Note that with the
moves a distance of ™ in that direction, with a speed., apove choice ofs? and v,, each node moves an average
and the process repeats itself. Note that we are assumingigance of©(1/,/n) in unit time, under all these models.
complete warp-around of the unit square (see Fig. 3). Also observe that under these settings, the discretizebran

Remark 1. In the rest of the paper, we consider, = direction model witha = 1/2 degenerates into the random

O(1/+4/n), as in [12]. This particular choice of node speed igvalk model, which is the discrete time version of the Browmnia
motivated by the fact that we keep the network area fixed af@tion model.

let the number of nodes increase to infinity, which means thaj||. preLiMINARIES: CRITICAL DELAY, 2-HOP DELAY,

the average neighborhood size scales&¥d/y/n). In order SCHEDULING SCHEMES

C. Random Direction Models

tThroughout this paper we ignore the issues pertainingo?, n2% not In this section, we build the platform required for the study
being perfect squares. of the critical delay in the subsequent sections. We firgt sta



4\‘\ Remark 4. From the above definition, it is clear that the
[T \j | larger the class? is, the smaller the critical delay would be.
L / Ideally, one would like the clasg to include all possible
~ / scheduling schemes. In that case, if the delay that can be
/ 3 tolerated is smaller than the critical delay for a given miapi
S R Il model, then one cannot exploit the node motion under that
| mobility model to increase the throughput capacity (in arde
A N sense) beyond its value under static conditions.

fo Henceforth, we will denote bg-hop delaythe delay under
/ j ! the 2-hop relaying scheme. Observe that the trade-off ktwe
(! the delay and the capacity exists for delay values that are
greater than the critical delay, and smaller than the 2-tetgod
Fig. 3. The figure shows the motion of a node under the randoectiin ~ Next, we introduce two key notionéirst hitting timeand the
model. first exit time which will be used to study the 2-hop delay and
critical delay, respectively.

- _ o " We start with some notation. Let denote the unit square
by providing a rigorous definition of the critical delay andcentered at the origin, and lety be two points insides. We

motivating its study. _denote by[z] the set of pointgz — 1,2,z + 1}, and define
It is now well known that the per-node throughput capacity
of static ad hoc networks scales@sl /+/n), with the capacity d(lz],[y]) = min_d(@i,y;).

achieving scheme being the famous multihop relaying scheme @i€lalus€ly]

Grossglauser and Tse [4] showed that a constant throughp& denote byB(z,r) the set of pointg inside S such that

per-node can be achieved under any stationary and ergodiie], [y]) < 7. Let X! denote the position of the nodeat

mobility model which preserves the uniform distribution ofimet, under some mobility model. Note that the indecould

the nodes at all times. The delay performance of the capadiijher be continuous or discrete, depending on the mobility

achieving 2-hop relaying scheme of [4] has been studied fimodel. We are now ready to define the notion of the first exit

many recent works [8], [9], [13], [11], [12], [15], and thelp time:

relaying scheme has been shown to incur an average delasafinition 2 (First Exit Time). Let X0 = z. The first exit

about®(n) under many different mob_|I|ty models. Alternatlveti_me of B(z, ), denoted byr., is given by:

schemes that provide a throughput in between that of multi-

hop _relaying and 2—hop. relaying _have also been stu_dieq in 75 = inf{t > 0: X! ¢ B(x,r)}.

the literature, under various mobility models. The objexti

of these schemes is to provide better delay performance thaft should be clear from the above definition that the statisti

the 2-hop relaying scheme by compromising the throughptal proprieties of the exit time do not depend on the choice of

capacity. An important quantity to study in this respect lsaiv the pointz and nodei. Also note that the notion of exit time

we call the critical delay, which we next define: is well studied in the mathematics literature, under a tgrie
of contexts. Our interest in notion of exit time stems frora th

Definition 1. Let ¢ be the class of scheduling and relaying, . that it has a close connection with the critical delalyiol
schemes under consideration, and IBf, \. be the average will be exploited in the subsequent sections.

delay and the per-node throughput, respectively, undeesen  \ye il next define the first hitting time. In our case, we
¢ € ¢. The critical delay under the class of schemés fing it more convinient to define it in discrete time. In order
denoted byDy, is the minimum average delay that must bgy 4o so, we need some more notation. x&tt) be a Markov

tolerated under a given mobility m_odel in order to achieve gnain on state spac® with stationary distributioil. We have
per-node capacity ab(1/y/n), that is, the following definition:

Dy = inf D.. 2 irst Hitting Ti irst hitting

¢ e (2)  Definition 3 (First Hitting Tlme). The first hitting time for
the set of stategl is given by:

Remark 2. Note that the requirement af(1/,/n) capacity in 4.

the above definition is to ensure that the asymptotic thrpugjh Ty = inf{t > 0: X(t) € A},

is above that of static ad hoc networks. with X (0) being distributed according tl.

