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Abstract In this paper we consider the problem of providing statistical Quality of
Service (QoS) guarantees defined in terms of packet loss when indepen-
dent heterogeneous traffic streams access a network router of high ca-
pacity. By using a scaling technique we show how this problem becomes
tractable when the server capacity is large and many traffic streams are
present. In particular we show that we can define an effective band-
width for the sources that allows us to map the model onto a multirate
loss model. In particular we show several insights on the multiplexing
problem as the capacity becomes large. We also provide numerical and
simulation evidence to show how the largeness of networks can be used
to advantage in providing very simple admission control schemes. The
techniques are based on large deviations, local limit theorems, and the
product-form associated with co-ordinate convex policies.
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1. Introduction
Quality of Service (QoS) guarantees are going to be distinct features

of the services that users will obtain from next generation high-speed
networks. In the emerging networks, the QoS issue will be much more
complicated since the QoS requirements will differ from user to user. In-
deed networks will need to offer heterogeneous QoS. This is an important
issue due to the fact that QoS based pricing structures are increasingly
being advocated.

One of the challenging problems in networks is to characterize the
admissible region of the numbers of connections or flows that can be
admitted into the network in order to guarantee a given level of Quality
of Service (QoS). QoS is usually specified by loss probability constraints
or bounds on the delays incurred by the bits as they traverse the net-
work from source to destination. There are two approaches: providing
deterministic or statistical guarantees.

Deterministic guarantees are hard guarantees and the analysis is usu-
ally based on a worst-case analysis. When traffic streams are shaped
or their sample paths forced to conform to a given envelope, a power-
ful approach called network calculus Chang, 1998; LeBoudec, 1998 has
been developed. This approach allows us to consider the end-to-end
problem but yields conservative results due to the fact that it is essen-
tially a worst-case approach. Providing statistical QoS is much more
efficient in terms of resource utilization (in this context being able to
support a larger number of flows) and when networks are large they
lead to economies of scale Duffield and O’Connell, 1995. This is the
phenomenon of statistical multiplexing. The maximum number of flows
is limited by the stability requirement that the average total rate of the
flows using a particular resource must be less than the capacity of that
resource.

Figure 1.1 shows the typical scenario when different criteria are se-
lected for admitting users into a network assuming that there are 2
classes of users with a high level of burstiness.

One of the key issues in providing statistical QoS is our ability to
estimate and/or measure packet loss at a network element under gen-
eral traffic assumptions. This is intractable in general except in a few
simple cases. However knowing that the statistical performance require-
ments are fairly stringent, i.e. the probability of packet loss to be in the
range 10−9 − 10−5, implies that we are concerned with the tail probabil-
ity distribution that naturally leads to the study of asymptotics. This
makes the problem more tractable. There are basically two types of
asymptotics of interest: 1) The large buffer asymptotic when there are
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Figure 1.1. Admissible region when using different criteria for the case of 2 classes.

a few traffic streams which share a resource and a given stream can
consume a significant amount of the bandwidth. This scenario occurs
when there is a substantial amount of non delay sensitive traffic, and
2) The many sources asymptotics when many small sources share the
resource. This scenario is of importance in the core of the network or in
MPLS (Multipath Label Switching) when virtual routes are established
within a network and a flows between the origin-destination (O-D) are
aggregated and switched along them. This latter asymptotic is infact an
instance of the so-called statistical multiplexing and is the scenario we
consider.

Large deviations asymptotics have been studied for a number of sce-
narios and by now there is quite a lot of know-how from the analytical
standpoint. For single buffers based on First In First Out (FIFO) dis-
ciplines they can be found in A. Botvich and Duffield, 1995; Choe and
Shroff, 1999; Courcoubetis and Weber, 1996; Likhanov and Mazumdar,
1999. For multi-buffered systems large buffer asymptotics for a priority
model can be found in O’Connell, 1998 while the many-sources case with
HOL priority schemes are reported in Delas et al., 2002. For fair queue-
ing or GPS disciplines large buffer results under restrictive assumptions
on the sources can be found in Massoulie, 1999; Bertsimas et al., 1998
while the many sources case can be found in Kotopoulos, 2000 . In
the FIFO case the delay distributions are readily obtained from the so-
called buffer overflow results. In the HOL and GPS cases it can be shown
the delay distributions when a large number of sources are present are
also closely related to the loss rate asymptotics Shakkottai and Srikant,
2001; Delas et al., 2002. A recent monograph Ganesh et al., 2004 is
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quite comprehensive in discussing the various asymptotics mainly in the
context of single queues.

In spite of the successes in analyzing the single node case in both
the large buffer and many sources contexts, there has been only limited
success at identifying the asymptotics for network models. In general,
only when the input and output rate functions have “linear geodesics”
∗, the end-to-end analysis is feasible by an iterative procedure. This
however is not very useful from the point of gaining insights and to
perform admisssion control. In Ganesh and O’Connell, 1998; O’Connell,
1997, it is shown that in queues with more than one input, the departure
process need not have the linear geodesic property and thus identifying
the rate functions of the outputs explicitly in terms of the inputs is not
easy. However, there has been some partial success in the many sources
case. This is due to the fact that in the many sources context, the re-
sulting measure is a convolution and the buffer occupancy probability
goes to zero even for very small buffers. This result has been exploited
by Wischik, 1999 who has shown that the moment generating function
(m.g.f.) for a single input does not change as it passes through a node
when multiplexed with many similar inputs. Since the m.g.f is the nec-
essary information required to determine the overflow asymptotics, one
can analyze large in-tree networks where each node receives only a small
number of inputs from a large number of other independent nodes. How-
ever, such a situation is of limited scope and not valid in networks where
many flows utilize many links. Eun and Shroff, 2003 recently extended
this result by considering a two-stage queueing system where the first
node serves many flows, of which a certain fixed finite set arrive to the
second node. In this case, the first node can be ignored for calculating
the overflow probability of the second node as the number of flows of the
first node (N) increases. But this result does not hold when the number
of output flows arriving at the downstream node is of O(N). This situ-
ation is however of interest when trying to estimate the end-to-end QoS
in the general scenario described in the beginning. Although overflow
probability still goes to zero at the downstream node, determining the
rate of this decay depends on the particular time scale and on the sample
path characteristics of the output flows from the upstream nodes.

When the buffers are small, it has been shown that the instantaneous
values of the total input rate determine the asymptotics Likhanov and
Mazumdar, 1999; Mandjes and Kim, 2001.

