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ABSTRACT
In this paper, we investigate the use of limited infrastruc-
ture, in the form of wires, for improving the energy efficiency
of a wireless sensor network. We call such a sensor network
- a wireless sensor network with a limited infrastructural
support - a hybrid sensor network. The wires act as short
cuts to bring down the average hop count of the network,
resulting in a reduced energy dissipation per node. Our re-
sults indicate that adding a few wires to a wireless sensor
network can not only reduce the average energy expenditure
per sensor node, but also the non-uniformity in the energy
expenditure across the sensor nodes.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; G.3 [Probability and Statis-

tics]: Probabilistic algorithms

General Terms
Algorithms, Performance, Theory, Design

Keywords
Sensor Networks, Graph Theory, Small World Networks,
System Design, and Routing.

1. INTRODUCTION
Recent advances in the MEMS-based sensor technology

and wireless communications have enabled the development
of relatively inexpensive and low-power wireless sensors. The
common vision is of a large sensor network, consisting of
thousands of these tiny devices working in collaboration with
each other, to achieve some common goal. Potential appli-
cations of such networks include habitat monitoring, soil
quality monitoring, detection of hazardous chemicals and
forest fires, military surveillance, monitoring seismic activ-
ity, etcetera.
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There are several challenges that arise in the design of
sensor networks. One of the main challenges is to design
energy efficient sensor networks. This has lead to significant
research at various levels of the protocol stack. At the level
of the physical layer, the researchers are developing low-
power hardware for the sensor nodes [1, 2]. Several power
aware protocols [3, 4] have been developed for the medium
access control (MAC) in sensor networks. In addition to
this, various energy efficient routing, clustering, and data
aggregation protocols have also been developed [5, 6].

The main source of energy dissipation in a sensor node is
the transmission and reception of packets over the wireless
interface. In this paper, we investigate the use of a limited
infrastructure, in the form of wires, for reducing the energy
dissipation in a wireless sensor network. We show that the
wires can be used as short cuts to reduce the average hop
count of the network, resulting in a reduced energy dissipa-
tion per node. We also show that the addition of wires can
significantly reduce the non-uniformity in the energy dissipa-
tion across the sensor nodes. The reduction in the per-node
energy dissipation coupled with more uniform energy dis-
sipation across the sensor nodes, significantly increases the
network lifetime.

Note that in many applications like tracking enemy move-
ments and remote surveillance, it might not be possible to
augment the network with wires. For some other short term
applications, adding wires to the network might be infea-
sible because of the cost involved in wiring. However, for
applications like habitat monitoring (see [7, 8]), which re-
quire long term data collection and dissemination, it might
be economically feasible to augment the network with wires.

Networked Info-mechanical Systems (NIMS), which are
currently being developed at UCLA and partner universi-
ties [9, 10], are particular instances of the type of scenario
we consider in this paper. NIMS infrastructure consists of
a collection of steel cables, each attached to any two points
- buildings, trees, or other natural structures - that serve as
suspension points. The nodes which are suspended on the
cables collect data about the environment through a range
of sensors that can be lowered or elevated; and also move,
activate and recover fixed nodes set along the cable path-
way. They also have the ability to dock when necessary to
recharge their energy source. In addition to these aerially
suspended nodes, which can replenish their energy resources,
NIMS architecture also contains untethered wireless sensor
nodes. These nodes provide access to non-navigable areas.
An efficient use of the infrastructural support along with
the capability to harvest solar energy might possibly elim-
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Figure 1: Complete view of the sensor network

showing the wireless sensor nodes, wires with wire-

less transceivers attached at their ends, and the sink

node.

inate the need for replacement/maintenance of the unteth-
ered wireless sensor nodes in NIMS, and other such hybrid
sensor networks.

The rest of the paper is organized as follows. Our model
and related work are discussed in Section 2. The average
energy dissipation and the non-uniformity of the energy dis-
sipation across the nodes in a wireless sensor network are
the topics we study in Section 3. These issues are further
studied in the context of a hybrid sensor network; for the
static sink node case in Section 5, and for the mobile sink
node case in Section 5. We summarize our main findings in
Section 6, and end this paper with some concluding remarks
in Section 7.

2. MODEL AND RELATED WORK

2.1 Network and Transmission Model
We consider a sensor network formed by n sensor nodes,

distributed uniformly inside a square A of unit area (see
Figure 1). The sensor nodes are equipped with wireless
transceivers, for communication purposes. There is a single
sink node, located arbitrarily inside A. The sensor nodes
as well as the sink node could either be static or mobile.
Although some of our results are proved under static net-
work conditions, they would also hold for mobility models
under which the node distribution remains uniform at all
times. The random walk mobility model, the random di-
rection mobility model, and the random way-point mobility
model (see [11] for a description of these mobility models)
on a 2-d torus or a sphere are canonical examples of such
mobility models.

We consider a homogeneous scenario where all sensor nodes
generate data at the same rate, which is delivered to the sink
node, possibly using multiple hops. For simplicity, we con-
sider a slotted system in which each slot is of duration T
seconds. All the transmissions begin and end at slot bound-
aries. Let τt denote the set of nodes which are transmitting
during the time-slot t. We assume that all transmitters em-
ploy the same power level, P ; and consider a transmission
model which is similar to the physical model introduced in
[12]. Under our transmission model, a node i is capable of
transmitting a packet at W bits/sec to node j during the

time-slot t if, and only if, the SINR at node j is above a
threshold, say β, i.e.,

Pγij(t)

No + 1
L

P

k 6=i,k∈τt
Pγkj(t)

> β, (1)

where γij(t) is the channel gain from node i to node j during
the time-slot t; No is the background noise power; and L
is the processing gain of the system. The channel gain is
assumed to be of the form

γij(t) =
1

dα
ij(t)

, (2)

where dij(t) is the distance between the nodes i and j during
the time-slot t; and typically, α ∈ (2, 6). Since there is
no power control, the per-packet energy spent in the RF
amplifier at the transmitter is PT . Let Eo be the per-packet
energy spent in the transmitter or the receiver circuitry, then

Et = PT + Eo; Er = Eo, (3)

where Et and Er are the per-packet energy spent at the
transmitter and the receiver, respectively.

Note that in the above interference model we assumed
that the network topology does not change during a time-
slot. This is a reasonable assumption since the time-scale
at which the network topology changes, either due to node
mobility or due to node failure, is usually much slower than
the time-scale for a packet transmission. In fact, this as-
sumption is not really essential for the main results of this
paper to hold, however, relaxing this assumption would re-
quire that we carefully look at the node mobility process;
which is not the main goal of this paper.

The infrastructural support is assumed to be present in
the form of wires, equipped with wireless transceivers at
their ends. We assume that the wireless transceivers at-
tached to the wire ends can replenish their energy, like in
NIMS [9, 10], so that there are no energy constraints at
these transceivers. The wires can either be placed in a ran-
dom or deterministic manner. The wire placement schemes
are considered in Sections 4 and 5.