Remark 3. Note that each schemein the class of schemes Again, we would like to point out that the notion of the
¢ is actually sequence of schemgs wherec,, is the scheme first hitting time has been widely studied in the mathematics
used withn nodes in the network. Similarly\. and D. are |iterature, under many different contexts. As will be dissed
also sequences rather than numbers. The infimum in Eq.(g) subsequent sections, the first hitting time has a close
should therefore be interpreted as a sequence of infimurggnnection with the 2-hop delay as well as the critical delay
one for eachn. This connection has been exploited in several recent works



for estimating the 2-hop delay under various mobility msdel We use the word “immediate” to emphasize that capture can
(see, for example, [12], [14]). be carried out (using multihop relaying or long range wissle
Next, we recall the result concerning the first hitting timéroadcast, if required) at a much faster time-scale than the
for a single state in case of a 2-d torus of siZe x y/n (for node mobility, and the same is true of the replication preces
a proof see, for example, [14]): as well. The reason for this is that the packet transmission i

Lemma 1. Let H denote the first hitting time for a single Stateusually carried out at a much faster time scale than the node

i . - mobility, and as a result the change in the position of a node
on a 2-d torus of size/n x /n, thenE{H} = O(nlogn). during a packet transmission is often negligible.

The above result will be used quite often during the analysisNote that almost all scheduling schemes that have been
in subsequent sections. studied in the literature satisfy Assumption A [4], [9], [812],

We now define the class of scheduling schemes that \e1], [10], [13], [15]. The reason for this, we believe, isitlin
will study in this paper. The only restriction we place on oug distributed system, where nodes make replication derssio
scheduling schemes is the following: and capture decisions without any knowledge of the decision

Assumption A: at the other nodes, restricting the replication decisioms t

« Only the source node is allowed to initiate a replicationhe source node is a natural way tmntrol the number

that is, the relay nodes holding a packet act allowed of copies of a packetNote that higher redundancy implies
to initiate a replication. smaller throughput. The source node of a packet is in the best
Note that almost all scheduling schemes that have beendzongiosition to control both the total number of replicationgtod
ered in the literature satisfy Assumption A. To understdmsl t packet and the number of relay nodes getting a copy of the
we must elaborate on the notion of replication. Bplication packet with each replication. If the relay nodes were alkbwe
we mean packet duplication, that is, creating redundariesopto initiate replication, then additional cooperation amdhe
of a packet. This is different from multihop relying where aelay nodes would likely be required in order to limit the
single copy of a packet exists in the network. It is important number of replicas of a packet. An interesting example of
note that the notions akplication andrelaying are different, this would be the scheme of Bansal and Liu [5], where the
even though both involve forwarding packets to other relaglay nodes know the location of the static destination node
nodes. To understand this, suppose nodecides taeplicate and also have some knowledge of the future direction of other
a packet at nodej; then nodei can either transmit the relay nodes’ movement, based on which they caoperate
packet directly to nodg; or use multihop relaying, where theto make selective and more efficient replication toward the
packet reaches nodg through multiple intermediate nodesdestination. Whether such a scheme can be devised for an ad
Note that, if asked by nodé the intermediate nodes mayhoc network with mobile source-destination pairs is still a
also keep a copy of the packet with them, and in that casgen research challenge.
all of them are considered to receive the packet due to the
samereplication decision initiated by nodeIn this example, V. CRITICAL DELAY AND 2-HoP DELAY UNDER HYBRID
although both nodéand the other intermediate nodes forward RANDOM WALK MODELS
the packet to other nodes, their roles are different. Notse
the one thatnitiates the replication, while the intermediate
nodespassively followthe instructions of nodé. Thus, we
see that Assumption A only prohibits relay nodesiriiate
replication and, in particular, multihop relaying is alled
under Assumption A.