∗This corresponds to the situation where the most likely path of the buffer occupancy process
to an extreme value is a straight line
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This small buffer scenario is actually of much interest in today’s net-
works where buffers are small (in comparison to the server capacity).
This is the essence of the so-called rate envelope multiplexing in
networks (see Roberts, 1998) where buffers are small to absorb local
fluctuations but essentially the network can be modeled by bufferless
nodes. Moreover it is shown in Ozturk et al., 2004 that asymptotically
the admissible region can be computed by only knowing the input char-
acteristics and thus from the point of view of admission control it is
enough to consider a single buffer scenario.

One of the basic issues associated with the connection acceptance
phase is the determination of the bandwidth associated with a given
connection. When the sources are CBR (constant bit rate) this is rela-
tively easy to do because the bandwidth is fairly constant modulo jitter
introduced in the network. However, when source bandwidth varies ran-
domly over the duration of the connection this is much more difficult
given the QoS constraints. Allocating the peak rate for such a con-
nection will negate the gains achievable by statistical multiplexing (see
figure 1.1) while the mean rate would be very poor with regard to packet
loss. This issue has been addressed in the context of effective bandwidths
by Hui, 1988 for unbuffered models and more recently by Kelly, 1996 in
an excellent survey paper. Packet loss is directly related to the number
of connections being carried and thus there is a tight coupling between
the connection acceptance and packet level phenomena. One major is-
sue is the great difference in time-scales and due to the extremely high
bit rates feedback information is not very useful to control bit loss while
feedback is the basic means at the connection level. This coupling leads
to a bootstrapping between open loop and closed loop control i.e. packet
level phenomena impacts the number of connections allowable for which
the a priori statistical information of bit flow must be used and the
number of connections in turn alter bit loss. In this paper we address
this issue and provide a framework in which this procedure can be done
based on apriori information about the arrival rates of connections or
sessions.

The basic aim of this paper is to show how the largeness of network
capacity and the multiplexing of many independent flows can be used
to advantage. It yields simple closed-form results and a very simple
admission procedure based on the notion of an effective bandwidth of
a connection mentioned earlier. This just amounts to approximating
the boundary of the acceptance region by a hyperplane constructed at a
particular point defined by the equilibrium distribution of the set of con-
nections that lead to a violation of the QoS constraints. Moreover, we
show that this is completely determined by knowing their arrival rates
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into the network leading to a more robust procedure since the in classical
effective bandwidth idea the effective bandwidth of sources changes with
the connection mix. We then show some asymptotic properties in that as
the size of the system increases, the effective bandwidths of sources con-
verge to their mean rates. Finally we show the connection of between
the admission control strategy and the problem of estimating connec-
tion blocking which is also an important design parameter called the
Grade of Service (GoS) used in defining so-called Service Level Agree-
ments (SLAs). In particular, we show that the effective bandwidth as
defined in this paper provides the consistent mapping that maps packet
level phenomena to the connection level phenomena in that the most
likely equilibrium state for the blocking coincides with the most likely
equilibrium state for loss.

The organization of the paper is as follows. In Section 1.2 we formulate
the problem and then use recent results from local limit large deviations
to obtain an estimate of connection acceptance region. In Section 1.3 we
develop the notion of the most likely loss configuration and show some
of its properties. Section 1.4 stitches together of the previous results
developed in the previous sections for the CAC scheme. In Section 1.5
we illustrate the application of the CAC procedure on an example with
ON-OFF sources and compare the analytical results with simulations.

2. Problem Formulation and Acceptance Region
Consider a link of capacity C units of bandwidth which is accessed

by M types of independent stationary, ergodic connections or flows. It
is assumed that there are M heterogeneous classes of connections and
a connection of type i; i ∈ {1, 2, · · · ,M} arrives according to a Poisson
process with intensity λi. A source when connected has a certain bit
rate , say, ai(t) ∈ [0,Πi] where Πi denotes the peak rate of the source.
Let ri = IE[ai(t)] denote the mean bit rate.

We assume that the link has a given configuration of the number of
connections of each type being carried at a given time which we assume
is held invariant. We will obtain the bit loss† probability for a given
fixed configuration.

More precisely, suppose that the given link has n = (n1, n2, · · · , nM )
number of connections being carried at time t where ni denotes the
number of connections of type i. Let Xi(t) denote the instantaneous load
on the link due to source i then by definition Xi(t) =

∑ni
m=1 am,i(t) where

†Although in this paper we refer to the flow in bits, the granularity can be taken to be in
packets in which case we have a packet loss measure
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am,i(t) are i.i.d. with common distribution as ai(t) and 0 ≤ Xi(t) ≤
niΠi.

We assume that
∑M

i=1 Πini > C since otherwise there can be no loss.
Furthermore, since we are interested in very small bit loss probabilities
we assume that the average load is less than C i.e.

∑M
i=1 niri < C. The

other situations are not of interest although in principle the development
carried out below can still be done.

Let X(t) =
∑M

i=1 Xi(t) denote the instantaneous load on the system.
Then the number of bits lost during an interval of length T is just given
by: N(T ) =

∫ T
0 (X(t) − C)+dt

Let N1(T ) =
∫ T
0

∑M
i=1 niai(t)dt denote the total number of bits which

are offered to the system in an interval of length T and ai(t) is the in-
stantaneous rate of type i calls which is a r.v. with values in [0,Πi. Then
N(T )
N1(T ) denotes the fraction of bits lost. Since the processes are stationary
and ergodic, by the strong law of large numbers, the stationary bit loss
probability is given by:

IP(bit loss) = lim
T→∞

N(T )
N1(T )

=
IE[(X − C)+]∑M

i=1 niri

(2.1)

where x+ = max{x, 0}.
Now to compute IE[(X − C)+] we need to determine the tail distri-

bution IP(X > x) and this is given by a convolution measure since the
connections are independent. This is extremely intractable in general.

In the sequel we will show that in fact when the size of the system is
large then one can exploit very elegant results from the theory of sums
of independent random variables (termed local limit theorems, which
can be found in Petrov, 1975 or Korolyuk et al., 1985) to obtain explicit
analytical results that are O(1) in complexity.