Next, we discuss some related work in the literature.

2.2 Related Work
Our work has similarities to some aspects of the small

world networks that are modeled as a connectivity graph
having the three properties; namely: sparseness, clustering,
and small diameter. Watts and Strogatz [13] were among the
first to show that the addition of a few random connections
(or rewiring of a few local connections∗) to a ring lattice
can make it into a small world graph. Since then, this idea
has become extremely popular, and has been used in many
different contexts, like, for example, in [14] it is used to do
efficient resource query in wireless ad hoc networks. We note
there are some significant differences between our work and
the earlier work on small world networks. Some of them we
list below:

• Since our goal is the optimal network design, unlike
most of the previous works on small world networks,
we do not restrict ourselves to randomly placed short
cuts (wires), i.e., we consider both random as well as
deterministic placement of short cuts (wires).

∗Note that the rewiring can be problematic as it can result
in loss of connectivity.



• For a network to be termed a small world network its
diameter should be on the order of log n or at most
polylogarithmic in n which, under random placement
of short cuts, requires having about one long range
connection (short-cut) per node. As a result, earlier
works on small world networks (see, for example, [15])
have focused on a regime in which there are about the
same number of short cuts as the number of nodes in
the network. However, due to practical considerations,
we are mainly interested in a regime in which the num-
ber of short cuts is much smaller in comparison to the
number of nodes in the network.

Also similar in spirit to our work is the work in [16]. In
[16], the authors investigate the use of a limited infrastruc-
ture for improving the energy efficiency of a wireless sensor
network. To the best of our knowledge, they were the first
to show that a few deterministically placed wired short-cuts
can improve the energy efficiency of a wireless sensor net-
work. Next, we list the main differences between the work
in [16] and that of this paper, thus highlighting the main
contributions of this paper:

• The objective of [16] is to analyze one particular scheme
for placing the wires, whereas, the objective of this
paper is to find out the best possible gains† that are
achievable, given a cost budget; and propose schemes
which can either achieve or come close to achieving
those gains.

• In the scheme considered in [16], all wires originate
from the sink node (which is assumed to be in the
center of the network) and end at points which are
equidistant from the sink node. It is easily seen that
such a wire placement scheme can only achieve a con-
stant factor of reduction in the energy expenditure for
all n, whereas, some of the schemes we propose can
achieve energy savings on the order of

p

n/ log n (see
Sections 4 and 5).

• Unlike [16], we do not restrict ourselves to the static
sink node case.

Several energy efficient routing protocols for wireless sen-
sor networks have been proposed in the literature. Most of
these protocols [5, 6, 17] are based on data centric routing,
and require application awareness. The energy efficiency in
these protocols is achieved by means of data aggregation,
caching, and elimination of redundant packet transfers by
application specific naming of data (meta-data). Whenever
application specific knowledge is available, these protocols
can be used in a hybrid sensor network to further reduce
the energy dissipation in the sensor nodes. In fact, in a hy-
brid sensor network the transceivers attached to the wire
ends can be equipped with a small computing unit for data
compression, a role normally assigned to the cluster heads
in wireless sensor networks (see, for example, [5], [18], [19],
[20]). This can further reduce the energy dissipation in the
wireless sensor nodes. However, this is a topic for future
research; we do not consider it here, in this paper.

Hybrid ad hoc networks have been studied in [21, 22]. Hy-
brid sensor networks differ from hybrid ad hoc networks in

†The “gain” here is in terms of reducing the per node energy
dissipation and the non-uniformity in the energy dissipation
across the nodes.

that the communication scenario in a hybrid sensor network
is many-to-one, rather than the many-to-many communi-
cation scenario, which is typical of hybrid ad hoc networks.
More importantly, in [21, 22], the authors study the through-
put capacity of hybrid ad hoc networks, whereas, we study
the energy dissipation in a hybrid sensor network.

Recently, we have become aware of a related work that
aims to exploit the heterogeneity in sensor networks [23].
The authors identify three common types of hardware het-
erogeneities: computational heterogeneity - some nodes hav-
ing more computational power than the others, link het-
erogeneity - some nodes having a direct and highly reliable
connection to the sink node, and energy heterogeneity - some
nodes having unlimited energy supplies. They then study
the impact of the energy heterogeneity and link heterogene-
ity on the average energy consumption, the network lifetime,
and the end-to-end successful packet delivery rate. We note
that by connecting the (static) sink node to the other parts
of the sensor network using wires (see Section 4), in a certain
way, we are able to exploit both the link heterogeneity as
well as the energy heterogeneity (wireless transceivers that
are attached to the wire-ends can be thought of as nodes hav-
ing unlimited energy supplies and also a direct connection to
the sink node). Although, we do not study the end-to-end
successful packet delivery rate in this paper, it is straightfor-
ward to use our results regarding the average hop count of
the network to bound the end-to-end successful packet de-
livery rate. The work in [23] complements our work in the
sense that they consider realistic MAC and routing schemes
for a specific network setting, whereas, we consider a general
network setting but with ideal MAC and routing. Finally,
our analytical approach allows us to provide results for net-
works of arbitrary (but large) sizes and arbitrary number
of wires, which is not possible under a simulation based ap-
proach, as in [23].

2.3 Notation
We use the following standard notation throughout the

rest of this paper. For f(n), g(n) ≥ 0 for all n,we say that

f(n) = o(g(n)) ↔ lim
n→∞

f(n)

g(n)
= 0,

f(n) = O(g(n)) ↔ lim sup
n→∞

f(n)

g(n)
< ∞,

f(n) = ω(g(n)) ↔ g(n) = o(f(n)),

f(n) = Θ(g(n)) ↔ f(n) = O(g(n)) and g(n) = O(f(n)).

3. ENERGY DISSIPATION IN A WIRELESS
SENSOR NETWORK

We now study the energy dissipation in a wireless sen-
sor network. Consider a sensor network formed by n wire-
less sensor nodes and a single sink node, placed inside the
square A. The sensor nodes are assumed to be uniformly
distributed within A. The position of the sink node can
be arbitrary. The network is divided into square cells of size

a(n) =
q

32 log n
n

‡. Thus there are a total of N (n) = 1/a2(n)

cells in the network. Note that this choice of the cell size is
not arbitrary; the cell size has been chosen keeping in mind
the connectivity of the network, as will become clear shortly.

‡Note that for this partitioning to be meaningful, the num-
ber of nodes must at least be on the order of a few hundred.



All the transmissions are carried out at the same power
level, between adjacent cells; by adjacent cells we mean the
cells which are horizontal or vertical neighbors of a given cell.
We assume that each cell uses the greedy geographic routing
to make the forwarding decisions, i.e., each cell forwards
its packets to a neighboring cell which is “closest” to the
cell containing the sink node. The distance metric used for
picking the “closest” neighbor is the distance between the
center of the neighboring cell and that of the cell containing
the sink node. Note that each cell in the network must
know the location of the cell containing the sink node. If
the sink node is static, its location needs to be flooded in
the network only once to enable every cell to use the greedy
geographic routing. However, with a mobile sink node, the
location information needs to be flooded “every now and
then,” depending on the speed of the sink node. A typical
path taken by a packet from its source node to the sink node,
using the greedy geographic routing, is shown in the Figure
2.