We also allowimmediate capturef the destination using Recall that the critical delay is the minimum delay that must
multihop relaying or long range wireless broadcast, at ang t be tolerated in order to achieve a throughputudfl /\/n).
during the replication process. Note that by capture we meblext, we develop lower bounds on the critical delay for the
the successful delivery of a packet to its destination nodeybrid random walk models. Observe that fér= 0 (which
Although we allow for other less intuitive alternatives, an corresponds to the i.i.d. mobility model) we have the tfivia
typical scheduling scheme a successfaptureusually occurs lower bound ofl on the critical delay. Further, it has been
when a relay node holding the packet comes within a smahown in [13] that a throughput of roughl@(l/nl/3) =
area around the destination node, so that fewer resoureeswal/+/n) can be achieved with a constant average delay under
needed to forward the packet to the destination. For examglee i.i.d. mobility model, which implies that is also an
a relay node could enter a disk of a certain radius around thgymptotically tight bound (in order terms).
destination, or a relay node could enter the same cell as thén the sequel, assume therefore that 0. The main idea is
destination. We call such an area tba&pture neighborhoad to show that if the average delay is below a certain valuey the
The purpose ofreplication is to reduce the time before aon average the packets travel a distanc® @f) using wireless
successfutaptureoccurs (since with more nodes holding théransmissions before getting delivered to their corredpan
packet, the likelihood of one of them capturing the desitimat destination nodes; and then to show that under the protocol
sooner is higher). model, this results in a throughput 6f(1//n).

In this section, we study the critical delay and the 2-hop
delay under hybrid random walk models. We first study the
critical delay.

A. Critical Delay



a probability of at least

4 4
l-n-— =1——,
n n

none of then nodes in the network will exit the disk of radius
1/8 2(:ﬁentered around its initial position at timéefore timet+
wﬁw Let.S” and D’ be the positions of the source and the
destination, respectively, for which the distance betwten
source and the destination at timé minimized (see Fig.4).
Let the destination be captured by the relay nedand letR
be its position when it receives the packet in considergter
Fig.4). Assuming that the total time spent in the replicatio
(which resulted in the relay getting a copy of the packet) and
capture iso(n??/logn), the contribution of node movement
during the replication and capture phase in carrying thégtac
Fig. 4. The figure shows Disks A and B of radiug16 centered at toyard the destination would k€1), and can be ignored. Now
(—1/4,—1/4) and (1/4,1/4), respectively, that are used in the proof of ~ . . .

a simple geometrical argument shows that in order to reach

Lemma 3. ’ 4 )
the destination, the packet must be relayed over a distaince o
at least 1 ) 1 ) 11 ] 1
Recall the mobility model described in section 1I-B. Let V2 16 g 8 -
be the first exit time in case of a hybrid random walk 1 .
where the term—- — 2 . 15 corresponds to the minimum

modeI with parametes. We start by establishing the following

lower bound Onrl/; that holds with probability approachmgposs'ble distance between the source and the destination at

i i i /.
1 asn — oo. The proof is available in Appendix IX-A. time ¢, that is, the distance between the poifitsand D’; the
term2- 1 g corresponds to the maximum distance the source and

Lemma 2. For 0 < 8 < 1/2, we have the destlnatlon can possibly travel toward each other batwe
" 0268 4 time {t t+ %T, and the term corresponqls to the _
P (TE 5 < m) < ok maximum distance that the relay node can possibly move in

the direction of the destination after it receives the paeke
n28
Now we are ready to show that if the average delay efore timet + 57—

smaller than%{&m, where f, = 1/2400, then, on average, By choosing, large enough, we can ensure thig{1 —
the packets must e relayed o¥@(1) distance. 1/n) > 1/5 for n > N,, and the average distance that the

packets must be relayed over in that case would be no smaller
Lemma 3. Consider a network withn nodes moving in inan
accordance with a hybrid random walk model with parameter fo 1 _fo
8 > 0. If the average delay oﬁf the packets under a scheduling 2 5 10’
. 2 . .
scheme is smaller thag(f;gﬁ, then there existsV, < co  proving the Lemma.
such that for alln > N, we have that the packets must, on

average, be relayed over a distance no smaller tiafi0. Remark 5. Note that in the above proof we assumed that
the total time spent in the replication and capture phase is

Proof: Consider disks A and B of radius/'16, as shown o(n??/logn). This assumption is motivated by the fact that
in Fig.4. Note that according to our assumption in sectien lin most scheduling schemes the replication and capture are
A, the arrival process at each node is independent of the nguaformed using a wireless broadcast or multihop relaying,
mobility process. For a given number of nodeset f,, denote and are therefore carried out at a much faster time-scalentha
the fraction of packets having their sources inside disk 4 athe node mobility. Note also that a packet might be relayed
the destinations inside disk B, at the time of arrival. Sittee over several hops during either the replication or capture
nodes remain uniformly distributed within the subcells t aphase, and for technical consistency, one might then need to
times under our settings, we have tifiat— (({)%)> asn — scale down the packet size in order to keep the total timetspen
co. Thus for alln > N,, where N, is chosen appropriately, in replication and capture phases small enough. This kind of
we havefn > f,. Now since the average delay is smaller thapacket size scaling has been used quite often in the literatu