The notion of a large system can be viewed in many ways. A par-
ticularly attractive way is to view a large system as a scaled version
of a nominal system. More precisely, we scale both the capacity C
and the number of sources {ni} by a factor N i.e. C(N) = NC and
ni(N) = Nni; i = 1, 2, · · · ,M . This scaling keeps the ratio of the num-
ber of sources to the capacity constant. This is a purely analytic device
which will allow us to determine the accuracy of our results.
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Let us now assume the scaled version. Let PN (m) denote the bit loss
probability given by:

PN (m) =
IE[(X(N) − NC)+]

N
∑M

i=1 rini

=

∫P
NniΠi

NC dF (N)(x)

n
∑M

i=1 niri

where F (N)(x) is the distribution of X(N)(t) =
∑M

i=1 X
(
i N)(t) and

X
(
i N)(t) =

∑Nni
j=1 ai,j(t).

We first begin with the following simple result which is a simple con-
sequence of sums of independent r.v’s. The proof is trivial and so we
omit it.

Lemma 2.1 Define η =
∑M

i=1 ξi where ξi are independent r.v’s with dis-
tribution the same as

∑ni
j=1 ai,j(t). Let {ηi} be an independent collection

of r.v’s with the same distribution as η defined above. Then the random
variables

∑N
i=1 ηi and

∑M
i=1 Xi, where Xi are independent r.v’s with dis-

tribution as
∑Nni

j=1 ai,j, have the same distribution.

Remark 2.1 The importance of this result is to convert the summa-
tion with respect to the number of types to a summation in the scale N.
Then noting that the probability distribution of sums of N i.i.d. r.v’s
can be written as the N-fold convolution of the common distribution we
can construct useful estimates based on measure changes and local limit
theorems.

As a result of the above Lemma we can write F (N)(dx) = µ∗N (dx)
where µ(dx) is the measure of η. We can now obtain estimates for the
required loss by now invoking the Bahadur-Rao theorem Bahadur and
Rao, 1960 from local limit large deviations. We state the theorem below
as well as a theorem on local limit large deviations for densities due to
Petrov, 1975.

Proposition 2.1 Let XN =
∑Nm

j=1 Xj where {Xj}Nm
j=1 are i.i.d. r.v’s

with moment generating function φ(h).
Then as N → ∞, uniformly for any u > 0

(Petrov): For all u ∈ (−∞,+∞)

PXN
(Nu)du = IP

(
XN ∈ [Nu,Nu + du)

)
=

e−NI(u)

√
2πσ2N

du

(
1 + O(

1
N

)
)

(2.2)
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(Bahadur-Rao): For u > E[Xi] :

IP
{
XN ≥ Nu)

}
= e−NI(u) 1

τ
√

2πσ2N

(
1 + O

(
1
N

))
(2.3)

where
I(u) = uτ − ni log(φ(τ)) (2.4)

where τ(u) is the unique solution to:

m
φ′(τ)
φ(τ)

= u (2.5)

and

σ2(u) = m

(
φ

′′
(τ)

φ(τ)
−
(

φ′(τ)
φ(τ)

)2
)

(2.6)

I(u) is referred to in large deviations theory as the rate function.

We apply the above result by taking µ = µη where µη is the distribu-
tion corresponding to the r.v. η and u = C. By the definition of η the
moment generating function is given by

φη(t) =
M∏

k=1

(φk(t))nk (2.7)

where φk(t) is the moment generating function of ak.
and therefore

I(C) = Cτc −
M∑
i=1

ni ln(φi(τc)) (2.8)

where τc is the unique (since
∑M

i=1 niΠi > C and
∑M

i=1 niri < C by
assumption ) solution of

M∑
i=1

niφ
′
i(τc)

φi(τc)
= C (2.9)

Using the Bahadur-Rao theorem Bahadur and Rao, 1960 and the
result of Petrov, 1975, we can then show the following result for the bit
loss probability necessary to characterize the acceptance region. The
proof can be found in Likhanov and Mazumdar, 1999; Likhanov et al.,
1996.
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Proposition 2.2 Consider an unbuffered system of capacity NC which
carries Nni ; 1 ≤ i ≤ M independent stationary, ergodic sources with a
source of Type i having instantaneous rate ai(t) which is a r.v. which
takes values in [0,Πi] with mean rate ri = IE[ai(t)] Under the hypotheses
that

∑M
i=1 niΠi > C and

∑M
i=1 niri < C the stationary bit loss probability

is given by:

P (bit loss) =
e−(NI(C)

τ2
c Cρ

√
2πσ2N3

(
1 + O(

1
N

)
)

(2.10)

where:

i) τc > 0 is the unique solution to

M∑
i=1

niφ
′
i(τc)

φi(τc)
= C

where φi(t) is the moment generating function of ai.

ii) I(C) is the rate function given by:

I(C) = Cτc −
M∑
i=1

ni ln(φi(τc))

iii) σ2 is given by

σ2 =
M∑
i=1

ni

(
φ′′

i (τc)
φi(τc)

−
(

φ′
i(τc)

φi(τc)

)2
)

and ρ =
∑M

i=1 rini.

Remark 2.2 If the bit overflow probability is used as the QoS parame-
ter, then the bound is given by the Chernoff bound which is just e−NI(C).
This is the starting point of the approach in Hui, 1988; Kelly, 1996

Examples
We now give explicit relations for some commonly used traffic sources

in applications.

ON-OFF Sources: These are the most commonly used source models
to represent variable bit rate (VBR) traffic. The importance of these
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models is that they serve as worst case traffic for a given set of traffic
models characterized by burst length, peak and mean rates as shown by
Doshi, 1995; Guillemin et al., 2002. Given their importance we provide
detailed expressions for the required quantities.

By definition an ON-OFF source has an instantaneous rate ai ∈
{0,Πi} i.e. it is either OFF (and therefore with rate 0) or ON at peak
rate Πi. Let pi denote the stationary probability that a source is ON,
then ri = Πipi. (Alternatively pi is obtained from the mean rate speci-
fication by the preceeding relation).