Remark 1. Note that the reason for considering the above
division of the network into cells is to simplify the analysis.
One would expect that our main results should hold even
when the cellular structure is not present and distributed
MAC and routing schemes are used. For example, GFG [24]
or its variant GPRS [25] can be used for routing when the
location information is available; and the scheme presented
in [26] can be used to approximate greedy geographic routing
when the location information is unavailable.

Next, we provide two key results which show that the
nearest neighbor communication scenario along with the
greedy geographical routing can guarantee almost sure deliv-
ery of the packets to the sink node. Unless otherwise stated,
we will consider the nodes to be stationary. As discussed
before, the results can be generalized to the case of mobile
nodes as well. We start with the following Lemma which
shows that if n is large, then each cell contains Θ(log n)
nodes almost surely.

Lemma 1. Let Ni be the number of nodes in cell i. Then,
we have

P

“

lim inf
n→∞

{16 log n ≤ Ni ≤ 48 log n, 1 ≤ i ≤ N (n)}
”

= 1

which may alternatively be stated as: for large n,

{16 log n ≤ Ni ≤ 48 log n, 1 ≤ i ≤ N (n)} almost surely.

Proof. Note that the Ni’s are all Bernoulli(n, 1/N ) ran-
dom variables. For a fixed i, using the Chernoff bound (for
example, see [27], page 68), we obtain

P

„

Ni <
n

2N (n)

«

≤ e
− n

12N(n) (4)

P

„

Ni >
3n

2N (n)

«

≤ e
− n

8N(n) (5)

Combining (4) and (5), and substituting the value of N , we
obtain

P (|Ni − 32 log n| > 16 log n) ≤ 2/n8/3 (6)

Noting that N (n) < n for n > 1, and applying the union
bound, we have

P (|Ni − 32 log n| > 16 log n, 1 ≤ i ≤ N (n)) < 2/n5/3

Sink Node

Figure 2: A typical path taken by a packet from its

source to the sink node.

Now, since
X

2/n5/3 < ∞,

the result follows from the first Borel-Cantelli Lemma and
noting that



lim sup
n→∞

An

ff

=
n

lim inf
n→∞

Ac
n

o

,

for a sequence of events (An)∞n=1.

The next issue we address is how to schedule the transmis-
sions across the network in a way so that they do not inter-
fere too much with each other. Obviously, if the transmis-
sions from various cells were not co-coordinated then some
of them might fail due to the interference from other simul-
taneous transmissions in the network. The following Lemma
provides a transmission schedule in which each cell can suc-
cessfully transmit at least once within a fixed number of
time-slots.

Proposition 1. Under the transmission model consid-
ered in Section 2.1, there exists a transmission schedule in
which each cell can successfully transmit at least once in ev-
ery K2 time-slots; with K > 0 being an integer, independent
of n.

Proof. The proof is constructive; not only do we show
that such a transmission schedule exists, we also construct
one. Our construction is similar to the construction of a
transmission schedule under the protocol model of interfer-
ence in [28]. The idea is to construct equivalence classes of
cells such that all cells in an equivalence class can transmit
simultaneously without interfering too much with one an-
other. Let K > 0 be an integer, to be fixed later. We say
that cell u is related to cell v, denoted u ∼ v, if u and v are
a vertical and horizontal distance of exactly some multiple
of K away from each other. It is easily seen that this is
an equivalence relation; which divides the network into K2

(disjoint) equivalence classes. The shaded cells in the Figure
3 belong to one such equivalence class for K = 4.

Now the scheduling strategy is to allow only the nodes in
one particular equivalence class to transmit during a time-
slot; and to schedule the equivalence classes in a round-
robin fashion during successive time-slots. Clearly, each cell
belongs to some equivalence class, and would therefore get a
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Figure 3: An equivalence class of cells for K = 4.

chance to transmit once every K2 time-slots. Next, we show
that under such a transmission schedule the SINR at each
receiver would be at least β, provided K is large enough.

Consider an arbitrary cell in the network, say co. Consider
a node in co, say node i, transmitting to a node in one of the
adjacent cells, say node j. Let us call all cells at a lattice
distance of lK from co, the level l cells. Let Φl denote the
set of level l cells, and let |Φl| be its cardinality. Clearly,
|Φl| ≤ 4l for all l. Observe that a node which is inside one
of the cells in Φl, is at least at a distance of (Kl− 2)a(n)/2,
from a node that is inside a cell adjacent to co (see Figure
3). Using this, we can bound the interference power at node
j, denoted by I, as follows:

I ≤
b2/Ka(n)c

X

l=1

4 · l · P2α

(kl − 2)αaα(n)

≤ P2α+2

(K − 2)αaα(n)

∞
X

l=1

l1−α

≤ P2α+2C

(K − 2)αaα(n)

where C =
P∞

l=1 l1−α < ∞, since α > 2. Now since i
and j are in adjacent cells, the distance between them is
less than

√
5a(n), and therefore the received power at j is

greater than P/(
√

5a(n))α. Thus, if

K ≥ 2 + 21+1/αC1/α

„

1

5α/2β
− Noa

α(n)

P

«−1/α

,

then the SINR at j would be greater than β. Now if P is
large enough, say P = εNoa

α(n)5α/2β for some ε > 1, then
we see that K can be chosen to be a constant (independent
of n). Since the choice of co, i, and j, is arbitrary, we have
proved our claim.

Remark 2. Using the above scheduling scheme along with
the greedy geographic routing, each packet would almost surely
reach the sink node, thus ensuring the almost sure connec-
tivity of the network (see [29]).

Now we turn our attention to the main topic of this sec-
tion, namely, the energy expenditure in a wireless sensor
network. Let λ packets/s be the common rate of generation
of packets at each node in the network. The per-node aver-
age rate of energy drainage, denoted by E[ED], can then be

calculated as:

E[ED] = λE[H](Et + Er),

where E[H] is the average number of hops, with the average
being taken across all the nodes and across all possible re-
alizations of the random distribution of the nodes. We now
estimate E[ED].

Proposition 2. E[H] = Θ
“

p

n/ log n
”

. Thus, E[ED] =

λ(Et + Er)Θ
“

p

n/ log n
”

.

Proof. The upper bound follows by noting that a packet
generated at any arbitrary node in the network can reach the
sink node in at most 2

p

N (n)− 2 = Θ(
p

n/ log n) hops. In
order to prove the lower bound, observe that for any ar-
bitrary position of the sink node there would at least be
N (n)/4 cells at a distance greater than 1/4 from the cell
containing the sink node. This follows easily by a simple ge-
ometrical argument (see Figure 1). Now, a packet generated

at one of these cells would take at least 1/4a(n) =
p

N (n)/4
hops to reach the destination node. Using Lemma 1, it fol-
lows that almost surely each of these cells would contain
more than 16 log n nodes, for large n. Thus, we obtain

E[H] ≥ N (n)

4
· 16 log n ·

p

N (n)

4n

Noting that N (n) = 1/a2(n) = Θ(n/ log n), the result fol-
lows.