720{;’8 oz the delay of at least of one-half of such packets mutgee, for example, [10], [9], [13], [15]).
be at most fon?8 n2b We now recall the following result from [14], which shows
f. 20481logn — 1024logn’ that if the packets are on average relayed @ér) distance,

then the throughput capacity must 61
forall n > N,. Consider one such packet; let its time of arrival ghp pacly OeL/ V).

bet. Using Lemma 2 and the union bound, we have that wittemma 4. Suppose that there exists a constant> 0,



independent ofi, such that on average the packets are relayefdr the following factors: (i) the loss in throughput due to
over a total distance no less thanthenA(n) = O(1/y/n).  multiple relayings of the same packet, (ii) the loss in thylou

. ut due to the interference. Using the standard multihop
Remark 6. In [14], the above result is proved under thegcheme, where each hop carries the packet@(e/W)

protocol model discussed before in section II-A. By folfyvi distancé, and noting that the packet travels a distance of

the line of analysis used for proving Theord in [3], it is no more thand(1/n?) using multihop transmissions, it fol-

possible to establish the above result under the genedalizl%ws that the number of times a packet must be relayed is

g?gt(sjlé:sll g]ooddeell (see [3]), which is more realistic than th%(nl/g_ﬁ/\/m)' The loss in throughput due to multiple
' relayings is correspondingl®(n'/>=7/,/logn). Now since
The following result is an easy consequence of Lemmaseach transmission is carried ovex(,/logn/n) distance, it
and 4, and the definition of critical delay. follows easily using the protocol model that the nodes which

. . ._are within ©(y/logn/n) distance of the sender must be
Proposition 1. Under the class of scheduling schemes sat'Sf%épt quite re(sultiﬁg /in)a loss of throughput by a factor of

ing Assumption A, the critical delay for a hybrid random wal
model with parametep > 0 scales as2(n??/logn). E((:jgg@é /Th/_llgz ;?e:tgr(cil;%u:ocr)fﬂsicg a scheme would be

We now derive an upper bound on the critical delay. Note The above discussion shows that the critical delay scales as
that the delay under any scheme that can provide a throuhplftz?® log n) for a hybrid random walk model of parameter
of w(1/4/n) is essentially an upper bound on the criticahlthough, the above arguments are heuristic, they canydaesil
delay. Forg = 1/2 (which corresponds to the random walkmade precise. However, in order to do so, one would need to
mobility model) it is claimed in [9] that a simple modificatio specify the details of the scheduling scheme, which is béyon
of the 2-hop relaying scheme of Grossglauser and Tse dhe scope of this paper.
provide a throughput capacity 0b(1), incurring a delay Remark 7. By choosing the size of the capture neighborhood

of O(nlogn). This result immediately establishes an upper .
bound of O(nlogn) on the critical delay for3 — 1/2. In appropriately (e.g.©(1/logn)), one can show that the criti

. 26
what follows, we consider hybrid random walk model withCal delay is bounded bg (n*" loglogn).

parameter3, for 0 < 3 < 1/2, and show that the critical B. 2-Hop Delay

delay for the model scales &(n*’ logn). In this section, we analyze the 2-hop delay under the hybrid
The idea is to develop a scheduling and relaying schemgdom walk models. Recall that the original 2-hop relaying
that can provide a throughput of(1/\/n), while incurring protocol of Grossglauser and Tse [4] allows only the nearest
a delay of O(n*?logn). In this paper, we only provide the neighbor transmissions. Subsequent works [8], [11], [B5][
main insight behind such a scheme, leaving out the detailp®] have considered a slightly different version of thetpool
analysis for our future work. in which the transmissions are carried out between nodés tha
Consider a scheme in which each packet is replicated ag@ either in the same cell (of siz@(1/y/n) x ©(1//n)),
single relay node, which delivers the packet to the destinat or are within a distance o®(1/,/n) from each other. Note
node once it is in the same cell as the destination nodRat these different versions of the protocol are roughly th
possibly using multihop transmission. Note that such arsehe same, because whennodes are distributed uniformly within
would require an appropriate scaling of the packet size #unit square the nearest neighbor distance is on the order of
ensure that the packet can be delivered to the destinattbimwi 9 (1/,/n).
one slot, i.e., before the relay and the destination canilpigss  Next, we analyze the delay under the 2-hop relaying pro-
move into different cells. We now provide an approximatg@col, assuming that the transmissions are scheduled betwe
analysis of the delay and the throughput for such a schemigdes that are in the same subcell. As in the analysis ofariti
In order to keep our discussion simple and insightful, we wiljelay, we will ignore the queueing delays, postponing their
ignore possible delays due to queueing at the source or Higalysis to future work. Thus we would mainly be interested
relay nodes. More precisely, we will assume that the delay @f estimating the time it takes for the relay node and the
the packet is the time it takes for the relay node to move ingfestination node to come within the same subcell, starting
the same cell as the destination node, starting from the tifggm two randomly and uniformly chosen subcells in the
it receives the packet from the source node. network. Let us denote this random time By In subsequent
Now consider a packet arrival at the source node. Note thatalysis, we will say that two nodes are in a “meeting” if they
since the packet arrival process at each node is indepeatienire currently inside the same cell, and will denote the time