For this particular case the instantaneous load on the system is com-
pletely specified by the number of connections which are in their ON
state at a given time. Given the independence assumption on the sources
equation (1.6) in this case reads:

P (
M∑
i=1

Xi = k) =
∑

m∈A(k)

M∏
i=1

(
ni

mi

)
pmi

i (1 − pi)ni−mi (2.11)

where

A(k) = {m :
M∑
i=1

miΠi = k} (2.12)

In spite of the above explicit form the computational complexity re-
mains for large systems. For this model the quantities necessary to
compute the bit loss probability are:

i. φη(t) =
∏M

i=1(pie
tΠi + 1 − pi)ni

ii. τc is the unique solution to

M∑
i=1

nipiΠie
τcΠi

pieτcΠi + 1 − pi
= C

iii. The rate function I(C) is given by:

I(C) = Cτc −
M∑
i=1

ni ln(pie
τcΠi + 1 − pi)

iv. σ2 (variance under the changed distribution)

σ2 =
M∑
i=1

nipiΠ2
i e

τcΠi(1 − pi)
(pieτcΠi + 1 − pi)2
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Uniform sources: These correspond to sources when there is complete
lack of information regarding the bit flow. In particular the probability
that the instantaneous bit flow is equally weighted between all the states
i.e. Fi(x) = x

Πi
for x ∈ [0,Πi].

In this case
i) φi(t) = 1

Πi

(
1−et(Πi)

1−et

)
ii) ri = Πi

2
iii) τc and I(C) can be calculated knowing φi(t)

Markov Modulated Sources: This is also a commonly used source
model where the instantaneous rate ai corresponds to the state of the
underlying Markov chain. In this case pi,j = πi(j) where πi(.) denotes
the stationary distribution of the Markov chain defined on {0, 1, · · · ,Πi}
for source of type i.

Thus we see that the stationary bit loss probability can easily calcu-
lated once the underlying model for the rate process is specified.

In the following subsection we discuss the accuracy of the estimates
obtained for the ON-OFF source model by comparing the results with
those obtained by the commonly used Gaussian approximations as well
as simulations.

2.1 Accuracy of estimates
We now demonstrate the accuracy of the estimate given by Proposi-

tion 2.2 by comparing it with simulation results as well as the a Gaussian
approximation based on a central limit approximation for the convolu-
tion measure.

It is readily seen that the validity of the Gaussian approximation is
completely out of the range of bit loss probabilities we are interested in
i.e. the Gaussian approximation is only useful for relatively large values
of bit loss (in our context when the scale is small). The results reported
are for bit loss probabilities of the order 10−6 since below this level it
is very difficult to obtain any reasonable confidence in simulations. But
even at this level the accuracy of the method proposed is obvious.

In the following example, we set the capacity C = 20 with two classes
of traffic, i.e. M = 2. We use the following data

n1 = 20, n2 = 10, p1 = .275, p2 = .8,Π1 = 2,Π2 = 1

and we use different values for the multiplier N .
Results in Table 1 are given as base 10 logarithms, so the losses are of

the orders 10−5 − 10−2. We note that theorem 1.2 is very precise when
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bit loss is small, which is not the case for the Gaussian approximation.
We have also given the results for based on a simple application of the
Chernoff bound.

N Simulation Chernoff bound Gaussian Theorem 1.2
(99% conf. int.) (overflow prob.)

60 (-3.5,-3,3) -1.4 -4.4 -3.2
80 (-4.0,-3.7) -1.7 -5.0 -3.6
100 (-4.3,-4.0) -2.0 -5.6 -4.0
120 (-4.7,-4.4) -2.3 -6.1 -4.4
140 (-5.0,-4.7) -2.6 -6.7 -4.7
160 (-5.3,-5.0) -2.8 -7.2 -5.1
180 (-5.4,-5.3) -3.1 -7.7 -5.4
200 (-5.7,-5.8) -3.4 -8.2 -5.7

Table 1.1. Example

Let us now note the importance of the bit loss probability estimates
obtained above. For convenience, with regard to Table 1 above, suppose
that ε the bound on the loss probability is required to be ∼ 10−5. The
simulations indicate that with a capacity of 3200 the system can handle
3200 connections of type 1 and 1600 connections of type 2. For this
configuration the Gaussian estimates suggest bit loss of the order 10−7

implying more connections can be admitted while in fact admitting more
connections can only drastically reduce performance. Thus for using the
Gaussian approximation is too optimistic for bit loss. Keeping the num-
ber of connections of Type 1 at 3200 calculations based on the Gaussian
estimate keeping capacity at 3200 for loss probabilities of the order 10−5

gives the number of type 2 connections to be 1680. For this configura-
tion the simulation results with 99% confidence give bit loss estimates
of the order 10−3 which is clearly out of the acceptance region. The
corresponding results using the results of Theorem 1.2 fall within the
margin of error for the simulations. From the values for bit loss using
the Chernoff bound it is readily seen that it is too conservative.

2.2 Acceptance Region
In the development so far we assumed that the configuration of the

number of connections of each type i.e. {ni}M
i=1 is known. We then ob-

tained the approximation to the stationary bit loss probability for a given
configuration. In reality, the arrivals of connections and whether they
are admitted or not implies that the configuration is in fact a random
variable (which depends on the admission strategy).
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Let PN
L (n1, n2, · · · , nM ) denote the bit loss probability for the given

configuration of (Nn1,Nn2, · · · ,NnM ) viewed as a function of the con-
nection configuration. This will allow us to determine the so-called ac-
ceptance region since this mapping defines the bit loss probabilities over
all possible connections. The QoS requirements on the bit loss probabil-
ity are typically of the order 10−6 − 10−9. Let ε denote the QoS bound
on the bit loss.

Define:
Ωε = {n : PN

L (n) ≤ ε} (2.13)

where n = col(n1, n2, · · · , nM ).
Then Ωε defines all possible connection configurations which meet the

QoS constraints and is referred to as the acceptance region.
Let us define the boundary of the acceptance region as

∂Ωε = {n : PN
L = ε} (2.14)

Let us see an important property associated with the acceptance re-
gion. This is the property of coordinate convexity whose definition we
recall below:

Definition 2.1 Let S be the set of all possible configurations. Then
S is said to be coordinate convex if for n ∈ S implies that the vector
n − ek ∈ S for all k; 1, 2, ..,M such that nk > 0, where ek is the unit
vector in dimension M with a 1 in the k′th row and O elsewhere.

Coordinate convexity implies that an arriving connection is accepted
if and only if the new configuration obtained after the addition of the
new connection remains in the set S after admittance. The importance
of the coordinate convexity is that the equilibrium distribution of the
configuration has a so-called product-form Ross, 1995 which we will ex-
ploit in the following section.