The above Lemma gives the rate of energy drainage av-
eraged across all the nodes in the network. Note that the
rate of energy drainage may not be uniform across different
nodes in the network. Under static conditions, it is clear
that the nodes which are closer to the sink node, will relay
more packets than the other nodes, and correspondingly, will
drain their energies much quicker than the other nodes. In
order to characterize this disparity in the energy dissipation,
we define:

Definition 1 (Energy Dissipation Skew). Let Ei be
the average rate at which the node i drains its energy due to
the transmission and reception of packets. Then, the energy
dissipation skew or the EDS is given by:

EDS = max
i=1,...,n

Ei/ min
i=1,...,n

Ei (7)

The EDS is a random variable whose value depends on how
the nodes are distributed as well as on the position of the
sink node. Clearly, we would like the EDS to be close to 1,
so as to ensure a uniform rate of energy dissipation across
the sensor nodes. However as we show now, the EDS is usu-
ally very high in case of a wireless sensor network, implying
a highly non-uniform rate of energy dissipation across the
sensor nodes.

Consider a wireless sensor network using the adjacent cell
communication scheme discussed above. Observe that in
order to reach the sink node, each packet must pass through
one of the four cells that are adjacent to the cell containing
the sink node, and each of which contains Θ(log n) nodes
almost surely. Note also that the nodes located in one of the
four corner cells are not involved in any relaying. Therefore,
the EDS for a wireless sensor network is Θ(n/ log n) almost
surely.



In the above analysis, we ignored the node mobility; the
node mobility can possibly result in an improvement of the
EDS over long periods of time. But such an improvement,
if any, can only be estimated if complete knowledge of the
motion of each node is available. Since we do not assume any
knowledge of the node mobility process, we will not consider
this issue any further. The EDS we consider should therefore
be interpreted as the worst case or the short term EDS.

In the next section, we will show that both the average
hop count and the (worst case) EDS can be significantly
reduced with the introduction of a small number of wired
short cuts in the network.

4. HYBRID SENSOR NETWORKS: STATIC
SINK

We now study the energy dissipation in a hybrid sensor
network with a static sink node. The sensor nodes can ei-
ther be static or mobile. The problem we consider is the
following: given a budget of l(n) wires per cell, how should
the wires be placed so as to minimize the average hop count
of the network, and to reduce the EDS as much as possi-
ble. Note that our problem formulation is motivated by the
cost constraints that one might have in placing the wires,
i.e., the value of l(n) would typically be dictated by the cost
constraints. It turns out that in order to have non-negligible
reductions in the average hop count or the EDS, l(n) must
be ω(log n/n); that is, the total number of wires, N (n)l(n),
should be an unbounded function of n. Also, due to practical
considerations, we will only be interested in the case where
l(n) = O(1). In particular, we will assume that l(n) < 1 for
all n, i.e., less than one wire per cell on an average.

As far as minimizing the average hop count is concerned, it
is intuitive to believe that an optimal placement of the wires
should have all the wires originating from the cell containing
the sink node. This is indeed the case, as we now show.

Lemma 2. A wire placement scheme which minimizes the
average hop count of the network should have all the wires
originating from the cell containing the sink node.

Proof. We will give a proof by contradiction. Let Υ be
a scheme that minimizes the average hop count of the net-
work. Let cs be the cell containing the sink node (assumed
static). Suppose Υ places a wire between cells u, v 6= cs.
Let dΥ(s, t) be the distance in hops between cells s and t
under Υ. Note that a “hop” could either be a wired hop or
a wireless hop. Without loss of generality, let us suppose
dΥ(u, cs) ≤ dΥ(v, cs). In this case, it is clear that no node
will use the link between u and v, denoted by luv, in the
direction from u to v for routing its packets to the sink node
(as this would increase the number of hops). Let Φ denote
the set of cells which use luv, and let |Φ| denote its cardinal-
ity. Now, consider scheme Υ′ which is obtained from Υ by
replacing luv with a link between v and cs. Also, consider
Υ′′ obtained from Υ by replacing luv with a link between
cells o and cs, where o is a cell which is not connected with
cs under Υ (such a cell always exists since l(n) < 1). Let

Υ′′′ =

(

Υ′, if |Φ| > 0

Υ′′, otherwise.

We claim that the average hop count under Υ′′′ is strictly
smaller than the average hop count under Υ. Note that once

we prove this, we will be done as this would contradict our
initial assumption that Υ minimizes the average hop count
of the network. Let us first consider |Φ| > 0. Observe that
no cell uses luv in the direction from u to v, for routing its
packet to cs. And for a cell, say t, which uses luv in the
direction from v to u, we have:

dΥ′(t, cs) = dΥ(t, v) + 1

< dΥ(t, v) + 1 + dΥ(u, cs) (u 6= cs)

= dΥ(t, cs)

Since |Φ| > 0, it follows that the average hop count under Υ′

is strictly smaller than the average hop count under Υ. Now
when |Φ| = 0, Υ′′ cannot increase the increase the distance
between a cell and cs. Clearly dΥ′′(o, cs) < dΥ(o, cs), and
therefore, the average hop count under Υ′′ is strictly smaller
than the average hop count under Υ.

We know now that in order to minimize the average hop
count of the network, all the wires should originate from the
cell containing the sink node. Next, we determine how much
can one possibly reduce the average hop count and the EDS,
when placing at most l(n) wires per cell on an average.

Proposition 3. Under any wiring and routing scheme
which uses at most N (n)l(n) wires, the average hop count

must be Ω(1/
p

l(n)). Furthermore, if the average hop count

under such a scheme is o(
p

n/ log n), then the EDS must be
Ω(1/l(n)).

Proof. First, let us look at the average hop count. In
view of Lemma 2, we may assume that all wires originate
from the sink node. Observe that the above result is triv-
ial if l(n) = Θ(1), so assume that l(n) = o(1). In this case,

without loss of generality we can assume that 1/4
p

l(n) is an

integer; if not, the proof can be carried out with b1/4
p

l(n)c
in place of 1/4

p

l(n). Now consider clusters of cells with
1/16l(n) cells each, similar to what is shown in Figure 4.
We call such clusters level1 clusters. Observe that for large
n, there would be close to 16N (n)l(n) level1 clusters. Con-
sider groups of level1 clusters, each consisting of 9 level1
clusters. We call such a group a level2 cluster. Note that
a level2 cluster consists of a level1 cluster, along with its
8 surrounding level1 clusters. For large n, the number of
level2 clusters would be close to 16N (n)l(n)/9. Now con-
sider one particular level2 cluster, which does not contain
the sink node. Observe that if none of the cells in this level2
cluster has a wired connection with the cell containing the
sink node, then all cells which are inside the level1 cluster
situated in the middle of this level2 cluster, would have to
route their packets over more than 1/4

p

l(n) hops in order
to reach the sink node. Since there are a total of N (n)l(n)
wires, there would be close to 7N (n)l(n)/9 > 2N (n)l(n)/3
level2 clusters which do not have a wired connection. Noting
that each level2 cluster consists of 9/16l(n) cells, it follows
that the average hop count must at least be

1

4
p

l(n)
· 2N (n)l(n)

3
· 9

16l(n)
· 1

N (n)
=

3

32
p

l(n)
.