the node mobility process, the source node and the destinathetween successive meetings asititer-meeting time
node are equally likely to be in any of the cells, at the time of Opserve that

the packet arrival. Thus the delay of the packet is of the same 261 28-1vi-1 28_1
order as the expected first hitting time of a single stateagec 1 = 717 -+ (11 +...+7) (1=n®"1)"
of a random walk on a 2-d torus of sizé’ x n®, which, by ®3)

i 2
Lemma 1 'S@(ﬂ g 1_og n). ¥Note that this is the minimum possible order of the commuitoarange
Now for estimating the throughput, we need to accoufd ensuring almost sure connectivity (see [1]).



where 7, is the time required for the nodes to enter thdirection model with parameter. Let the duration of a time
same cell, starting from their initial random and uniformiglot be Cn!'/2=®. For o = 0, one trivially obtains a lower
distributed positions, henceforth denotedfisgt meeting timg  bound of©(,/n) on 7}5(8. Fora > 0, we have the following
and r; for i > 2 are the successiventer-meeting times result, the proof of which follows mutatis mutandis from the
Observe that?’~! is the probability that the nodes choos®roof of Lemma 2:

the same subcell inside a given cell. It is easy to see that
the mean first meeting time is of the order of the mean fir gmma 5. For 0 <a <1/2, we have
hitting time of a single state, in case of a ranodm walk on a b < 14 Cnt/2te > 4

2-d torus of sizen” x nf. Using Lemma 1, it follows that TEo S 1021 logn
E{r} = ©(n?*’logn). Further, the mean inter-meeting times . _ .
It is interesting to note that a similar result can also be

are of the order of the medirst return time(for definition, o . ]
see, for example, [17, Chap 2, p. 2]) of a random walk Onp({oved for random direction models (see Appendix 1X-B):

2-d torus of sizen” x n, which is well known to ben?”.  Lemma 6. Let 7;;/5 denote the first exit time of a disk of

We therefore havéi{r;} = ©(n?) for i > 2. Taking the radius 1/8 for a random direction model with parameter
expectations on both sides of Eq. (3), and performing somgr 0 < o < 1/2, we have

simple algebraic manipulations, we obtain
1/8 Cn1/2+a 4
E{T} = E{n} + E{ro}n'~%’ ¥ (Tw = T68logn 1ogn) <2

n
— 2 26Y,,1-26 , o .
= O(n" logn) + O (n™)n The following Lemma and Proposition can now be proved in
Thus for3 < 1/2, we haveE{T} = ©(n); and for3 = 1/2, @ similar fashion to Lemma 3 and Proposition 1, respectively

we haveE{T} = ©(nlogn). Lemma 7. Consider a network withn nodes moving in
Remark 8. Note that our results for3 = 0 and 5 = 1/2 accordance with a discretized random direction model with

are in agreement with the corresponding results for thel.i.i. parametera > 0. If the average delay of the packets under a
mobility model in [8] and the random walk model in [15].scheduling scheme is smaller thagie——, then there exists
Both these works also account for the queueing delays: In [8), < oo such that for alln > N, we have that the packets
queueing delays at the source nodes as well as relay nodedst on an average be relayed over a distance greater than
are considered, whereas, [15] considers queueing delays f&#/10.

the relay nodes only. It is interesting to see that our sifiguli

_n2'

vsis vield its (i d ; Proposition 2. Under the class of scheduling schemes sat-
analysis yields exact results (in order sense) for two extre isfying Assumption A, the critical delay for a discretized
choices off, i.e., § =0,1/2. random direction model with parameter > 0 scales as
Remark 9. Observe that all hybrid random walk models2(n>*1/2/logn).

incur roughly ©(n) delay under the 2-hop relaying SChemeRemark 10. Analogs of the results in Lemma 7 and Proposi-

bu_t their critical del_a_\ys vary 5|gn|f|cantly. More precigeBs tion 2 can easily be proved for random direction models using
[ increases the critical delay increases as well (roughly as