Let us now return to the properties of the acceptance region. First of
all it is clear that the acceptance region is coordinate convex under the
mapping of the true bit loss probability. This follows directly since:

nk∑
j=1

aj,k ≥
nk−1∑
j=1

aj,k

where {aj,k} are i.i.d. with common distribution as ak,
Therefore X =

∑M
i=1 Xi stochastically dominates Y =

∑M
i6=k Xi + X ′

k

where X ′
k corresponds to one less connection of type k. Hence P (X >

a) ≥ P (Y > a) for all a from which it readily follows that the corre-
sponding bit loss probabilities will dominate since they are specified by
the complementary distribution.
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We now show that if the result of Proposition 2.2 is used to define the
acceptance region then the resulting region is coordinate convex.

Before proceeding with the proof we let us note a few interesting
properties associated with the size of the system i.e. scaling. For m ∈
∂Ωε a little reflection shows that as the scaling increases, keeping the
QoS constraint fixed at ε implies that the corresponding ni used in the
unscaled system must decrease which implies that τc decreases. In fact
with some further analysis it can be shown that the τc associated with the
measure change goes to 0 at a rate of the order O( 1√

N
). This is important

in the sequel in which we retain so-called significant or dominating terms.

Proposition 2.3 For a given QoS constraint specified by ε, the accep-
tance region Ωε obtained by using the result of Theorem 1.2 for the bit
loss probability is coordinate convex for large systems.

Proof:
To prove this result it is sufficient to show that the following mono-

tonicity result holds:
Let Nn and Nn − ek be two configurations such that nk > 0 , then

P (bit loss/Nn) > P (bit loss/Nn − ek) for k ∈ {1, 2, · · · ,M} for which
nk > 0.

Note for the scaled variables i.e. Nnk the perturbation ek is of order
1
N implying it is small and therefore the above result will be shown by
treating the integer variables n as continuous and then showing that the
partial derivative of the bit loss w.r.t. Nnk is positive (which implies
monotonicity).

Neglecting the O( 1
N ) term in Proposition 2.2 the partial derivative

can be shown to be:

∂P (bit loss)
∂Nnk

= P (bit loss)[−(
∂I(C)
∂nk

+
∂τc

N∂nk
)

− 1
N Den

∂Den

∂nk
] (2.15)

In the above the term Den refers to the denominator of (2.14) and is
given by:

Den =
√

2πNσ(1 − e−τc)2
M∑
i=1

niri

Form the definition of I(C) and τc it can be readily seen that:

∂

∂nk
(I(C) + τc) = − ln(φk(τc) +

∂τc

∂nk
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Noting that τc > 0 this implies that ln(φk(τc)) > 0.
Now from the definition of τc it can be shown that ∂τc

∂nk
is given by the

solution to:

σ2 ∂τc

∂nk
= −φ′

k(τc)
φk(τc)

and since σ2 > 0 it implies that ∂τc
∂nk

< 0.
From the definition of Den we have:

1
NDen

∂Den

∂nk
=

1
Nσ

∂σ

∂nk
+ 2

1
N(eτc − 1)

∂τc

∂nk
+

rk

N
∑M

i=1 niri

In the expression above the first term is O( 1
Nσ4 ) (from the definition

of σ2 and hence under the condition
∑M

i=1 niri < C is bounded by a
constant divided by N. The third term can also be bounded by a constant
divided by N while the second term can contribute significantly when τc

is small since it is of order O( 1√
N

). Hence, for N large we can write:

∂P (bit loss)
∂nk

= P (bit loss)[ln(φk(τc)+
1

Nσ2
(1+

2
(eτc − 1)

)
φ′

k(τc)
φk(τc)

−O(
1
N

)]

where the O( 1
N ) term above is positive but smaller in magnitude in

comparison to the first two terms for large N . This implies that the
positive terms dominate implying that:

∂P (bit loss)
∂nk

> 0

for all nk > 0; k = 1, 2, · · · ,M and hence the proof is done.

Remark 2.3 If the Chernoff bound is used as the approximation then
the coordinate convexity is immediate.

Having established that for large systems the acceptance region is
coordinate convex (as a function of the number of connections) when
the approximation formula is used for bit loss we now are in a position
to further develop the CAC for unbuffered models.

3. Most likely bit loss configuration and its role
Let us recall the model under consideration. A link of capacity NC

is accessed by M classes of independent, stationary, ergodic sources. A
connection of Type i arrives at Poisson rate Nλi; i = 1, 2, · · · ,M and a
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connection once admitted holds the resources for a random time of unit
mean in duration. Once the connection is established, the bit flow is has
a random rate ai(t) as discussed above. The sources are assumed to be
mutually independent.

In the previous section given a configuration (Nn1,Nn2, · · · ,NnM )
we gave an O(1) (in complexity) approximation to compute the sta-
tionary bit loss probability. Throughout this section and the following
sections we assume that the formula given in Theorem 1.2 is used to com-
pute the bit loss probability. We also saw that for large N the acceptance
region specified by the QoS denoted by Ωε is coordinate convex.

For the model above, it is well known that for coordinate convex
state-space the joint distribution of the number of connections under
stationarity is given by the following ”product-form” distribution which
is insensitive to the actual holding time distribution (see Labourdette
and Hart, 1992 for example):

Π(m) =
1
G

M∏
i=1

(Nλi)mi

mi!
(3.16)

where G is the normalizing constant given by:

G =
∑

m∈Ωε

(Nλi)mi

mi!

and m is the vector of the number of connections being held of each
type.

We now restrict ourselves to the set ∂Ωε which we denote as the
boundary states. By definition, ∂Ωε is the subset of states in which
the bit loss meets the constraints exactly and thus correspond to the
allowable states with the maximal bit loss permissible. We now isolate
amongst these states the state with the highest probability of occurring
which we define to be the most likely bit loss configuration i.e.

Definition 3.1 The state(s) m∗ ∈ ∂Ωε given by

m∗ = argmaxm∈∂ΩεΠ(m) (3.17)

is (are) said to be the most likely bit loss configuration(s).

Let PL(Nm) denote the stationary bit loss probability (for the con-
figuration (Nm1, · · · ,NnM ) . Then the most likely bit loss state can be
computed by from the constrained nonlinear optimization problem:

Max Π(Nm) subject to

PL(Nm) = ε
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The above problem is a constrained nonlinear integer optimization
problem. However, due to the size, unit increments are of negligible
relative order and hence we can treat it as a constrained nonlinear opti-
mization problem over non-negative reals. Even so the problem as posed
is formidable. However, we can exploit the fact the for N large we can
approximate the terms by using the Stirling approximation.