This proves our claim regarding the average hop count. Now,
let us look at the EDS. Suppose the average hop count un-
der the given scheme is o(

p

n/ log n). Observe that for
any arbitrary position of the sink node, there would be
at least 7N (n)/8 cells at a lattice distance of more than



Cluster of cells

Figure 4: The clustering and wiring of cells for l(n) =
1/9.

1/4a(n) from the cell containing the sink node. Now since
the total number of wires is N (n)l(n), and l(n) = o(1),
more than 3N (n)/4 of these cells will have no wired connec-
tions. Recalling that the average hop count of the network
is o(

p

n/ log n), it follows that at least N (n)/2 (actually,
close to 3N (n)/4) of these, must be served by a cell having
a wired connection. For if not, then the average hop count
would be more than

N (n)

4
· 1

4a(n)
· 1

N (n)
=

1

16a(n)
= Θ(

p

n/ log n).

Since there are at most N (n)l(n) cells having a wired con-
nection, the EDS must at least be 1/2l(n).

Having established the lower bounds on the average hop
count and the EDS, we now provide a simple deterministic
wiring scheme that achieves those bounds.

4.1 Scheme 1
In this scheme, the wires are placed in a deterministic

manner. For simplicity of notation, assume that 1/
p

l(n) is

an odd integer and
p

N (n)/l(n) is an integer. The scheme
is the following:

• Wire Placement : Group the cells into clusters consist-
ing of 1/l(n) cells each, as shown in the Figure 4. For
each cluster of cells, connect the cell in the middle the
cluster with the cell containing the sink node.

• Routing : Each cell, first routes its packet to the nearest
cell having a wired connection (using wireless trans-
missions), and from there onward, the packet is deliv-
ered to the sink node using the wired connection.

Clearly, the average hop count under the above scheme is
Θ(1/

p

l(n)). Now let us look at the EDS. Observe that all
(1/l(n)) cells inside a cluster route their packets through
the cell situated in the middle of the cluster, having a wired
connection. Note also that the cells at the boundary of
a cluster are not involved in any forwarding. Thus, the
EDS under the above scheme is 1/l(n). These results can

easily be extended to the general case, where 1/
p

l(n) is not

necessarily an odd integer and
p

N (n)/l(n) not necessarily
an integer. In the general case, however, the EDS might not
be exactly 1/l(n); but it will still be Θ(1/l(n)). In view of
Proposition 3, this is the best achievable (in order terms)

EDS and average hop count, under any wiring and routing
scheme which uses at most l(n) wires per cell.

We have so far assumed that each cell (every node inside
each cell) knows the location of the nearest cell having a
wired connection. We now consider a simple protocol which
can be used for maintaining this information in the presence
of node mobility and node failures.

4.1.1 Route Maintenance Protocol 1 (RMP1)
In this protocol, the transceivers attached to the wire ends

periodically send out an advertisement (ADV) packet. The
ADV packet is received by the nodes which are in the same
cell as one of the transceivers. An ADV packet has a hop
count field, which is initially set to 0. Upon receiving an
ADV packet, one of the nodes will broadcast this packet to
the adjacent cells, with the hop count field incremented by
1. We have already seen that the nodes which are present in
one of the adjacent cells can successfully receive the packet
(see the proof of Proposition 1). Each node keeps track of
the neighboring cell (or the next hop) from which an ADV
packet was received; this enables the cell to forward its pack-
ets to the “appropriate” cell when trying to reach the sink
node. This process is continued until the maximum limit on
the hop count is reached. The maximum hop count limit can
be set close to 1/

p

l(n), so as to limit the number of retrans-
missions and at the same time ensure that every cell receives
the ADV packet from at least one wire. Observe that with
the above choice of the hop count each ADV packet is re-
ceived by Θ(1/l(n)) cells, and since there are N (n)l(n) wires
in the network, the total number of transmissions of ADV
packets in the network is Θ(N (n)) = Θ(n/ log n) per up-
date; and the total number of receptions of ADV packets
is Θ(N (n) log n) = Θ(n) per update (note Θ(log n) nodes
receive an ADV packet in one transmission). Thus, the
overall energy dissipation in one route maintenance epoch is
Θ(nEr +nEt/ log n) = Θ(n)§ per update. Note that instead
of every node maintaining the next hop information, the lo-
cation of the cell containing a wire-end can be included in
the ADV packet. With this location information the nodes
can use geographic routing, which is generally more robust
to node failures, to reach the nearest wire-end.

How frequently the ADV packets should be sent would,
in general, depend on the node mobility process as well as
on the lifetime of the sensor nodes. If the sensor nodes are
static and there are no node failures, then it would suffice
to send the ADV packets only once. However, in dynamic
network conditions the overhead of maintaining the routing
information can be significant. There are two possible ways
of eliminating this periodic route maintenance overhead:

1. One-time flooding: All wires flood their location in-
formation in the entire network, and each sensor node
keeps track of this information. Since there are a total
of N (n)l(n) wires, the cost of this one-time flooding
would be Θ(n2l(n)/ log n). One-time flooding can to-
tally eliminate the route maintenance overhead. How-
ever, note that the cost of one-time flooding can be
significant when there are large of wires in the net-

§Note that in a practical setting, an ADV packet would be
much smaller in comparison to a DATA packet, and there-
fore, the energy spent in transmission/reception of an ADV
packet would be much smaller than the energy spent in
transmission/reception of a DATA packet.
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Figure 5: Disjoint groups of cells for l(n) = 1/16.
Each group consists of a cell, along with the first

1/4l(n) − 1 nodes on a shortest path from the cell to

the sink node.

work, and moreover each node must keep track of the
location of all the wires at all times.

2. Greedy geographic routing: Each node directly routes
its packets to the sink node using the greedy geo-
graphic routing. In this case, the nodes only need to
know the location of the sink node. Since the sink node
is static, it is enough to flood the location information
only once, with an overhead of Θ(n).

Clearly, the routing overhead under greedy geographical
routing is much smaller than RMP1 or one-time flooding,
and more over it does not require each node to keep track of
the location of all the wires, as in one-time flooding. Next,
we look at the performance of greedy geographic routing in
terms of the average hop count and the EDS.

Proposition 4. If each node uses greedy geographic rout-
ing to reach the sink node, then under all wiring schemes
which use at most N (n)l(n) wires, for l(n) = Ω(

p

log n/n),
the average hop count must be Ω(1/l(n)).