O(n?8)), shrinking the delay-capacity trade-off region. The emma 6.

two extreme cases being: (i) the i.i.d. mobility model (i.eRemark 11. Note that fora. = 0, using the lower bound of

B = 0), for whichw(1/y/n) capacity can be achieved ever9(,/n) on 7}3/2 and arguing as in the proof of Lemma 7, we
under a constant delay constraint; and (ii) the random walkan easily establish a lower bound 6f(,/n) on the critical
model (i.e.,5 = 1/2), for which the delay on the order ofdelay. Moreover, the same reasoning shows that a lower bound
©(n/logn) or more must be tolerated in order to achieve af ©(,/n) on critical delay also holds under the random way-
capacity ofw(1/y/n). point mobility model. This result was earlier shown in [12],
but under a more restricted class of scheduling and relaying

V. CRITICAL DELAY AND 2-HOP DELAY UNDER . .
schemes than in this paper.

DISCRETIZEDRANDOM DIRECTION MODELS

In this section, we study the critical delay and the 2-hop Next, we will establish an upper bound on the critical
delay under discretized random direction models. As in ttg¢lay. Consider the scheme discussed before in section IV-

previous section, we first Study the critical de|ay_ A. Recall that the packet is replicated to at most one relay
- node, which delivers it to the destination node on entetirgy t
A. Critical Delay same cell as the destination node. The approximate analysis

Recall that the discretized random direction models ao¢ the throughput and delay under such a scheme can be
characterized by a single parameterthat takes values be- carried out following the line of analysis in section IV-A,
tween0 and 1/2. As in the previous section, we will firstand it is straightforward to show that the delay under such
derive a lower bound on the critical delay by lower bounding scheme will bed(n'/?*logn) and the throughput will be
the first exit time for a disk of radiuk/8. Let Tg/i denote the Q(n®~1/2/\/logn) = w(1/y/n) for a > 0. Thus fora > 0,
first exit time for such a disk in case of discretized randothe critical delay is bounded above BY(n'/2tlogn).



Remark 12. One might think that by increasing the size of théme slot, given that they are within the same cell in thatetim
capture neighbrohood tb/n” where0 < v < «, one might be slot. Note that the factor 0®(n'/2~*) comes because the
able reduce the delay belo@(n'/>*logn), while maintain- duration of each time slot is no®(n'/2~®). As in section
ing a throughput of2(1/+/n). This is, however, not possible.IV-B, we haveE{r;} = O(n?*logn) andE{r} = ©(n??).

In fact, it can be shown that with a capture neighborhooBurthermore, it is easy to see that ©(n®~'/?). Thus

of sizer(n) the delay become®(n'/?**log (1/r(n))), and o

the throég&put becom@(l/r(n)g/m). T(hlfS (cr1)c)>i)sing a E{T} = O(n'/***logn) + O(n).

capture neighborhood of size/n” for any v > 0 will not Hence we see th&@{T} = O(nlogn) for a = 1/2, andO(n)
change the order of the delay. Note also that by increasifgr 0 < o < 1/2.

the size of the capture neighborhood@gl1/logn), one can
show an upper bound ad(n'/?**loglogn) on the critical
delay.

Remark 13. Once again, we note that our results far= 0
and« = 1/2 are in agreement with the corresponding results
for the randon walk model in [15] and the random way-point
Next, we considerac = 0. Note that fora = 0, the mobility model in [12]. Both these works also account for the
discretized random direction model is almost the same as #geueing delays: In [12], queueing delays at the source sode
random way-point mobility model, with the only differenceas well as relay nodes are considered, whereas, [15] conside
being that the successive trips (moving between the chosgfieueing delays at the relay nodes only. Again, we see that

pair of points) that a node makes under the discretized randeur simplified analysis yields exact results (in order serise
direction model are independent; whereas, there is som& extreme choices ef, i.e.,a = 0,1/2.