Let us multiply the numerator and denominator (i.e. G) in (3.16) by∏M
i=1 e−Nλi . Now neglecting the normalizing factor G (since it is a con-

stant) we can approximate the numerator using Stirling’s approximation
for Nmi by:

M∏
i=1

e−Nλi(Nλi)Nmi

Nmi!
=

M∏
i=1

e−Nλif(βi)

√
2πNmi

(3.18)

where
βi =

mi

λi
(3.19)

and
f(x) = x ln(x) − x + 1 (3.20)

Hence for large N the optimization problem can be written as :

Max

M∏
i=1

e−Nλif(βi)

√
2πNλiβi

subject to

PL(Nλβ) = ε

By introducing the Lagrange multiplier y we can convert this problem
to an unconstrained minimization problem as:

min
M∑
i=1

Nλif(βi) + y (ln PL(λβ) − ln(ε)) −
M∑
i=1

ln(
√

2πNβiλi) (3.21)

Now noting that

ln(PL(λβ)) = −(NI(C)+τc)−ln(
√

2πN3)−2 ln(
√

σ(1−e−τc)−ln(
M∑
i=1

Nλiβiri)

The reason of writing the equality constraint in the variational form
in terms of logarithms is now obvious i.e. to make both terms of the
same order.

For performing the optimization we only retain terms involving m.
Therefore, with the above observation we define m∗ as the vector

which minimizes (neglecting the constant terms i.e. not depending on
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m):

J(Nm) =
M∑
i=1

(Nλif(βi)− 1
2

ln(Nβiλi))−y[ln(PL(Nλβ)− ln(ε)] (3.22)

From standard nonlinear optimization theory, see Luenberger, 1984
for example, the necessary first-order conditions that m∗ satisfies are:

∂(λif(βi))
∂mj

δi,j − y
∂PL(Nλβ)

N∂mj
|m=m∗ = 0; i, j = 1, 2, · · · ,M (3.23)

where the Lagrange multiplier y is such that the equality constraint is
achieved.

Now using the expression for the partial derivative of PL(Nλβ) we
obtain the result that the most likely state Nm∗ satisfies:

Nm∗
j = Nλj(φj(τc))y exp{ y

Nσ2
[(1 +

2
eτc − 1

)
φ′

j(τc)
φj(τc)

]} (3.24)

and τc is the solution to:

M∑
i=1

m∗
i φ

′
i(τc)

φi(τc)
= C (3.25)

which gives M + 1 equations to compute m and τc as functions of the
given parameters and the Lagrange multiplier y.

Finally the Lagrange multiplier y is chosen to satisfy the constraint:

PL(Nm∗) = ε (3.26)

thus giving us M + 2 equations for computing the M + 2 unknowns
given the source and arrival characteristics φi(.), {λi}M

i=1, C as well as
the scaling factor N and the QoS constraint ε.

By computing the Hessian at Nm∗ it can be shown that the Hessian
is positive definite and thus the solution Nm∗ is regular. We omit it for
sake of brevity.

Remark 3.1 From above it follows that the assumption that the states
are of order O(N) as assumed in section 1 is satisfied and the bit loss
probability approximation as given in Proposition 2.2 is valid.

Let us now study the role of the most likely bit loss configuration
above.
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Lemma 3.1 Let Nm∗ be the most likely bit loss configuration and Nm
be any other configuration in ∂Ωε. Let Π(m) denote the stationary dis-
tribution for m.

Then:
Π(Nm)
Π(Nm∗)

∼ O(e−N ) (3.27)

Proof:
First note that for N large:

Π(Nm) =
1∏M

i=1

√
2πNmi

e−N
PM

i=1 λif(βi)

where βi is defined by (2.31) and f(x) by (2.32)
Let Nm ∈ ∂Ωε. Now from the fact that Nm∗ is the unique minimizer

of N
∑M

i=1 λif(βi) for m ∈ ∂Ωε we see that

Π(Nm)
Π(Nm∗)

=

√√√√ M∏
i=1

m∗
i

mi
e−N

PM
i=1 λi(f(βi)−f(β∗

i ))

and
M∑
i=1

λi(f(βi) − f(β∗
i )) > 0

for β 6= β∗ which proves the result for m ∈ ∂Ωε.

On the other hand if m ∈ interior(Ωε) the above estimates hold
for the bit loss probabilities. Indeed, for a configuration m ∈ int(Ωε)
from the definition of the rate function the corresponding rate function
denoted by (I(C)) is strictly larger (this follows from the fact that the
partial derivative with respect to m is negative) than I(C). In this case

PL(m)
PL(m∗)

∼ O(e−N(I(C)−I(C)))

which gives the ratio of bit loss probabilities this time of O(e−N ).

The importance of the above result is that, in so far as we consider the
boundary states which correspond to the maximum bit loss permissible,
the contribution of the other boundary configurations with respect to the
most likely bit loss configuration is exponentially negligible as the size
of the system becomes large. This important property will be utilized
in defining the connection acceptance control which is addressed in the
next section.
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4. Effective bandwidths, CAC and Connection
Blocking

In this section we develop the connection acceptance control strategy
building upon the results in the previous sections.

First note that once we characterize Ωε a given connection request is
admitted if the new configuration with the connection request added is
within Ωε. In order to do so one would have to compute the region Ωε

which in light of the expression for the bit loss probability is a daunting
task. Moreover as mentioned in the introduction, the calculation of the
connection blocking probability which is needed for bandwidth allocation
for a given VP in the MPLS context for a given Grade of Service (GoS)
is given by the ratio of the number of arriving connections which cannot
be accepted over the total number of arriving requests which involves
the computation of

∑
m∈∂Ωε

Π(m) which implies the computation of ∂Ωε

which is also daunting. However, as we have seen in the previous section,
the most likely bit loss configuration determines the bit loss. We will
exploit this property to define the CAC.

Since the basic problem is related to the computation of the nonlin-
ear hyper surface characterized by ∂Ωε we now consider the following
simpler approximation. The basic idea is that since Nm∗ lies on ∂Ωε we
construct the tangent hyperplane to ∂Ωε at Nm∗. The slope of the hy-
perplane then defines the relative contributions in terms of the necessary
incremental bandwidth requirements of the various types of connections.
This is what we identify as the effective bandwidths of the various types
of sources.