Proof. We only provide a proof for l(n) = ω(
p

log n/n).

The proof for the case when l(n) = Θ(
p

n/ log n) can be
carried out in a similar fashion, and is omitted. Clearly,
if l(n) = Θ(1), then we have nothing to prove since the
average hop count cannot be any smaller than Θ(1). So
suppose l(n) = o(1). Consider disjoint groups of cells; each
group consisting of a cell at a lattice distance > 1/4l(n)
from the cell containing the sink node, along with the first

1
4l(n)

− 1¶ cells which are on a shortest path‖ from the cell

to the sink node (see Figure 5). For large n, there are close
to 4N (n)l(n) > 3N (n)l(n) such groups. Since there are less
than N (n)l(n) wires in the network, at least in 2N (n)l(n)
groups there are no cells having a wired connection. Ob-
serve that the average number of hops traversed by a packet

¶We are assuming that 1/4l(n) is an integer; if not, the proof
can be carried out with b1/4l(n)c in place of 1/4l(n).
‖By shortest path we mean a path which minimizes the hop
count when there are no wires in the network. Note that
there could be more than one shortest path from a cell to
the sink node.

originating in one of these groups is more than 1/8l(n), and
therefore the average hop count must at least be

2N (n)l(n) · 1

4l(n)
· 1

8l(n)
· 1

N (n)
=

1

16l(n)
,

proving the claim.

The above result shows that there is a price to be paid
for reducing the routing overhead in that the average hop
count becomes Ω(1/l(n)) instead of Ω(1/

p

l(n)). It is easy
to see that if the wires are placed as in Scheme 1, and greedy
geographic routing is used by all the nodes, then the aver-
age hop count as well as EDS are of same order as in a
wireless sensor network. Thus, there is almost no benefit
of adding the wires in this case. Intuitively, this happens
because the packets originating at “most” of the cells end
up following the same path as in the case when there were
no wires in the network. Next, we consider a simple prob-
abilistic wire placement scheme which works well with the
greedy geographic routing.

4.2 Scheme 2
We now consider a simple probabilistic wiring scheme that

achieves the lower bound on the average hop count, given in
Proposition 4. For technical convenience, we will consider a
slightly different constraint on the total number of wires. In
particular, the constraint would be to have at most l(n) < 1
wires per cell on an average, with the average being taken
across all possible realizations of the wiring scheme. The
scheme is the following:

1. Wire Placement : For each cell in the network, con-
nect it with the cell containing the sink node with a
probability l(n)∗∗, independent of the other cells.

2. Routing: Each node uses greedy geographic routing to
deliver its packets to the sink node.

We will now determine what the average hop count and
the EDS are under the above scheme.

Proposition 5. For any l(n) = ω(
p

log n/n), the aver-
age hop count and the EDS under Scheme 2 are Θ(1/l(n))
and Θ(1/l2(n)), respectively.

Proof. The above results are trivial if l(n) = Θ(1); so
suppose l(n) = o(1). Let us first look at the average hop
count. Consider an arbitrary node in the network, say node
o. Let co be the cell containing the node o, and let cs

be the cell containing the sink node. Let No be the ran-
dom variable representing the number of hops required by
a packet to reach the sink node starting from the node o.
Also, let (Ωo,F , P) be the probability space on which the
events associated with random distribution of the wires and
the nodes are defined, and let E denote the expectation un-
der P. Observe that P(No > i) is smaller than the prob-
ability that the first i nodes encountered by a packet do
not have a wired connection with the sink node, that is,
P (No > i) ≤ (1 − l(n))i. Therefore, we have

E[No] =
∞

X

i=0

P(No > i) ≤
∞

X

i=0

(1 − l(n))i = 1/l(n).

∗∗Note that by choosing this connection probability to be
cl(n), for some appropriate c < 1, it is possible to ensure
that the number of wires placed be almost surely smaller
than N (n)l(n), for large enough n.



Since the choice of node o was arbitrary, we have proved the
upper bound on the average hop count. Now for the lower
bound, observe that for any arbitrary position of the sink
node, there are at least N (n)/2 (actually, close to N (n))
cells at a lattice distance more than 1/l(n) from cs. Further,
a packet originating in one such cell, takes at least 1/l(n)
hops to reach the sink node, provided the first 1/l(n) cells on
the path followed by this packet to-wards the sink node do
not have a wired connection with cs; an event of probability
(1 − l(n))1/l(n). Thus, the average hop count must at least
be

1

2
· 1

l(n)
(1 − l(n))1/l(n) ≥ 1

8l(n)
,

for large enough n. Now, let us look at the EDS. We will
first establish the upper bound. Consider any arbitrary cell
in the network, say cell co 6= cs. Note that the probability
that a packet generated inside a cell which is at a lattice
distance of i from co goes via co in order to reach the sink
node is less than (1− l(n))i. Since there are at most 4i cells
at a lattice distance of i from co, the average number of cells
served by co is no more than

∞
X

i=0

4i · (1 − l(n))i ≤ 4

l2(n)

Thus, the EDS is no more than 4/l2(n). For the lower
bound, observe that a packet originating inside a cell which
is at a lattice distance of i from cs must pass through one of
the cells adjacent to co, provided the intermediate cells do
not have a wired connection with cs; an event of probability
(1 − l(n))i−1. Since for any arbitrary position of the sink
node, there are at least i cells at a lattice distance of i from
co, for i ≤ d1/l(n)e††, the average number of cells served by
the cells adjacent to cs is no less than

d1/l(n)e
X

i=0

i · (1 − l(n))i−1 ≥
d1/l(n)e

X

i=d1/2l(n)e

1

2l(n)
· 1

4
≥ 1

16l2(n)
,

for large n. Noting that there are at most four cells adjacent
to cs, it follows that at least one cell in the network must
be serving no less than 1

64l2(n)
cells. Also, since the nodes

inside cs are not involved in any forwarding, it follows that
the EDS must be Ω(1/l2(n)).

Remark 3. We note that there is a gap between the lower
bound on the EDS given in Proposition 3 (Θ(1/l(n))), and
the EDS under the above scheme (Θ(1/l2(n))). We are un-
able to close this gap so far. We suspect that a lower bound
of Θ(1/l2(n)) on the EDS might hold under the greedy geo-
graphic routing.