dependency between successive trips in case of the random K b h I di ed d direct
way-point mobility model (since the next trip starts froneth Remark 14. Observe that all discretized random direction

point where the previous trip ends). The random way-poiftCdels incur roughlyS(n) delay under the 2-hop relaying
mobility model has been analyZeéh [12]. In particular, a sche_me; howe\_/er, their critical Q¢Iays vary _S|gn|f|car1WJre
protocol that allows one to trade-off throughput for theagel precisely, asa increases the critical delay increases as well

has been developed in [12], and shown to achieve the fol@wiﬁogghly as ©(n®)), shrinking the_ dela}y-capacity trade-off
delay-capacity trade-off: region. The two extreme cases being:(i}= 0 (random way-

point mobility model), for whickv(1/+/n) capacity incurring
D(n) = O(n/k(n)logn), andA(n) = Q(1/k(n)logn), delays of about9(y/n); and (ii) o = 1/2 (random walk

where D(n) is the average packet delay and thi) is the model), for which the delay on the order 6f(n/logn) or
: : . ore must be tolerated in order to achieve a capacity of
per-node throughput. Following the line of analysis in [121’:;| 1/3/7)
one can show that the same delay-capacity trade-off can as<o '
be achieved under the discretized random direction modhl wi VI. DISCUSSION

a = 0. Now by choosingi(n) = /n/a(n)logn where The main contribution of this paper is the definition and

a(n) — oo asn — oo, (4) study of the notion of critical delay, which provides us with
. - ) ) a platform to compare and contrast several existing mgbilit
it follows that the critical delay i<)(a(n)/nlog”n) for all  models. The notion of critical delay is important as it poes
a(n) satisfying condition (4). In particular, the critical dgla ys a way of determining whether a particular form of node
is o(n?) for anyy > 1/2. mobility can be exploited to improve the throughput capacit
B. 2-Hop Delay under a given delay Cpnstralnt. We also _showed.th.at there
exists a strong connection between the notion of exit tinte an

In this section, we analyze the 2-hop delay under thgitical delay, and used this connection to estimate thcati
discretized random direction models. We will assume that t'EIeIay under various mobility models.

transmissions are scheduled between nodes that are within fne results obtained in the previous sections are sumntarize
distance ofl //n from each other, and will ignore the queuey, Fig 5. Clearly, the mobility models considered in theri-
ing delays. Thus we would mainly be interested in estimatifgre are in some sense extreme: they either exhibit the sstall
the time it takes for the relay node and the destination nodeitical delays or the largest critical delays among all itityb
come within a distance df/ sqrtn of each other, starting from ,54els having roughly the same 2-hop delay. Thus, on one
two randomly and uniformly chosen positions in the networlgyireme, there is almost no delay-capacity trade-off uitier
Let us denote this random time by Arguing as in section grownjan motion model and the random walk model, and,
IV-B, it can be shown thaE{T} = ©(n'/*"*)O(E{7i} + on the other extreme, there is a smooth delay-capacity-trade

E{r2}/p), wherer, is the first meeting timer, is the inter- 4t for a wide range of delays under the random way-point
meeting time; ang is the probability that two nodes will come ygpjlity model and the i.i.d. mobility model.

within a distance ofl//n of each other any time during a  ap, interesting insight provided by our results is that thie-cr

ical delay is inversely proportional to treharacteristic path
§ Although [12] considers a slightly different version of thendom way- Y y prop P

point mobility model on a sphere, the results in [12] can lgase extended Iength By characteris_tic path lengthwe_ me_an the distance
to a 2-d torus. that a node travels without changing direction. (Recalt tha



case of (discretized) random direction model with paramete A Discretized Random Direction Models

«, the characteristic path lengtlis of the order ofn=¢ and n % ————————————— :

the critical delay is roughly of the order of'/2t<)) Thus
in terms of application support, a scenario where the nodes
move over long distances without changing directions (as in
the random way-point mobility model) is more desirable than
a scenario where nodes change directions over short déstanc
(as in the Brownian motion model). This is because the former
scenario provides more flexibility in terms of choosing the
point of operation on the delay-capacity trade-off curved a ‘ .
can therefore support a wider range of applications. 0 I
In a real world scenario, it is rather unlikely that the B—=
(density) number of nodes in the network will have a str0n|_g
influence on the motion of the nodes. We therefore belieyﬁ'dg;n
that a mobility model like the random way-point model might
be more appropriate for determining the sclaing laws faydar
mobile ad hoc networks, rather than a mobility model like theurve; an oppurtunity that must be fully exploited for optim
Brownian motion model (random walk model). We thereforeperation of such networks, possibly using a cross-laysigde
expect that future mobile ad hoc networks would providgpproach.
network designers with ample flexibility in terms of choagin
the desired operational point on the delay-capacity tetle- VIII. A CKNOWLEDGEMENT

curve, and this oppurtunity must be fully exploited for opal e wish to thank Xiaojun Lin for many valuable discussions

operation of such networks, possibly using a cross-laygigde throughout the course of this work.
approach.

or a particular value of

3 Hybrid Random Walk Models

Critical Delay
2

The figure shows the scaling of critical delay in cas¢he hybrid
walk models and discretized random direction models