Figure 1.2 illustrates the idea of the effective bandwidths.
Define:

aj = ln(φj(τc)) +
1

Nσ2
(1 +

2
eτc − 1

)
φ′

j(τc)
φj(τc)

(4.28)

Let amin = min(a1, a2, · · · , aM ) and then define:

Aj =
aj

amin
(4.29)

Note since aj is just the ratio of the partial derivative of the bit
loss to the bit loss probability it represents the sensitivity of the bit
loss probability (normalized with respect to the minimum of aj) and
thus represents the change in bit loss as the connection is increased and
can be identified with the supplementary bandwidth associated with the
connection when we try to admit one more.
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(n1,n2): Most likely configuration*

n1A1+n2A2 = C*

Number of type 1 connections
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C   = Effective capacity
Ai = Effective bandwidth of type i

*

*

Figure 1.2. Effective bandwidths via hyperplane approximation

Then define C∗ as

C∗ =
M∑
i=1

m∗
i Ai (4.30)

Then the interpretation of {Ai}M
i=1 and C∗ is that the Ai denote the

effective bandwidths of the connection (with the smallest connection as-
signed a unit bandwidth) and NC∗ the effective capacity of the Virtual
Path.

With the above terms defined the tangent hyperplane to ∂Ωε can be
approximated as:

T = {n :
M∑
i=1

niAi = NC∗} (4.31)

Therefore the Connection Acceptance Control strategy can now be
formalized as follows:

1 Compute Aj for a given incoming request of type j.

2 If Aj +
∑

ongoing niAi ≤ NC∗ then admit the connection, else reject
the request.

Thus the Connection Acceptance Control strategy involves comput-
ing the available bandwidth at the instant of arrival and seeing whether
the effective bandwidth of the incoming request is less than the available
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bandwidth. This linear truncation now allows us to compute the block-
ing probability for a given connection request. Before doing so let us see
some properties of the effective bandwidths and how good the tangent
hyperplane approximation is for large systems.

Throughout the following discussion we assume that Nm ∈ ∂Ωε i.e.
the bit loss probability is held fixed. We will study the behavior of
Aj(N), C∗(N), and the tangent hyperplane T (N) (where the explicit
dependence of these quantities on the size specified by N is noted) as
N → ∞.

Let Nm(N) be a configuration corresponding to bit loss probability
ε where m(N)∗ is made to depend on N since we will be changing N .

Proposition 4.1 Let PL(Nm(N)) be the bit loss probability for con-
figuration Nm(N) which is assumed to be held constant at ε. Then as
N → ∞ the following properties hold:

1 m(N) converges to mo such that
∑M

i=1 mo
i ri = C where ri is the

mean rate of a connection of type i.

2 Aj(N) converges to rj

rmin

3 C∗(N) converges to C
rmin

.

4 The tangent hyperplane T (N) coincides with ∂Ωε

Proof:
Proof of 1) First note that the bit loss probability PL(.) can be com-
pletely characterized by (N,m(N), τc(N)). Keeping it fixed and increas-
ing N implies that τc(N) must go to zero since I(C) → 0 and τc satisfies:

M∑
i=1

mi(N)
φ′

i(τc(N))
φi(τc(N))

= C

Therefore :

lim
N→∞

φ′
i(τc(N))

φi(τc(N))
=

φ′
i(0)

φi(0)
= ri

and hence
lim

N→∞
m(N) → mo

where mo satisfies
M∑
i=1

mo
i ri = C
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Proof of 2) From the definition of Aj we have:

Aj(N) =
ln(φj(τc(N))) + α(τc(N),N)

φ′
j(τc(N))

φj(τc(N))

ln(φmin(τc(N))) + α(τc(N),N)φ′
min(τc(N))

φmin(τc(N))

where α(τc(N),N) denotes the multiplying factor in the definition of Aj .
Now noting that as τc(N) → 0 , ln(φj(τc(N)) → 0 we have

lim
N→∞

Aj(N) → rj

rmin

Proof of 3) This follows directly from the definition of C∗ and the two
results above.

Proof of 4) This follows directly from 1), 2) and 3) since the properties
hold for any Nm(N) ∈ ∂Ωε.

Remark 4.1 The importance of the above result is that for virtual paths
with extremely large capacity in MPLS architectures that can be associ-
ated with a very large scaling factor N , the problem becomes completely
decoupled with the bandwidth assignment for a given class associated with
its mean rate and the effective capacity equal to the given capacity. In
this case the only problem is to design capacity allocation to meet GoS
requirements using the standard loss model.

Remark 4.2 From the result above we see that the boundary of the ac-
ceptance region is a hyperplane only in the limit as N goes to infinity.
When the system is very large then the linearity of the acceptance bound-
ary implies that the overall performance would be completely insensitive
to the choice of the point where the hyperplane is taken and thus in the
case of very large systems one would expect very little difference from
the results in Elwalid et al., 1995; Kelly, 1996.

We now obtain the expression for the connection blocking probability
which is needed for the GoS determination.

Let us recall the basic assumptions: connection arrivals are Poisson
with a connection of type i having intensity Nλi. It is assumed without
loss of generality that the connections hold the assigned bandwidth for
a random amount of time of unit mean. Connections are assumed to be
independent.
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From the above, a connection of Type i is assigned the effective band-
width Ai which in the MPLS context corresponds to the number of VC’s
required. For convenience we assume all quantities are integer valued i.e.
we define the quantities:

Ai = int(Ai)
m∗

i = int(m∗
i )

where int(x) is the smallest integer ≥ x.
As a consequence C∗ will also be integer valued. From a practical

viewpoint the integer valued effective bandwidths will then denote the
number of VC’s required and NC∗ will be the total effective capacity of
the VP in terms of number of VC’s.

With the above parameters, the consequence of the CAC rule specified
by the linear rule renders the model as a classical multi-rate loss model
with rates Ai for a connection of Type i. Once again using the fact that
the system is large on account of the scaling factor N we can use the
approximations for the blocking probabilities for the multi-rate model
given in Gazdicki et al., 1993 (noting that since by definition the smallest
effective bandwidth is 1 and hence the GCD (greatest common divisor)
of {Ai}M

i=1 is 1). These results can also be found in Mitra and Morrison,
1994 wherein they are obtained using saddle-point techniques. We quote
the result below:

Proposition 4.2 For the multirate loss model specified by arrival rates
Nλi, effective bandwidths Ai and effective capacity NC∗.