5. HYBRID SENSOR NETWORKS: MOBILE
SINK

We now study the energy dissipation in a hybrid sensor
network, with a mobile sink node. The setting is almost
the same as in the earlier section, with the difference being
that the sink node is now mobile. Once again, we have a
budget of l(n) < 1 wires per cell, with l(n) = ω(log n/n),
and the objective is to reduce the average hop count and
the EDS as much as possible. However, a little amount of

††Here, we are using l(n) = ω(
p

log n/n).

reflection shows that with a mobile sink node, we can no
longer control the (short-term) EDS. To be more precise,
the EDS would now depend on the motion of the sink node.
The reason for this is the following: since we have a budget
of l(n) < 1 wires per cell, at least 1 − l(n) fraction of cells
have no wired connections. Now if the sink node happens
to be in one of these cells, then the entire traffic must pass
through the four neighboring cells, which contain a total of
Θ(log n) nodes almost surely. Since the nodes, which are
in the same cell as the sink node are not involved in any
forwarding, the EDS would be Θ(n/ log n) almost surely.
Note that this is the same as in the case of a wireless sensor
network. However, it is possible that the motion of the sink
node might result in some sort of equalization in the energy
dissipation of the sensor nodes over time. Since we do not
assume any knowledge of the motion of the sink node, we
will not consider the EDS any further in this section. Our
focus, therefore, would be on minimizing the average hop
count and the routing overhead as much as possible.

In view of Proposition 3, we know that we cannot make
the average hop count any smaller than Θ(1/

p

l(n)). We
now consider a wiring and routing scheme, which is a simple
modification of the Scheme 1 in the previous Section, and
achieves this lower bound on the average hop count.

5.1 Scheme 3
In this scheme, the wires are placed in a deterministic

manner. The scheme is the following:

• Wire Placement : Group the cells into clusters consist-
ing of 1/l(n) cells each, as in the Scheme 1 (see Figure
4). Choose any arbitrary cluster in the network. Let
co be the cell in the middle of this cluster. Connect
the middle cell of each cluster with cell co.

• Routing : All cells first route their packet to the near-
est cell having a wire-end (using wireless transmis-
sions), and from thereon the packet is forwarded to
the cell co, using the wired connection. From the cell
co, the packet is forwarded to the cluster containing
the sink node (using the wired connection), and finally,
the packet is delivered to the sink node using wireless
transmissions.

Clearly, the average hop count under the above scheme is
Θ(1/

p

l(n)). Note that the above routing scheme requires
that:

• All the cells know how to reach the closest wire-end.

• The transceivers attached to the wire that connects co

with the cluster containing the sink node know how to
reach the sink node.

We now discuss one possible way of maintaining this in-
formation.

5.1.1 Route Maintenance Protocol 2 (RMP2)
In this protocol, in addition to the wires sending out ADV

packets periodically, the sink node also sends a HELLO
packet periodically. In addition to the hop limit (which is set

to 2/
p

l(n), in this case), the HELLO packet also contains
a parameter called the LOC. This parameter is initially set
to some arbitrary value by the sink node, when transmitting
within its own cell. One of the nodes who receives this packet



(in the same cell as the sink node), broadcasts this packet
to its neighbors with the LOC parameter set to the location
(or the identity) of the wire-end it communicates with. Note
that in order for the nodes to know this, we also need a LOC
field in the ADV packets, which can be set appropriately by
the wire-end. Any node which receives a HELLO packet,
would broadcast the packet to its nearest neighbors if, and
only if, the hop limit has not been reached, and the LOC
parameter in the HELLO packet matches with the LOC pa-
rameter of the wire-end it communicates with. This will
not only ensure that there are no redundant broadcasts of a
HELLO packet, but also ensure that only the wire-end which
is in the same cluster as the sink node receives the HELLO
packet. This wire-end can simply send the information to
the other wire-end. Note that in this route maintenance
scheme, in addition to the Θ(n) amount of overhead for
forwarding of the ADV packets, there is also an additional
Θ(log n/l(n)) amount of overhead involved in forwarding of
the HELLO packet. However, since l(n) = ω(log n/n), the
overall overhead is still Θ(n).

Note that only one-time sending of the ADV packets would
suffice if the sensor nodes are immobile, reducing the peri-
odic route maintenance overhead significantly. However, in
highly dynamic network conditions, where the sensor nodes
are mobile and fail frequently, the overhead involved in the
above route maintenance scheme can be substantial. We will
now consider a simple wiring and routing scheme, which in-
curs an overhead that is dependent only on the motion of
the sink node, and not on the motion of the sensor nodes or
the failure rate of the sensor nodes.

5.2 Scheme 4
In this section, we consider a simple probabilistic wiring

scheme which is inspired by the work in [15]. For technical
convenience, we will consider a slightly different constraint
on the total number of wires. In particular, as in Scheme
2, the constraint would be to have l(n) wires per cell on
an average, with the average being taken across all possible
realizations of the wiring scheme. Also, for the analysis, we
assume the wires to be simplex, that is, the information can
only flow in one direction inside a wire. Thus, the statement:
cell a has a wired connection with cell b, would mean that cell
a can send data to cell b through this wired connection, but
not vice-versa. Note that this assumption will not change
the order of the average hop count, which is what we are
interested in. We are now ready to describe our scheme.

1. Wire Placement : Consider an arbitrary pair of cells,
say cells u and v. Connect the cell u to cell v using a
wire, with a probability

P(u, v) = l(n)
d(u, v)−κ

P

v 6=u d(u, v)−κ
, (8)

where d(u, v) is the Euclidean distance between the
centers of the cells u and v, and κ is a constant, to be
determined later.

2. Routing: Each node uses greedy geographic routing
to deliver its packets to the sink node. Note that the
frequency with which the location updates need to be
sent, depend only on the motion of the sink node; and
not on the motion of the sensor nodes or the failure
rate of the sensor nodes. Since the sink node is the

one initiating these location updates, the frequency of
these updates can be controlled precisely by the sink
node.

Since the location of the sink node needs to be flooded
across the entire network, the overhead per location update
is Θ(n), which is the same as in RMP2. However, in situ-
ations, where the sink node moves on a much slower pace
than the sensor nodes or if the sensor nodes fail very fre-
quently, one would expect that the overhead under this rout-
ing scheme to be much smaller than in the case of RMP2.

We now study the average hop count under the above
scheme for different values of κ. We directly state the result
in this paper; the proof is available in the longer version of
this paper [30].

Proposition 6. Let E[H] denote the average hop count
under Scheme 4, and let

η = inf



x : lim
n→∞

l(n)

nx
= 0

ff

,

then

1. for κ = 2: E[H] is O(min{(log2 n)/l(n),
p

n/ log n})
and Ω(min{1/l(n),

p

n/ log n});

2. for κ < 2: E[H] = Ω(nδ), for all δ < (2− κ− 2η)/(6 −
2κ);

3. and, for κ > 2: E[H] = Ω(nδ), for all δ < (κ − 2 −
2η)/(2κ − 2).

Remark 4. We note that Proposition 6 extends the re-
sults in [15], where similar results were derived for l(n) = 1.
Also with l(n) = 1, the lower bound stated in Proposition
6 for κ < 2 is tighter than the corresponding lower bound
in [15]. More precisely, arguing as in [15], one obtains a

lower bound of Θ
“

(n/ log n)
2−κ

6

”

on the average hop count,

which is weaker than the bound we obtain for all κ between
0 and 2. The reason for this is that we use a more refined
argument than the one used in [15].