IX. APPENDIX
VII. CONCLUSION ) ) )
In this section, we provide proofs for Lemmas 2 and 6.

We have studied the delay-capacity trade-offs in mobilge siart with the following simple result that is a version of

ao_l_hoc networks. We int_roduced the meaningful notion ?—ioeﬁding's Inequality (see, for example, [18, Chapter 8, p
critical delay to systematically study how much delay mug_tZO])_

be tolerated for a given form of node mobility to result in an
improvement of the network capacity. The notion of criticdiemma 8. Let X, X»,..., X,, be i.i.d. random variables
delay allowed us to look at various forms of node mobilitjaking values in—Z,1] for 0 < I < oo, and suppos&{X;} =
studied in the literature from a common perspective, and fofor all 4. Let S, = >_"', X; and ¢4 be the variance of
compare and contrast them. Sn- Then ,
We proposed two different classes of mobility models and P(Sy > pos,) <e " /4,
showed that they both exhibit critical delays that are in-
between that of the mobility models studied in the Iiteraturr}Or all 0= p < 205, /1.
thus showing that the mobility models considered in thedite =~ We are now ready to prove Lemmas 2 and 6.
ture are rather extreme. More importantly, we showed that th
critical delay is inversely proportional to the characticipath A Proof of Lemma 2
length, which is the distance nodes travel without changingRecall the hybrid random walk model of section II-B, and
directions. These results, among other things, providesarclthe definition offg/;, given in section Ill. As discussed in
understanding of why is it that the critical delay under theection Ill, the statistical properties of the first exit &ndo
Brownian motion model is larger than the critical delay undenot depend on the choice gf So lety be the origin, that is,
the random way-point mobility model. the point(0,0). Let (zo, yo) be the cell containing the origin.
In a real world scenario, one would expect the number @fiso, let (z;,y;) be the cell in which nodé lies at timet.
nodes or the density of nodes to have little, if any, influemce Further, let
the motion of nodes. Correspondingly, one would expect the

characteristic path length to have a rather weak depenence, 75 £ inf {t >0: (xy —xg) > T—z};

if at all, on the number of nodes or the node density. One

might therefore expect the critical delay in a real world oA inf{t >0 (2 — 20) < _”_ﬁ}.

scenario to be close t6(y/n), as in the case of the random ’ - - 16)’
way-point mobility model. This result is optimistic, sinde andrj,nj be similarly defined withy, v, in place ofz; and

suggests that the future mobile ad hoc networks would pex)vig0
network designers with ample flexibility in terms of choasin
the desired operational point on the delay-capacity t[ﬁﬁe-P(TE{g <m)<P(rf <morr, <mor T; <morr, <m)

, respectively. Observe that



for m > 0. Using the union bound and appealing to thevhere z; are i.i.d.
[-n~* n~?%.
variancen —2%/2. Using Lemma 8, we have

symmetry of node motion, we obtain
P(TE/Z <m) <AP(1}] < m).

Now observe that before tlmei/g z: has the following

form: ,
Ty = X9 + Z Si,
=1

wheres; are i.i.d. random variables taking values{in1,0, 1}
with probabilities{1/4,1/2,1/4}, respectively. Althoughgz;
is not a simple random walk, it is clear due to its symmetry
that the reflection principle for 1-d random walk holds ineas
of z; as well, and we have
nb
>— .
= 16)

for k > 0, where|-| denotes the greatest integer function. Now
since eachs; has meard and variancd /2, a straightforward
application of Lemma 8 gives:

nP
P — >

P(T; §k) =2P <IU€J — I (5)

_n28
< e’512t ,

(6)

random variables taking values in
Note also that each; has mean zero and

7120‘
P(sp > 1/8V2) < e 250k,

for k > n®/8y/2. Using the symmetry of the node motion
once again, we have

7120‘
P(|sx| > 1/8V2) < 2~ %5 .

Noting that the duration of each trip i§n!/2—<, it follows

p (TZ <k cnl/“‘*a) —P (Uf:1|si| > 1/8\/5)

k

)y

i=[n>/8v?2]
2a

< k- 2 3%

2a

< 2~ 2563

where [n?*/8+/2] denotes the smallest integer greater than
n2®/8+/2. Now sincen?® < n for a < 1/2, we have

Cn2@

Plr, < _n1/27o¢ Sn.2673logn:_
768 logn

n2’

for t > n”/16. Substitutingk = % in Eq. (5), and s

combining with Eq. (6), we obtain p (s o COnott/2 - 4
n28 1 B = 768logn ) — n2’
Prf<—-—) <e?8n = — :
¥ = 1024logn ) — n?’ as claimed.
and the result follows by noting that
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