Then the following expressions for the blocking probability hold:

Light Load: If
∑M

i=1 λiAi < C∗, then the connection blocking proba-
bility for class k; k = 1, 2, · · · ,M is given by:

Pk(N) = exp(−I(C∗))
1√

2πNσ

(
1 − exp(tc∗Ak)
1 − exp(tc∗)

)
(1 + O(

1
N

))

(4.32)

Crtitcal Load: If
∑M

i=1 λiAi = C∗ then

Pk(N) =

√
2

πN

Ak

σ
(1 + O(

1√
N

) (4.33)

Heavy Load: If
∑M

i=1 λiAi > C∗ then

Pk(N) = (1 − exp(tc∗Ak))(1 + O(
1
N

)) (4.34)
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where the quantities tc∗, I(C∗), and σ are given by:

i) tc∗ is the unique solution to the equation
∑M

i=1 λiAi exp(tc∗Ai) = C∗

ii) I(C∗) = C∗tc∗ −
∑M

i=1 λi(exp(tc∗Ai) − 1)

iii) σ2 =
∑M

i=1 λiA
2
i exp(tc∗Ai)

Thus, from above once the most likely bit loss configuration is identi-
fied from the source characteristics and the corresponding values of C∗
and {Ai}M

i=1 are determined the connection blocking probability can be
determined from above.

It is worth remarking one point with regard to the definition of the
effective capacity C∗. In Labourdette and Hart, 1992, they show that
the most likely state at capacity for the multi-rate loss model i.e. the
most likely configuration m such that

∑M
i=1 miAi = C∗ is given by:

m∗
i = λiα

Ai

where α is the unique solution to

C∗ =
M∑
i=1

λiAiα
Ai

From the definition of the most likely bit loss configuration above
and the definition of Ai the effective bandwidths it is readily seen that
in fact the most likely bit loss configuration corresponds to the most
likely configuration for the loss model with effective capacity NC∗. To
see this: define α = eaminy. Then by definition m∗

i = λiα
Ai and by

definition C∗ =
∑M

i=1 λiAiα
Ai .

This basically shows that in mapping the bit loss phenomena to the
connection level multirate loss model we remain consistent i.e. the most
likely bit loss configuration remains invariant since it corresponds to the
most likely configuration at capacity for the multirate loss model.

Thus the basic problem of CAC to meet a given QoS specified by ε it
is equivalent to transforming the model to a multi-rate loss model where
the bit level phenomena is mapped into the connection level through the
definition of the effective bandwidth and effective capacity.

Let us now recapitulate all the results concerning the CAC and con-
nection blocking:

Assume that the following data is given: connection arrival rates
{λi}M

i=1, bit flow characteristics {φi(t)}M
i=1, link capacity C, QoS pa-

rameter ε and scaling factor N .
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Step 1: Determine the parameters τc, {m∗
i }M

i=1, and lagrange multiplier
y from the following set of (M+2) equations:

m∗
j = λj(φj(τc))y exp

(
y

Nσ2
[1 +

2
eτc − 1

]
φ′

j(τc)
φj(τc)

)

C =
M∑
i=1

m∗
i

φ′
i(τc)

φi(τc)

ε = PL(Nm∗) given in Theorem 1.2

Step 2: Having obtained τc and m∗
i above compute the effective band-

width Ai and then the effective capacity C∗.

Step 3: Depending upon the loading condition compute the blocking
probabilities Pk(N) using appropriate form from Proposition 4.2
with multirate parameters λi, Ai and C∗

In the next section we go through an example of the above procedure
and compare the results obtained with simulations.

5. Numerical example of QoS and GoS with
proposed admission control

In this example, we use the same parameters as in Table 1. We set
capacity C = 20 with two classes of traffic such that

λ1 = λ2 = 14, p1 = .275, p2 = .8,Π1 = 2,Π2 = 1

and we use multiplier N = 100. bit loss tolerance is set to ε = 10−4.
This value is larger than reality to allow for accurate simulations to be
performed. Recall that we suppose that each class of traffic is modeled
as an ON-OFF process and therefore,

φj(τc) = pj exp(τcΠj) + 1 − pj

We numerically solve Step 1 given at the end of section 3 to find m∗
1,

m∗
2, τc and y. We obtain the following solution

m∗
1 = 14.156,m∗

2 = 14.217, τc = .06215,y = .2245

With these values, we go to Step 2 of the procedure and we compute
a1 = .04948, a2 = .06852 which we normalize to get A1 = 1.0, A2 = 1.385
and C∗ = 33.847.



28

In Step 3 of the procedure, we use the approximation formulae of
Theorem 4.2 to evaluate call blocking probabilities. We first notice that∑

j Ajλj < C∗ so we are in the light load case. The blocking probabilities
which are reported in Table 1.5.

Technique Class 1 blocking Class 2 blocking

Simul. (95 % conf. int.) .00427-.00501 .00631-.00724
Theorem 3.1 .00479 .00661

Table 1.2. Call blocking probabilities

This procedure defines an acceptance region of the form

∑
j

Ajnj ≤ NC∗

To justify the use of such an acceptance region, we used simulation to
evaluate bit loss at a number of points on the boundary of the acceptance
region. Recall that the objective was to keep bit loss below 10−4 = ε.
The results are given in Table 1.2 where we see that our linear acceptance
region is conservative and very close to the true (unknown) acceptance
region.

Number of Number of Base 10 logarithm of
Class 1 calls Class 2 calls 95% conf. int. for bit loss

500 2083 (-4.13,-4.03)
1000 1722 (-4.19,-4.11)
1416 1422 (-4.16,-4.09)
1500 1361 (-4.30,-4.23)
2000 1000 (-4.25,-4.17)

Table 1.3. bit loss values

Concluding remarks
In this paper we have proposed a framework for addressing the prob-

lem of admission control to offer connections statistical guarantees on
their QoS requirements based on the loss probability. This can be read-
ily extended to delay distributions. We have shown how large system
size can be used to advantage via the ideas of scaling and moreover we
have shown that there is a natural definition for the effective bandwidths
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that gives a consistent mapping from the fast bit time scale to the slow
connection time scale that allows for GoS dimensioning. The approach
can be readily extended to more complicated scheduling disciplines pro-
vided one can analytically obtain estimates for the loss probabilities or
delay distributions. We have also shown how the effects of multiplex-
ing lead to a reduction of effective bandwidths and shown other scaling
properties of large systems showing loss concentrates at certain points
on the boundary of the acceptance region in equilibrium.
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