It is easy to see that the average hop count is minimized
when κ = 2. To see this, let us consider l(n) of the form n−c,
for some 0 < c < 1/2. Then, for κ = 2 the average hop count
is O(nc log2 n). Now for κ < 2, we have (2 − κ − 2η)/(6 −
2κ) > c, and therefore, we can choose a δ lying between c
and (2−κ− 2η)/(6− 2κ), and the average hop count would
be Ω(nδ). In particular, it would be ω(nc log2 n). Now, let
us consider κ > 2. In this case, (κ − 2 − 2η)/(2κ − 2) > c,
and a similar argument as above shows that the average hop
count under this case is ω(nc log2 n) as well. Thus κ = 2 is
indeed the best case.

To find out how much “penalty” we might incur on choos-
ing a “bad” value of κ, let us consider κ = 0. Note that,
in this case any two nodes are connected with a probability
that does not depend on the distance between the nodes.
Using Proposition 6, we see that the average hop count for
κ = 0 is close to Θ(nc+1/3). Thus even with c = 0, the

average hop count under κ = 0 is close to Θ(n1/3); whereas,
with κ = 2 it is O(log2 n)!

The main intuition behind the above results is that when
κ is small, majority of short cuts connect “faraway” nodes,
and therefore, most of the packets end up traveling a large



number of hops toward the end of their delivery to the sink
node; when the parameter κ is large, majority of the short
cuts connect “nearby” nodes, and therefore, most of the
packets end up using a large number of hops in order to
reach the sink node; and for κ = 2, it so happens that
there is a nice balance between the number of short cuts
connecting “nearby” and “faraway” nodes, resulting in the
smallest average hop count.

Similar results have been shown to hold under a contin-
uum setting, where the number of nodes as well as the num-
ber of connections (links) per node are unbounded (see [31]).

Remark 5. We note that it is possible to come up with a
deterministic scheme that can achieve an average hop count
of Θ(1/l(n)) under the greedy geographic routing. The pur-
pose of presenting the above scheme is not just to show that
the average hop count close to Θ(1/l(n)) can be achieved un-
der the greedy geographic routing, but also to provide some
insights into what the average hop count would likely be
when the wires are placed in some random fashion. Of par-
ticular importance is the case when one simply throws the
wires without any planning, thereby connecting a pair of cells
with a probability that is independent of the distance between
them. This case corresponds to κ = 0 and, as Proposition 6
shows, it results in a much higher average hop count for the
same number of wires, compared to the case when κ = 2.
Thus we see that the wire placement is crucial when the
greedy geographic routing is being used.

6. DISCUSSION
In this section, we provide a summary of our results. The

following are our main findings:

• If the sink node is static, one can significantly reduce
both, the average hop count and the EDS, with the ad-
dition of a few wires. In particular, with the addition
of Θ(nl(n)/ log n) wires, one can reduce the average

hop count to Θ(1/
p

l(n)), and the EDS to Θ(1/l(n)).
This, however, is at the cost a periodic route mainte-
nance overhead of Θ(n) per epoch. The route main-
tenance overhead can be eliminated, if one is ready to
sacrifice a bit on the average hop count and the EDS.
In particular, we have shown that when the greedy
geographic routing is used, the average hop count is
at least Θ(1/l(n)). We suspect that a lower bound of
Θ(1/l2(n)) on EDS might hold in this case.

• If the sink node is mobile, it is not possible to guaran-
tee any reduction in the (short-term) EDS when the
budget only allows one to place less than one wire per
cell on average. (Having at least one wire per cell,
does not appear to be an economically feasible option.)

The average hop count can be reduced to Θ(1/
p

l(n))
with the addition of Θ(nl(n)/ log n) wires, even in this
case. The periodic route maintenance overhead can-
not be completely eliminated in this case. The reason
being that even with the greedy geographic routing
scheme, any changes in the location of the sink node
must be conveyed to all nodes in the network. Nev-
ertheless, the greedy geographic routing can help re-
duce the overhead significantly under dynamic network
conditions. Once again, the price one has to pay for
reducing the overhead is that the average hop count
becomes Ω(1/l(n)) instead of Ω(1/

p

l(n)).

• If greedy geographical routing is being used along with
a random placement of wires, then it is best to place
the wires in a way so that the probability that a pair of
cells is connected with a wire is inversely proportional
to the square of the distance between the cells.

• If the budget allows placing less than
p

n/ log n wires,

that is, l(n) = O(
p

log n/n), then it is impossible to
reduce the average hop count when the greedy geo-
graphic routing is being used. Thus, in order for the
schemes that use the greedy geographical routing to
be useful, the investment in the infrastructure should
be high enough.

Since both our probabilistic wire placement schemes achieve
an average hop count of Ω(1/l(n)), the reader might think
that no probabilistic wire placement scheme can achieve
an average hop count close to Θ(1/

p

l(n)). This is, how-
ever, not the case. We used the probabilistic wire place-
ment schemes along with the greedy geographical routing
and, we believe, it is the greedy geographical routing which
has resulted in the average hop count being Ω(1/l(n)) un-
der both our probabilistic wire placement schemes. It is
definitely possible to achieve an average hop count close
to Θ(1/

p

l(n)) even with a probabilistic wire placement
scheme. For example, with a completely random placement
of wires, that is, with κ = 0, one can achieve an average hop
count of Θ(log n/

p

l(n))‡‡, provided the packets are routed
optimally as in Schemes 1 and 3. We have not presented
these results here due to space constraints.

7. CONCLUDING REMARKS
We studied the average energy dissipation and the non-

uniformity in the energy dissipation across the sensor nodes
in wireless, as well as hybrid, sensor networks. We defined
a meaningful notion of EDS to study the non-uniformity in
the energy dissipation across the nodes.

In the static sink node case, our results show that a few
wires when placed in an appropriate fashion, along with the
optimal routing of packets, can significantly reduce both,
the energy dissipation in the network as well as the EDS. In
the mobile sink node case, we showed that the advantage of
placing the wired short cuts is limited to reducing the aver-
age hop count of the network, and there is not much that
one can do about the EDS in this case. We also showed
that the greedy geographic routing, although capable of re-
ducing the routing overhead significantly, provides smaller
reductions in the average hop count and (most likely) the
EDS, in comparison to the optimal routing. Thus, there is
a price to be paid for reducing the routing overhead.

We believe that there is a need to understand the fun-
damental trade-off between the infrastructure cost and the
network lifetime in hybrid sensor networks, and we see this
paper as the first step in that direction. Indeed, one would
expect the notions of the average hop count and EDS that
we study in this paper, to play an important role in deter-
mining the network lifetime. We plan to address these issues
in our future work.

There are several avenues for future research in this area.
We considered a homogeneous sensor network with no data
aggregation and clustering; it will be interesting to study

‡‡See [32], for a related result on the diameter of the small
world networks.



other scenarios where the nodes are heterogeneous, possibly
arranged into multiple hierarchies, and data aggregation is
used to reduce the communication overhead. We believe
that our results can provide useful guidelines for placing the
wires even in such scenarios.
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